1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027 |
- //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass converts vector operations into scalar operations, in order
- // to expose optimization opportunities on the individual scalar operations.
- // It is mainly intended for targets that do not have vector units, but it
- // may also be useful for revectorizing code to different vector widths.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/Scalarizer.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <map>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "scalarizer"
- static cl::opt<bool> ClScalarizeVariableInsertExtract(
- "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
- cl::desc("Allow the scalarizer pass to scalarize "
- "insertelement/extractelement with variable index"));
- // This is disabled by default because having separate loads and stores
- // makes it more likely that the -combiner-alias-analysis limits will be
- // reached.
- static cl::opt<bool> ClScalarizeLoadStore(
- "scalarize-load-store", cl::init(false), cl::Hidden,
- cl::desc("Allow the scalarizer pass to scalarize loads and store"));
- namespace {
- BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) {
- BasicBlock *BB = Itr->getParent();
- if (isa<PHINode>(Itr))
- Itr = BB->getFirstInsertionPt();
- if (Itr != BB->end())
- Itr = skipDebugIntrinsics(Itr);
- return Itr;
- }
- // Used to store the scattered form of a vector.
- using ValueVector = SmallVector<Value *, 8>;
- // Used to map a vector Value and associated type to its scattered form.
- // The associated type is only non-null for pointer values that are "scattered"
- // when used as pointer operands to load or store.
- //
- // We use std::map because we want iterators to persist across insertion and
- // because the values are relatively large.
- using ScatterMap = std::map<std::pair<Value *, Type *>, ValueVector>;
- // Lists Instructions that have been replaced with scalar implementations,
- // along with a pointer to their scattered forms.
- using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
- // Provides a very limited vector-like interface for lazily accessing one
- // component of a scattered vector or vector pointer.
- class Scatterer {
- public:
- Scatterer() = default;
- // Scatter V into Size components. If new instructions are needed,
- // insert them before BBI in BB. If Cache is nonnull, use it to cache
- // the results.
- Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy,
- ValueVector *cachePtr = nullptr);
- // Return component I, creating a new Value for it if necessary.
- Value *operator[](unsigned I);
- // Return the number of components.
- unsigned size() const { return Size; }
- private:
- BasicBlock *BB;
- BasicBlock::iterator BBI;
- Value *V;
- Type *PtrElemTy;
- ValueVector *CachePtr;
- ValueVector Tmp;
- unsigned Size;
- };
- // FCmpSplitter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
- // called Name that compares X and Y in the same way as FCI.
- struct FCmpSplitter {
- FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
- Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
- const Twine &Name) const {
- return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
- }
- FCmpInst &FCI;
- };
- // ICmpSplitter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
- // called Name that compares X and Y in the same way as ICI.
- struct ICmpSplitter {
- ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
- Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
- const Twine &Name) const {
- return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
- }
- ICmpInst &ICI;
- };
- // UnarySplitter(UO)(Builder, X, Name) uses Builder to create
- // a unary operator like UO called Name with operand X.
- struct UnarySplitter {
- UnarySplitter(UnaryOperator &uo) : UO(uo) {}
- Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
- return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
- }
- UnaryOperator &UO;
- };
- // BinarySplitter(BO)(Builder, X, Y, Name) uses Builder to create
- // a binary operator like BO called Name with operands X and Y.
- struct BinarySplitter {
- BinarySplitter(BinaryOperator &bo) : BO(bo) {}
- Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
- const Twine &Name) const {
- return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
- }
- BinaryOperator &BO;
- };
- // Information about a load or store that we're scalarizing.
- struct VectorLayout {
- VectorLayout() = default;
- // Return the alignment of element I.
- Align getElemAlign(unsigned I) {
- return commonAlignment(VecAlign, I * ElemSize);
- }
- // The type of the vector.
- FixedVectorType *VecTy = nullptr;
- // The type of each element.
- Type *ElemTy = nullptr;
- // The alignment of the vector.
- Align VecAlign;
- // The size of each element.
- uint64_t ElemSize = 0;
- };
- template <typename T>
- T getWithDefaultOverride(const cl::opt<T> &ClOption,
- const std::optional<T> &DefaultOverride) {
- return ClOption.getNumOccurrences() ? ClOption
- : DefaultOverride.value_or(ClOption);
- }
- class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
- public:
- ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT,
- ScalarizerPassOptions Options)
- : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT),
- ScalarizeVariableInsertExtract(
- getWithDefaultOverride(ClScalarizeVariableInsertExtract,
- Options.ScalarizeVariableInsertExtract)),
- ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore,
- Options.ScalarizeLoadStore)) {
- }
- bool visit(Function &F);
- // InstVisitor methods. They return true if the instruction was scalarized,
- // false if nothing changed.
- bool visitInstruction(Instruction &I) { return false; }
- bool visitSelectInst(SelectInst &SI);
- bool visitICmpInst(ICmpInst &ICI);
- bool visitFCmpInst(FCmpInst &FCI);
- bool visitUnaryOperator(UnaryOperator &UO);
- bool visitBinaryOperator(BinaryOperator &BO);
- bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
- bool visitCastInst(CastInst &CI);
- bool visitBitCastInst(BitCastInst &BCI);
- bool visitInsertElementInst(InsertElementInst &IEI);
- bool visitExtractElementInst(ExtractElementInst &EEI);
- bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
- bool visitPHINode(PHINode &PHI);
- bool visitLoadInst(LoadInst &LI);
- bool visitStoreInst(StoreInst &SI);
- bool visitCallInst(CallInst &ICI);
- private:
- Scatterer scatter(Instruction *Point, Value *V, Type *PtrElemTy = nullptr);
- void gather(Instruction *Op, const ValueVector &CV);
- void replaceUses(Instruction *Op, Value *CV);
- bool canTransferMetadata(unsigned Kind);
- void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
- std::optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
- const DataLayout &DL);
- bool finish();
- template<typename T> bool splitUnary(Instruction &, const T &);
- template<typename T> bool splitBinary(Instruction &, const T &);
- bool splitCall(CallInst &CI);
- ScatterMap Scattered;
- GatherList Gathered;
- bool Scalarized;
- SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
- unsigned ParallelLoopAccessMDKind;
- DominatorTree *DT;
- const bool ScalarizeVariableInsertExtract;
- const bool ScalarizeLoadStore;
- };
- class ScalarizerLegacyPass : public FunctionPass {
- public:
- static char ID;
- ScalarizerLegacyPass() : FunctionPass(ID) {
- initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage& AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- };
- } // end anonymous namespace
- char ScalarizerLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
- "Scalarize vector operations", false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
- "Scalarize vector operations", false, false)
- Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
- Type *PtrElemTy, ValueVector *cachePtr)
- : BB(bb), BBI(bbi), V(v), PtrElemTy(PtrElemTy), CachePtr(cachePtr) {
- Type *Ty = V->getType();
- if (Ty->isPointerTy()) {
- assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(PtrElemTy) &&
- "Pointer element type mismatch");
- Ty = PtrElemTy;
- }
- Size = cast<FixedVectorType>(Ty)->getNumElements();
- if (!CachePtr)
- Tmp.resize(Size, nullptr);
- else if (CachePtr->empty())
- CachePtr->resize(Size, nullptr);
- else
- assert(Size == CachePtr->size() && "Inconsistent vector sizes");
- }
- // Return component I, creating a new Value for it if necessary.
- Value *Scatterer::operator[](unsigned I) {
- ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
- // Try to reuse a previous value.
- if (CV[I])
- return CV[I];
- IRBuilder<> Builder(BB, BBI);
- if (PtrElemTy) {
- Type *VectorElemTy = cast<VectorType>(PtrElemTy)->getElementType();
- if (!CV[0]) {
- Type *NewPtrTy = PointerType::get(
- VectorElemTy, V->getType()->getPointerAddressSpace());
- CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
- }
- if (I != 0)
- CV[I] = Builder.CreateConstGEP1_32(VectorElemTy, CV[0], I,
- V->getName() + ".i" + Twine(I));
- } else {
- // Search through a chain of InsertElementInsts looking for element I.
- // Record other elements in the cache. The new V is still suitable
- // for all uncached indices.
- while (true) {
- InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
- if (!Insert)
- break;
- ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
- if (!Idx)
- break;
- unsigned J = Idx->getZExtValue();
- V = Insert->getOperand(0);
- if (I == J) {
- CV[J] = Insert->getOperand(1);
- return CV[J];
- } else if (!CV[J]) {
- // Only cache the first entry we find for each index we're not actively
- // searching for. This prevents us from going too far up the chain and
- // caching incorrect entries.
- CV[J] = Insert->getOperand(1);
- }
- }
- CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
- V->getName() + ".i" + Twine(I));
- }
- return CV[I];
- }
- bool ScalarizerLegacyPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- Module &M = *F.getParent();
- unsigned ParallelLoopAccessMDKind =
- M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
- DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, ScalarizerPassOptions());
- return Impl.visit(F);
- }
- FunctionPass *llvm::createScalarizerPass() {
- return new ScalarizerLegacyPass();
- }
- bool ScalarizerVisitor::visit(Function &F) {
- assert(Gathered.empty() && Scattered.empty());
- Scalarized = false;
- // To ensure we replace gathered components correctly we need to do an ordered
- // traversal of the basic blocks in the function.
- ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
- for (BasicBlock *BB : RPOT) {
- for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
- Instruction *I = &*II;
- bool Done = InstVisitor::visit(I);
- ++II;
- if (Done && I->getType()->isVoidTy())
- I->eraseFromParent();
- }
- }
- return finish();
- }
- // Return a scattered form of V that can be accessed by Point. V must be a
- // vector or a pointer to a vector.
- Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V,
- Type *PtrElemTy) {
- if (Argument *VArg = dyn_cast<Argument>(V)) {
- // Put the scattered form of arguments in the entry block,
- // so that it can be used everywhere.
- Function *F = VArg->getParent();
- BasicBlock *BB = &F->getEntryBlock();
- return Scatterer(BB, BB->begin(), V, PtrElemTy, &Scattered[{V, PtrElemTy}]);
- }
- if (Instruction *VOp = dyn_cast<Instruction>(V)) {
- // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
- // nodes in predecessors. If those predecessors are unreachable from entry,
- // then the IR in those blocks could have unexpected properties resulting in
- // infinite loops in Scatterer::operator[]. By simply treating values
- // originating from instructions in unreachable blocks as undef we do not
- // need to analyse them further.
- if (!DT->isReachableFromEntry(VOp->getParent()))
- return Scatterer(Point->getParent(), Point->getIterator(),
- PoisonValue::get(V->getType()), PtrElemTy);
- // Put the scattered form of an instruction directly after the
- // instruction, skipping over PHI nodes and debug intrinsics.
- BasicBlock *BB = VOp->getParent();
- return Scatterer(
- BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V,
- PtrElemTy, &Scattered[{V, PtrElemTy}]);
- }
- // In the fallback case, just put the scattered before Point and
- // keep the result local to Point.
- return Scatterer(Point->getParent(), Point->getIterator(), V, PtrElemTy);
- }
- // Replace Op with the gathered form of the components in CV. Defer the
- // deletion of Op and creation of the gathered form to the end of the pass,
- // so that we can avoid creating the gathered form if all uses of Op are
- // replaced with uses of CV.
- void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
- transferMetadataAndIRFlags(Op, CV);
- // If we already have a scattered form of Op (created from ExtractElements
- // of Op itself), replace them with the new form.
- ValueVector &SV = Scattered[{Op, nullptr}];
- if (!SV.empty()) {
- for (unsigned I = 0, E = SV.size(); I != E; ++I) {
- Value *V = SV[I];
- if (V == nullptr || SV[I] == CV[I])
- continue;
- Instruction *Old = cast<Instruction>(V);
- if (isa<Instruction>(CV[I]))
- CV[I]->takeName(Old);
- Old->replaceAllUsesWith(CV[I]);
- PotentiallyDeadInstrs.emplace_back(Old);
- }
- }
- SV = CV;
- Gathered.push_back(GatherList::value_type(Op, &SV));
- }
- // Replace Op with CV and collect Op has a potentially dead instruction.
- void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) {
- if (CV != Op) {
- Op->replaceAllUsesWith(CV);
- PotentiallyDeadInstrs.emplace_back(Op);
- Scalarized = true;
- }
- }
- // Return true if it is safe to transfer the given metadata tag from
- // vector to scalar instructions.
- bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
- return (Tag == LLVMContext::MD_tbaa
- || Tag == LLVMContext::MD_fpmath
- || Tag == LLVMContext::MD_tbaa_struct
- || Tag == LLVMContext::MD_invariant_load
- || Tag == LLVMContext::MD_alias_scope
- || Tag == LLVMContext::MD_noalias
- || Tag == ParallelLoopAccessMDKind
- || Tag == LLVMContext::MD_access_group);
- }
- // Transfer metadata from Op to the instructions in CV if it is known
- // to be safe to do so.
- void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
- const ValueVector &CV) {
- SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
- Op->getAllMetadataOtherThanDebugLoc(MDs);
- for (unsigned I = 0, E = CV.size(); I != E; ++I) {
- if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
- for (const auto &MD : MDs)
- if (canTransferMetadata(MD.first))
- New->setMetadata(MD.first, MD.second);
- New->copyIRFlags(Op);
- if (Op->getDebugLoc() && !New->getDebugLoc())
- New->setDebugLoc(Op->getDebugLoc());
- }
- }
- }
- // Try to fill in Layout from Ty, returning true on success. Alignment is
- // the alignment of the vector, or std::nullopt if the ABI default should be
- // used.
- std::optional<VectorLayout>
- ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
- const DataLayout &DL) {
- VectorLayout Layout;
- // Make sure we're dealing with a vector.
- Layout.VecTy = dyn_cast<FixedVectorType>(Ty);
- if (!Layout.VecTy)
- return std::nullopt;
- // Check that we're dealing with full-byte elements.
- Layout.ElemTy = Layout.VecTy->getElementType();
- if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
- return std::nullopt;
- Layout.VecAlign = Alignment;
- Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
- return Layout;
- }
- // Scalarize one-operand instruction I, using Split(Builder, X, Name)
- // to create an instruction like I with operand X and name Name.
- template<typename Splitter>
- bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
- auto *VT = dyn_cast<FixedVectorType>(I.getType());
- if (!VT)
- return false;
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&I);
- Scatterer Op = scatter(&I, I.getOperand(0));
- assert(Op.size() == NumElems && "Mismatched unary operation");
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned Elem = 0; Elem < NumElems; ++Elem)
- Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
- gather(&I, Res);
- return true;
- }
- // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
- // to create an instruction like I with operands X and Y and name Name.
- template<typename Splitter>
- bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
- auto *VT = dyn_cast<FixedVectorType>(I.getType());
- if (!VT)
- return false;
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&I);
- Scatterer VOp0 = scatter(&I, I.getOperand(0));
- Scatterer VOp1 = scatter(&I, I.getOperand(1));
- assert(VOp0.size() == NumElems && "Mismatched binary operation");
- assert(VOp1.size() == NumElems && "Mismatched binary operation");
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
- Value *Op0 = VOp0[Elem];
- Value *Op1 = VOp1[Elem];
- Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
- }
- gather(&I, Res);
- return true;
- }
- static bool isTriviallyScalariable(Intrinsic::ID ID) {
- return isTriviallyVectorizable(ID);
- }
- // All of the current scalarizable intrinsics only have one mangled type.
- static Function *getScalarIntrinsicDeclaration(Module *M,
- Intrinsic::ID ID,
- ArrayRef<Type*> Tys) {
- return Intrinsic::getDeclaration(M, ID, Tys);
- }
- /// If a call to a vector typed intrinsic function, split into a scalar call per
- /// element if possible for the intrinsic.
- bool ScalarizerVisitor::splitCall(CallInst &CI) {
- auto *VT = dyn_cast<FixedVectorType>(CI.getType());
- if (!VT)
- return false;
- Function *F = CI.getCalledFunction();
- if (!F)
- return false;
- Intrinsic::ID ID = F->getIntrinsicID();
- if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
- return false;
- unsigned NumElems = VT->getNumElements();
- unsigned NumArgs = CI.arg_size();
- ValueVector ScalarOperands(NumArgs);
- SmallVector<Scatterer, 8> Scattered(NumArgs);
- Scattered.resize(NumArgs);
- SmallVector<llvm::Type *, 3> Tys;
- Tys.push_back(VT->getScalarType());
- // Assumes that any vector type has the same number of elements as the return
- // vector type, which is true for all current intrinsics.
- for (unsigned I = 0; I != NumArgs; ++I) {
- Value *OpI = CI.getOperand(I);
- if (OpI->getType()->isVectorTy()) {
- Scattered[I] = scatter(&CI, OpI);
- assert(Scattered[I].size() == NumElems && "mismatched call operands");
- if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
- Tys.push_back(OpI->getType()->getScalarType());
- } else {
- ScalarOperands[I] = OpI;
- if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
- Tys.push_back(OpI->getType());
- }
- }
- ValueVector Res(NumElems);
- ValueVector ScalarCallOps(NumArgs);
- Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys);
- IRBuilder<> Builder(&CI);
- // Perform actual scalarization, taking care to preserve any scalar operands.
- for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
- ScalarCallOps.clear();
- for (unsigned J = 0; J != NumArgs; ++J) {
- if (isVectorIntrinsicWithScalarOpAtArg(ID, J))
- ScalarCallOps.push_back(ScalarOperands[J]);
- else
- ScalarCallOps.push_back(Scattered[J][Elem]);
- }
- Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
- CI.getName() + ".i" + Twine(Elem));
- }
- gather(&CI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
- auto *VT = dyn_cast<FixedVectorType>(SI.getType());
- if (!VT)
- return false;
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&SI);
- Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
- Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
- assert(VOp1.size() == NumElems && "Mismatched select");
- assert(VOp2.size() == NumElems && "Mismatched select");
- ValueVector Res;
- Res.resize(NumElems);
- if (SI.getOperand(0)->getType()->isVectorTy()) {
- Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
- assert(VOp0.size() == NumElems && "Mismatched select");
- for (unsigned I = 0; I < NumElems; ++I) {
- Value *Op0 = VOp0[I];
- Value *Op1 = VOp1[I];
- Value *Op2 = VOp2[I];
- Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
- SI.getName() + ".i" + Twine(I));
- }
- } else {
- Value *Op0 = SI.getOperand(0);
- for (unsigned I = 0; I < NumElems; ++I) {
- Value *Op1 = VOp1[I];
- Value *Op2 = VOp2[I];
- Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
- SI.getName() + ".i" + Twine(I));
- }
- }
- gather(&SI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
- return splitBinary(ICI, ICmpSplitter(ICI));
- }
- bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
- return splitBinary(FCI, FCmpSplitter(FCI));
- }
- bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
- return splitUnary(UO, UnarySplitter(UO));
- }
- bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
- return splitBinary(BO, BinarySplitter(BO));
- }
- bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
- auto *VT = dyn_cast<FixedVectorType>(GEPI.getType());
- if (!VT)
- return false;
- IRBuilder<> Builder(&GEPI);
- unsigned NumElems = VT->getNumElements();
- unsigned NumIndices = GEPI.getNumIndices();
- // The base pointer might be scalar even if it's a vector GEP. In those cases,
- // splat the pointer into a vector value, and scatter that vector.
- Value *Op0 = GEPI.getOperand(0);
- if (!Op0->getType()->isVectorTy())
- Op0 = Builder.CreateVectorSplat(NumElems, Op0);
- Scatterer Base = scatter(&GEPI, Op0);
- SmallVector<Scatterer, 8> Ops;
- Ops.resize(NumIndices);
- for (unsigned I = 0; I < NumIndices; ++I) {
- Value *Op = GEPI.getOperand(I + 1);
- // The indices might be scalars even if it's a vector GEP. In those cases,
- // splat the scalar into a vector value, and scatter that vector.
- if (!Op->getType()->isVectorTy())
- Op = Builder.CreateVectorSplat(NumElems, Op);
- Ops[I] = scatter(&GEPI, Op);
- }
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I) {
- SmallVector<Value *, 8> Indices;
- Indices.resize(NumIndices);
- for (unsigned J = 0; J < NumIndices; ++J)
- Indices[J] = Ops[J][I];
- Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
- GEPI.getName() + ".i" + Twine(I));
- if (GEPI.isInBounds())
- if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
- NewGEPI->setIsInBounds();
- }
- gather(&GEPI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
- auto *VT = dyn_cast<FixedVectorType>(CI.getDestTy());
- if (!VT)
- return false;
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&CI);
- Scatterer Op0 = scatter(&CI, CI.getOperand(0));
- assert(Op0.size() == NumElems && "Mismatched cast");
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
- CI.getName() + ".i" + Twine(I));
- gather(&CI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
- auto *DstVT = dyn_cast<FixedVectorType>(BCI.getDestTy());
- auto *SrcVT = dyn_cast<FixedVectorType>(BCI.getSrcTy());
- if (!DstVT || !SrcVT)
- return false;
- unsigned DstNumElems = DstVT->getNumElements();
- unsigned SrcNumElems = SrcVT->getNumElements();
- IRBuilder<> Builder(&BCI);
- Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
- ValueVector Res;
- Res.resize(DstNumElems);
- if (DstNumElems == SrcNumElems) {
- for (unsigned I = 0; I < DstNumElems; ++I)
- Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
- BCI.getName() + ".i" + Twine(I));
- } else if (DstNumElems > SrcNumElems) {
- // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
- // individual elements to the destination.
- unsigned FanOut = DstNumElems / SrcNumElems;
- auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
- unsigned ResI = 0;
- for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
- Value *V = Op0[Op0I];
- Instruction *VI;
- // Look through any existing bitcasts before converting to <N x t2>.
- // In the best case, the resulting conversion might be a no-op.
- while ((VI = dyn_cast<Instruction>(V)) &&
- VI->getOpcode() == Instruction::BitCast)
- V = VI->getOperand(0);
- V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
- Scatterer Mid = scatter(&BCI, V);
- for (unsigned MidI = 0; MidI < FanOut; ++MidI)
- Res[ResI++] = Mid[MidI];
- }
- } else {
- // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
- unsigned FanIn = SrcNumElems / DstNumElems;
- auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
- unsigned Op0I = 0;
- for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
- Value *V = PoisonValue::get(MidTy);
- for (unsigned MidI = 0; MidI < FanIn; ++MidI)
- V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
- BCI.getName() + ".i" + Twine(ResI)
- + ".upto" + Twine(MidI));
- Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
- BCI.getName() + ".i" + Twine(ResI));
- }
- }
- gather(&BCI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
- auto *VT = dyn_cast<FixedVectorType>(IEI.getType());
- if (!VT)
- return false;
- unsigned NumElems = VT->getNumElements();
- IRBuilder<> Builder(&IEI);
- Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
- Value *NewElt = IEI.getOperand(1);
- Value *InsIdx = IEI.getOperand(2);
- ValueVector Res;
- Res.resize(NumElems);
- if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
- } else {
- if (!ScalarizeVariableInsertExtract)
- return false;
- for (unsigned I = 0; I < NumElems; ++I) {
- Value *ShouldReplace =
- Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
- InsIdx->getName() + ".is." + Twine(I));
- Value *OldElt = Op0[I];
- Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
- IEI.getName() + ".i" + Twine(I));
- }
- }
- gather(&IEI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
- auto *VT = dyn_cast<FixedVectorType>(EEI.getOperand(0)->getType());
- if (!VT)
- return false;
- unsigned NumSrcElems = VT->getNumElements();
- IRBuilder<> Builder(&EEI);
- Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
- Value *ExtIdx = EEI.getOperand(1);
- if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
- Value *Res = Op0[CI->getValue().getZExtValue()];
- replaceUses(&EEI, Res);
- return true;
- }
- if (!ScalarizeVariableInsertExtract)
- return false;
- Value *Res = PoisonValue::get(VT->getElementType());
- for (unsigned I = 0; I < NumSrcElems; ++I) {
- Value *ShouldExtract =
- Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
- ExtIdx->getName() + ".is." + Twine(I));
- Value *Elt = Op0[I];
- Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
- EEI.getName() + ".upto" + Twine(I));
- }
- replaceUses(&EEI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
- auto *VT = dyn_cast<FixedVectorType>(SVI.getType());
- if (!VT)
- return false;
- unsigned NumElems = VT->getNumElements();
- Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
- Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I) {
- int Selector = SVI.getMaskValue(I);
- if (Selector < 0)
- Res[I] = UndefValue::get(VT->getElementType());
- else if (unsigned(Selector) < Op0.size())
- Res[I] = Op0[Selector];
- else
- Res[I] = Op1[Selector - Op0.size()];
- }
- gather(&SVI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
- auto *VT = dyn_cast<FixedVectorType>(PHI.getType());
- if (!VT)
- return false;
- unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
- IRBuilder<> Builder(&PHI);
- ValueVector Res;
- Res.resize(NumElems);
- unsigned NumOps = PHI.getNumOperands();
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
- PHI.getName() + ".i" + Twine(I));
- for (unsigned I = 0; I < NumOps; ++I) {
- Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
- BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
- for (unsigned J = 0; J < NumElems; ++J)
- cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
- }
- gather(&PHI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
- if (!ScalarizeLoadStore)
- return false;
- if (!LI.isSimple())
- return false;
- std::optional<VectorLayout> Layout = getVectorLayout(
- LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
- if (!Layout)
- return false;
- unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
- IRBuilder<> Builder(&LI);
- Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), LI.getType());
- ValueVector Res;
- Res.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I)
- Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
- Align(Layout->getElemAlign(I)),
- LI.getName() + ".i" + Twine(I));
- gather(&LI, Res);
- return true;
- }
- bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
- if (!ScalarizeLoadStore)
- return false;
- if (!SI.isSimple())
- return false;
- Value *FullValue = SI.getValueOperand();
- std::optional<VectorLayout> Layout = getVectorLayout(
- FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
- if (!Layout)
- return false;
- unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
- IRBuilder<> Builder(&SI);
- Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), FullValue->getType());
- Scatterer VVal = scatter(&SI, FullValue);
- ValueVector Stores;
- Stores.resize(NumElems);
- for (unsigned I = 0; I < NumElems; ++I) {
- Value *Val = VVal[I];
- Value *Ptr = VPtr[I];
- Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
- }
- transferMetadataAndIRFlags(&SI, Stores);
- return true;
- }
- bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
- return splitCall(CI);
- }
- // Delete the instructions that we scalarized. If a full vector result
- // is still needed, recreate it using InsertElements.
- bool ScalarizerVisitor::finish() {
- // The presence of data in Gathered or Scattered indicates changes
- // made to the Function.
- if (Gathered.empty() && Scattered.empty() && !Scalarized)
- return false;
- for (const auto &GMI : Gathered) {
- Instruction *Op = GMI.first;
- ValueVector &CV = *GMI.second;
- if (!Op->use_empty()) {
- // The value is still needed, so recreate it using a series of
- // InsertElements.
- Value *Res = PoisonValue::get(Op->getType());
- if (auto *Ty = dyn_cast<FixedVectorType>(Op->getType())) {
- BasicBlock *BB = Op->getParent();
- unsigned Count = Ty->getNumElements();
- IRBuilder<> Builder(Op);
- if (isa<PHINode>(Op))
- Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
- for (unsigned I = 0; I < Count; ++I)
- Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
- Op->getName() + ".upto" + Twine(I));
- Res->takeName(Op);
- } else {
- assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
- Res = CV[0];
- if (Op == Res)
- continue;
- }
- Op->replaceAllUsesWith(Res);
- }
- PotentiallyDeadInstrs.emplace_back(Op);
- }
- Gathered.clear();
- Scattered.clear();
- Scalarized = false;
- RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
- return true;
- }
- PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
- Module &M = *F.getParent();
- unsigned ParallelLoopAccessMDKind =
- M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
- DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, Options);
- bool Changed = Impl.visit(F);
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- return Changed ? PA : PreservedAnalyses::all();
- }
|