123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779 |
- //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This Pass handles loop interchange transform.
- // This pass interchanges loops to provide a more cache-friendly memory access
- // patterns.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LoopInterchange.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Analysis/DependenceAnalysis.h"
- #include "llvm/Analysis/LoopCacheAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopNestAnalysis.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Scalar/LoopPassManager.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include <cassert>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "loop-interchange"
- STATISTIC(LoopsInterchanged, "Number of loops interchanged");
- static cl::opt<int> LoopInterchangeCostThreshold(
- "loop-interchange-threshold", cl::init(0), cl::Hidden,
- cl::desc("Interchange if you gain more than this number"));
- namespace {
- using LoopVector = SmallVector<Loop *, 8>;
- // TODO: Check if we can use a sparse matrix here.
- using CharMatrix = std::vector<std::vector<char>>;
- } // end anonymous namespace
- // Maximum number of dependencies that can be handled in the dependency matrix.
- static const unsigned MaxMemInstrCount = 100;
- // Maximum loop depth supported.
- static const unsigned MaxLoopNestDepth = 10;
- #ifdef DUMP_DEP_MATRICIES
- static void printDepMatrix(CharMatrix &DepMatrix) {
- for (auto &Row : DepMatrix) {
- for (auto D : Row)
- LLVM_DEBUG(dbgs() << D << " ");
- LLVM_DEBUG(dbgs() << "\n");
- }
- }
- #endif
- static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
- Loop *L, DependenceInfo *DI,
- ScalarEvolution *SE) {
- using ValueVector = SmallVector<Value *, 16>;
- ValueVector MemInstr;
- // For each block.
- for (BasicBlock *BB : L->blocks()) {
- // Scan the BB and collect legal loads and stores.
- for (Instruction &I : *BB) {
- if (!isa<Instruction>(I))
- return false;
- if (auto *Ld = dyn_cast<LoadInst>(&I)) {
- if (!Ld->isSimple())
- return false;
- MemInstr.push_back(&I);
- } else if (auto *St = dyn_cast<StoreInst>(&I)) {
- if (!St->isSimple())
- return false;
- MemInstr.push_back(&I);
- }
- }
- }
- LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
- << " Loads and Stores to analyze\n");
- ValueVector::iterator I, IE, J, JE;
- for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
- for (J = I, JE = MemInstr.end(); J != JE; ++J) {
- std::vector<char> Dep;
- Instruction *Src = cast<Instruction>(*I);
- Instruction *Dst = cast<Instruction>(*J);
- // Ignore Input dependencies.
- if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
- continue;
- // Track Output, Flow, and Anti dependencies.
- if (auto D = DI->depends(Src, Dst, true)) {
- assert(D->isOrdered() && "Expected an output, flow or anti dep.");
- // If the direction vector is negative, normalize it to
- // make it non-negative.
- if (D->normalize(SE))
- LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
- LLVM_DEBUG(StringRef DepType =
- D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
- dbgs() << "Found " << DepType
- << " dependency between Src and Dst\n"
- << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
- unsigned Levels = D->getLevels();
- char Direction;
- for (unsigned II = 1; II <= Levels; ++II) {
- if (D->isScalar(II)) {
- Direction = 'S';
- Dep.push_back(Direction);
- } else {
- unsigned Dir = D->getDirection(II);
- if (Dir == Dependence::DVEntry::LT ||
- Dir == Dependence::DVEntry::LE)
- Direction = '<';
- else if (Dir == Dependence::DVEntry::GT ||
- Dir == Dependence::DVEntry::GE)
- Direction = '>';
- else if (Dir == Dependence::DVEntry::EQ)
- Direction = '=';
- else
- Direction = '*';
- Dep.push_back(Direction);
- }
- }
- while (Dep.size() != Level) {
- Dep.push_back('I');
- }
- DepMatrix.push_back(Dep);
- if (DepMatrix.size() > MaxMemInstrCount) {
- LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
- << " dependencies inside loop\n");
- return false;
- }
- }
- }
- }
- return true;
- }
- // A loop is moved from index 'from' to an index 'to'. Update the Dependence
- // matrix by exchanging the two columns.
- static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
- unsigned ToIndx) {
- for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
- std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
- }
- // After interchanging, check if the direction vector is valid.
- // [Theorem] A permutation of the loops in a perfect nest is legal if and only
- // if the direction matrix, after the same permutation is applied to its
- // columns, has no ">" direction as the leftmost non-"=" direction in any row.
- static bool isLexicographicallyPositive(std::vector<char> &DV) {
- for (unsigned Level = 0; Level < DV.size(); ++Level) {
- unsigned char Direction = DV[Level];
- if (Direction == '<')
- return true;
- if (Direction == '>' || Direction == '*')
- return false;
- }
- return true;
- }
- // Checks if it is legal to interchange 2 loops.
- static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
- unsigned InnerLoopId,
- unsigned OuterLoopId) {
- unsigned NumRows = DepMatrix.size();
- std::vector<char> Cur;
- // For each row check if it is valid to interchange.
- for (unsigned Row = 0; Row < NumRows; ++Row) {
- // Create temporary DepVector check its lexicographical order
- // before and after swapping OuterLoop vs InnerLoop
- Cur = DepMatrix[Row];
- if (!isLexicographicallyPositive(Cur))
- return false;
- std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
- if (!isLexicographicallyPositive(Cur))
- return false;
- }
- return true;
- }
- static void populateWorklist(Loop &L, LoopVector &LoopList) {
- LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
- << L.getHeader()->getParent()->getName() << " Loop: %"
- << L.getHeader()->getName() << '\n');
- assert(LoopList.empty() && "LoopList should initially be empty!");
- Loop *CurrentLoop = &L;
- const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
- while (!Vec->empty()) {
- // The current loop has multiple subloops in it hence it is not tightly
- // nested.
- // Discard all loops above it added into Worklist.
- if (Vec->size() != 1) {
- LoopList = {};
- return;
- }
- LoopList.push_back(CurrentLoop);
- CurrentLoop = Vec->front();
- Vec = &CurrentLoop->getSubLoops();
- }
- LoopList.push_back(CurrentLoop);
- }
- namespace {
- /// LoopInterchangeLegality checks if it is legal to interchange the loop.
- class LoopInterchangeLegality {
- public:
- LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE)
- : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
- /// Check if the loops can be interchanged.
- bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
- CharMatrix &DepMatrix);
- /// Discover induction PHIs in the header of \p L. Induction
- /// PHIs are added to \p Inductions.
- bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
- /// Check if the loop structure is understood. We do not handle triangular
- /// loops for now.
- bool isLoopStructureUnderstood();
- bool currentLimitations();
- const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
- return OuterInnerReductions;
- }
- const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
- return InnerLoopInductions;
- }
- private:
- bool tightlyNested(Loop *Outer, Loop *Inner);
- bool containsUnsafeInstructions(BasicBlock *BB);
- /// Discover induction and reduction PHIs in the header of \p L. Induction
- /// PHIs are added to \p Inductions, reductions are added to
- /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
- /// to be passed as \p InnerLoop.
- bool findInductionAndReductions(Loop *L,
- SmallVector<PHINode *, 8> &Inductions,
- Loop *InnerLoop);
- Loop *OuterLoop;
- Loop *InnerLoop;
- ScalarEvolution *SE;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- /// Set of reduction PHIs taking part of a reduction across the inner and
- /// outer loop.
- SmallPtrSet<PHINode *, 4> OuterInnerReductions;
- /// Set of inner loop induction PHIs
- SmallVector<PHINode *, 8> InnerLoopInductions;
- };
- /// LoopInterchangeProfitability checks if it is profitable to interchange the
- /// loop.
- class LoopInterchangeProfitability {
- public:
- LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE)
- : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
- /// Check if the loop interchange is profitable.
- bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
- unsigned InnerLoopId, unsigned OuterLoopId,
- CharMatrix &DepMatrix,
- const DenseMap<const Loop *, unsigned> &CostMap,
- std::unique_ptr<CacheCost> &CC);
- private:
- int getInstrOrderCost();
- std::optional<bool> isProfitablePerLoopCacheAnalysis(
- const DenseMap<const Loop *, unsigned> &CostMap,
- std::unique_ptr<CacheCost> &CC);
- std::optional<bool> isProfitablePerInstrOrderCost();
- std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId,
- unsigned OuterLoopId,
- CharMatrix &DepMatrix);
- Loop *OuterLoop;
- Loop *InnerLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- };
- /// LoopInterchangeTransform interchanges the loop.
- class LoopInterchangeTransform {
- public:
- LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
- LoopInfo *LI, DominatorTree *DT,
- const LoopInterchangeLegality &LIL)
- : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
- /// Interchange OuterLoop and InnerLoop.
- bool transform();
- void restructureLoops(Loop *NewInner, Loop *NewOuter,
- BasicBlock *OrigInnerPreHeader,
- BasicBlock *OrigOuterPreHeader);
- void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
- private:
- bool adjustLoopLinks();
- bool adjustLoopBranches();
- Loop *OuterLoop;
- Loop *InnerLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- LoopInfo *LI;
- DominatorTree *DT;
- const LoopInterchangeLegality &LIL;
- };
- struct LoopInterchange {
- ScalarEvolution *SE = nullptr;
- LoopInfo *LI = nullptr;
- DependenceInfo *DI = nullptr;
- DominatorTree *DT = nullptr;
- std::unique_ptr<CacheCost> CC = nullptr;
- /// Interface to emit optimization remarks.
- OptimizationRemarkEmitter *ORE;
- LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
- DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
- OptimizationRemarkEmitter *ORE)
- : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
- bool run(Loop *L) {
- if (L->getParentLoop())
- return false;
- SmallVector<Loop *, 8> LoopList;
- populateWorklist(*L, LoopList);
- return processLoopList(LoopList);
- }
- bool run(LoopNest &LN) {
- SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
- for (unsigned I = 1; I < LoopList.size(); ++I)
- if (LoopList[I]->getParentLoop() != LoopList[I - 1])
- return false;
- return processLoopList(LoopList);
- }
- bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
- for (Loop *L : LoopList) {
- const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
- LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
- return false;
- }
- if (L->getNumBackEdges() != 1) {
- LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
- return false;
- }
- if (!L->getExitingBlock()) {
- LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
- return false;
- }
- }
- return true;
- }
- unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
- // TODO: Add a better heuristic to select the loop to be interchanged based
- // on the dependence matrix. Currently we select the innermost loop.
- return LoopList.size() - 1;
- }
- bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
- bool Changed = false;
- unsigned LoopNestDepth = LoopList.size();
- if (LoopNestDepth < 2) {
- LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
- return false;
- }
- if (LoopNestDepth > MaxLoopNestDepth) {
- LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
- << MaxLoopNestDepth << "\n");
- return false;
- }
- if (!isComputableLoopNest(LoopList)) {
- LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
- << "\n");
- CharMatrix DependencyMatrix;
- Loop *OuterMostLoop = *(LoopList.begin());
- if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
- OuterMostLoop, DI, SE)) {
- LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
- return false;
- }
- #ifdef DUMP_DEP_MATRICIES
- LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
- printDepMatrix(DependencyMatrix);
- #endif
- // Get the Outermost loop exit.
- BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
- if (!LoopNestExit) {
- LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
- return false;
- }
- unsigned SelecLoopId = selectLoopForInterchange(LoopList);
- // Obtain the loop vector returned from loop cache analysis beforehand,
- // and put each <Loop, index> pair into a map for constant time query
- // later. Indices in loop vector reprsent the optimal order of the
- // corresponding loop, e.g., given a loopnest with depth N, index 0
- // indicates the loop should be placed as the outermost loop and index N
- // indicates the loop should be placed as the innermost loop.
- //
- // For the old pass manager CacheCost would be null.
- DenseMap<const Loop *, unsigned> CostMap;
- if (CC != nullptr) {
- const auto &LoopCosts = CC->getLoopCosts();
- for (unsigned i = 0; i < LoopCosts.size(); i++) {
- CostMap[LoopCosts[i].first] = i;
- }
- }
- // We try to achieve the globally optimal memory access for the loopnest,
- // and do interchange based on a bubble-sort fasion. We start from
- // the innermost loop, move it outwards to the best possible position
- // and repeat this process.
- for (unsigned j = SelecLoopId; j > 0; j--) {
- bool ChangedPerIter = false;
- for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
- bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
- DependencyMatrix, CostMap);
- if (!Interchanged)
- continue;
- // Loops interchanged, update LoopList accordingly.
- std::swap(LoopList[i - 1], LoopList[i]);
- // Update the DependencyMatrix
- interChangeDependencies(DependencyMatrix, i, i - 1);
- #ifdef DUMP_DEP_MATRICIES
- LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
- printDepMatrix(DependencyMatrix);
- #endif
- ChangedPerIter |= Interchanged;
- Changed |= Interchanged;
- }
- // Early abort if there was no interchange during an entire round of
- // moving loops outwards.
- if (!ChangedPerIter)
- break;
- }
- return Changed;
- }
- bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
- unsigned OuterLoopId,
- std::vector<std::vector<char>> &DependencyMatrix,
- const DenseMap<const Loop *, unsigned> &CostMap) {
- LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
- << " and OuterLoopId = " << OuterLoopId << "\n");
- LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
- if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
- LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
- LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
- if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
- DependencyMatrix, CostMap, CC)) {
- LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
- return false;
- }
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Interchanged",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Loop interchanged with enclosing loop.";
- });
- LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
- LIT.transform();
- LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
- LoopsInterchanged++;
- llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
- return true;
- }
- };
- } // end anonymous namespace
- bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
- return any_of(*BB, [](const Instruction &I) {
- return I.mayHaveSideEffects() || I.mayReadFromMemory();
- });
- }
- bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
- BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
- LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
- // A perfectly nested loop will not have any branch in between the outer and
- // inner block i.e. outer header will branch to either inner preheader and
- // outerloop latch.
- BranchInst *OuterLoopHeaderBI =
- dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
- if (!OuterLoopHeaderBI)
- return false;
- for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
- if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
- Succ != OuterLoopLatch)
- return false;
- LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
- // We do not have any basic block in between now make sure the outer header
- // and outer loop latch doesn't contain any unsafe instructions.
- if (containsUnsafeInstructions(OuterLoopHeader) ||
- containsUnsafeInstructions(OuterLoopLatch))
- return false;
- // Also make sure the inner loop preheader does not contain any unsafe
- // instructions. Note that all instructions in the preheader will be moved to
- // the outer loop header when interchanging.
- if (InnerLoopPreHeader != OuterLoopHeader &&
- containsUnsafeInstructions(InnerLoopPreHeader))
- return false;
- BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
- // Ensure the inner loop exit block flows to the outer loop latch possibly
- // through empty blocks.
- const BasicBlock &SuccInner =
- LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
- if (&SuccInner != OuterLoopLatch) {
- LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
- << " does not lead to the outer loop latch.\n";);
- return false;
- }
- // The inner loop exit block does flow to the outer loop latch and not some
- // other BBs, now make sure it contains safe instructions, since it will be
- // moved into the (new) inner loop after interchange.
- if (containsUnsafeInstructions(InnerLoopExit))
- return false;
- LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
- // We have a perfect loop nest.
- return true;
- }
- bool LoopInterchangeLegality::isLoopStructureUnderstood() {
- BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
- for (PHINode *InnerInduction : InnerLoopInductions) {
- unsigned Num = InnerInduction->getNumOperands();
- for (unsigned i = 0; i < Num; ++i) {
- Value *Val = InnerInduction->getOperand(i);
- if (isa<Constant>(Val))
- continue;
- Instruction *I = dyn_cast<Instruction>(Val);
- if (!I)
- return false;
- // TODO: Handle triangular loops.
- // e.g. for(int i=0;i<N;i++)
- // for(int j=i;j<N;j++)
- unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
- if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
- InnerLoopPreheader &&
- !OuterLoop->isLoopInvariant(I)) {
- return false;
- }
- }
- }
- // TODO: Handle triangular loops of another form.
- // e.g. for(int i=0;i<N;i++)
- // for(int j=0;j<i;j++)
- // or,
- // for(int i=0;i<N;i++)
- // for(int j=0;j*i<N;j++)
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
- BranchInst *InnerLoopLatchBI =
- dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
- if (!InnerLoopLatchBI->isConditional())
- return false;
- if (CmpInst *InnerLoopCmp =
- dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
- Value *Op0 = InnerLoopCmp->getOperand(0);
- Value *Op1 = InnerLoopCmp->getOperand(1);
- // LHS and RHS of the inner loop exit condition, e.g.,
- // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
- Value *Left = nullptr;
- Value *Right = nullptr;
- // Check if V only involves inner loop induction variable.
- // Return true if V is InnerInduction, or a cast from
- // InnerInduction, or a binary operator that involves
- // InnerInduction and a constant.
- std::function<bool(Value *)> IsPathToInnerIndVar;
- IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
- if (llvm::is_contained(InnerLoopInductions, V))
- return true;
- if (isa<Constant>(V))
- return true;
- const Instruction *I = dyn_cast<Instruction>(V);
- if (!I)
- return false;
- if (isa<CastInst>(I))
- return IsPathToInnerIndVar(I->getOperand(0));
- if (isa<BinaryOperator>(I))
- return IsPathToInnerIndVar(I->getOperand(0)) &&
- IsPathToInnerIndVar(I->getOperand(1));
- return false;
- };
- // In case of multiple inner loop indvars, it is okay if LHS and RHS
- // are both inner indvar related variables.
- if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
- return true;
- // Otherwise we check if the cmp instruction compares an inner indvar
- // related variable (Left) with a outer loop invariant (Right).
- if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
- Left = Op0;
- Right = Op1;
- } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
- Left = Op1;
- Right = Op0;
- }
- if (Left == nullptr)
- return false;
- const SCEV *S = SE->getSCEV(Right);
- if (!SE->isLoopInvariant(S, OuterLoop))
- return false;
- }
- return true;
- }
- // If SV is a LCSSA PHI node with a single incoming value, return the incoming
- // value.
- static Value *followLCSSA(Value *SV) {
- PHINode *PHI = dyn_cast<PHINode>(SV);
- if (!PHI)
- return SV;
- if (PHI->getNumIncomingValues() != 1)
- return SV;
- return followLCSSA(PHI->getIncomingValue(0));
- }
- // Check V's users to see if it is involved in a reduction in L.
- static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
- // Reduction variables cannot be constants.
- if (isa<Constant>(V))
- return nullptr;
- for (Value *User : V->users()) {
- if (PHINode *PHI = dyn_cast<PHINode>(User)) {
- if (PHI->getNumIncomingValues() == 1)
- continue;
- RecurrenceDescriptor RD;
- if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
- // Detect floating point reduction only when it can be reordered.
- if (RD.getExactFPMathInst() != nullptr)
- return nullptr;
- return PHI;
- }
- return nullptr;
- }
- }
- return nullptr;
- }
- bool LoopInterchangeLegality::findInductionAndReductions(
- Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
- if (!L->getLoopLatch() || !L->getLoopPredecessor())
- return false;
- for (PHINode &PHI : L->getHeader()->phis()) {
- RecurrenceDescriptor RD;
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
- Inductions.push_back(&PHI);
- else {
- // PHIs in inner loops need to be part of a reduction in the outer loop,
- // discovered when checking the PHIs of the outer loop earlier.
- if (!InnerLoop) {
- if (!OuterInnerReductions.count(&PHI)) {
- LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
- "across the outer loop.\n");
- return false;
- }
- } else {
- assert(PHI.getNumIncomingValues() == 2 &&
- "Phis in loop header should have exactly 2 incoming values");
- // Check if we have a PHI node in the outer loop that has a reduction
- // result from the inner loop as an incoming value.
- Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
- PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
- if (!InnerRedPhi ||
- !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
- LLVM_DEBUG(
- dbgs()
- << "Failed to recognize PHI as an induction or reduction.\n");
- return false;
- }
- OuterInnerReductions.insert(&PHI);
- OuterInnerReductions.insert(InnerRedPhi);
- }
- }
- }
- return true;
- }
- // This function indicates the current limitations in the transform as a result
- // of which we do not proceed.
- bool LoopInterchangeLegality::currentLimitations() {
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
- // transform currently expects the loop latches to also be the exiting
- // blocks.
- if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
- OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
- !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
- !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
- LLVM_DEBUG(
- dbgs() << "Loops where the latch is not the exiting block are not"
- << " supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Loops where the latch is not the exiting block cannot be"
- " interchange currently.";
- });
- return true;
- }
- SmallVector<PHINode *, 8> Inductions;
- if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
- LLVM_DEBUG(
- dbgs() << "Only outer loops with induction or reduction PHI nodes "
- << "are supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Only outer loops with induction or reduction PHI nodes can be"
- " interchanged currently.";
- });
- return true;
- }
- Inductions.clear();
- // For multi-level loop nests, make sure that all phi nodes for inner loops
- // at all levels can be recognized as a induction or reduction phi. Bail out
- // if a phi node at a certain nesting level cannot be properly recognized.
- Loop *CurLevelLoop = OuterLoop;
- while (!CurLevelLoop->getSubLoops().empty()) {
- // We already made sure that the loop nest is tightly nested.
- CurLevelLoop = CurLevelLoop->getSubLoops().front();
- if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
- LLVM_DEBUG(
- dbgs() << "Only inner loops with induction or reduction PHI nodes "
- << "are supported currently.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
- CurLevelLoop->getStartLoc(),
- CurLevelLoop->getHeader())
- << "Only inner loops with induction or reduction PHI nodes can be"
- " interchange currently.";
- });
- return true;
- }
- }
- // TODO: Triangular loops are not handled for now.
- if (!isLoopStructureUnderstood()) {
- LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Inner loop structure not understood currently.";
- });
- return true;
- }
- return false;
- }
- bool LoopInterchangeLegality::findInductions(
- Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
- for (PHINode &PHI : L->getHeader()->phis()) {
- InductionDescriptor ID;
- if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
- Inductions.push_back(&PHI);
- }
- return !Inductions.empty();
- }
- // We currently only support LCSSA PHI nodes in the inner loop exit, if their
- // users are either reduction PHIs or PHIs outside the outer loop (which means
- // the we are only interested in the final value after the loop).
- static bool
- areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
- SmallPtrSetImpl<PHINode *> &Reductions) {
- BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
- for (PHINode &PHI : InnerExit->phis()) {
- // Reduction lcssa phi will have only 1 incoming block that from loop latch.
- if (PHI.getNumIncomingValues() > 1)
- return false;
- if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
- PHINode *PN = dyn_cast<PHINode>(U);
- return !PN ||
- (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
- })) {
- return false;
- }
- }
- return true;
- }
- // We currently support LCSSA PHI nodes in the outer loop exit, if their
- // incoming values do not come from the outer loop latch or if the
- // outer loop latch has a single predecessor. In that case, the value will
- // be available if both the inner and outer loop conditions are true, which
- // will still be true after interchanging. If we have multiple predecessor,
- // that may not be the case, e.g. because the outer loop latch may be executed
- // if the inner loop is not executed.
- static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
- BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
- for (PHINode &PHI : LoopNestExit->phis()) {
- for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
- Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
- if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
- continue;
- // The incoming value is defined in the outer loop latch. Currently we
- // only support that in case the outer loop latch has a single predecessor.
- // This guarantees that the outer loop latch is executed if and only if
- // the inner loop is executed (because tightlyNested() guarantees that the
- // outer loop header only branches to the inner loop or the outer loop
- // latch).
- // FIXME: We could weaken this logic and allow multiple predecessors,
- // if the values are produced outside the loop latch. We would need
- // additional logic to update the PHI nodes in the exit block as
- // well.
- if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
- return false;
- }
- }
- return true;
- }
- // In case of multi-level nested loops, it may occur that lcssa phis exist in
- // the latch of InnerLoop, i.e., when defs of the incoming values are further
- // inside the loopnest. Sometimes those incoming values are not available
- // after interchange, since the original inner latch will become the new outer
- // latch which may have predecessor paths that do not include those incoming
- // values.
- // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
- // multi-level loop nests.
- static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
- if (InnerLoop->getSubLoops().empty())
- return true;
- // If the original outer latch has only one predecessor, then values defined
- // further inside the looploop, e.g., in the innermost loop, will be available
- // at the new outer latch after interchange.
- if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
- return true;
- // The outer latch has more than one predecessors, i.e., the inner
- // exit and the inner header.
- // PHI nodes in the inner latch are lcssa phis where the incoming values
- // are defined further inside the loopnest. Check if those phis are used
- // in the original inner latch. If that is the case then bail out since
- // those incoming values may not be available at the new outer latch.
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
- for (PHINode &PHI : InnerLoopLatch->phis()) {
- for (auto *U : PHI.users()) {
- Instruction *UI = cast<Instruction>(U);
- if (InnerLoopLatch == UI->getParent())
- return false;
- }
- }
- return true;
- }
- bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
- unsigned OuterLoopId,
- CharMatrix &DepMatrix) {
- if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
- LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
- << " and OuterLoopId = " << OuterLoopId
- << " due to dependence\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Cannot interchange loops due to dependences.";
- });
- return false;
- }
- // Check if outer and inner loop contain legal instructions only.
- for (auto *BB : OuterLoop->blocks())
- for (Instruction &I : BB->instructionsWithoutDebug())
- if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- // readnone functions do not prevent interchanging.
- if (CI->onlyWritesMemory())
- continue;
- LLVM_DEBUG(
- dbgs() << "Loops with call instructions cannot be interchanged "
- << "safely.");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
- CI->getDebugLoc(),
- CI->getParent())
- << "Cannot interchange loops due to call instruction.";
- });
- return false;
- }
- if (!findInductions(InnerLoop, InnerLoopInductions)) {
- LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
- return false;
- }
- if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
- LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Cannot interchange loops because unsupported PHI nodes found "
- "in inner loop latch.";
- });
- return false;
- }
- // TODO: The loops could not be interchanged due to current limitations in the
- // transform module.
- if (currentLimitations()) {
- LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
- return false;
- }
- // Check if the loops are tightly nested.
- if (!tightlyNested(OuterLoop, InnerLoop)) {
- LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Cannot interchange loops because they are not tightly "
- "nested.";
- });
- return false;
- }
- if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
- OuterInnerReductions)) {
- LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Found unsupported PHI node in loop exit.";
- });
- return false;
- }
- if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
- LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
- OuterLoop->getStartLoc(),
- OuterLoop->getHeader())
- << "Found unsupported PHI node in loop exit.";
- });
- return false;
- }
- return true;
- }
- int LoopInterchangeProfitability::getInstrOrderCost() {
- unsigned GoodOrder, BadOrder;
- BadOrder = GoodOrder = 0;
- for (BasicBlock *BB : InnerLoop->blocks()) {
- for (Instruction &Ins : *BB) {
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
- unsigned NumOp = GEP->getNumOperands();
- bool FoundInnerInduction = false;
- bool FoundOuterInduction = false;
- for (unsigned i = 0; i < NumOp; ++i) {
- // Skip operands that are not SCEV-able.
- if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
- continue;
- const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
- if (!AR)
- continue;
- // If we find the inner induction after an outer induction e.g.
- // for(int i=0;i<N;i++)
- // for(int j=0;j<N;j++)
- // A[i][j] = A[i-1][j-1]+k;
- // then it is a good order.
- if (AR->getLoop() == InnerLoop) {
- // We found an InnerLoop induction after OuterLoop induction. It is
- // a good order.
- FoundInnerInduction = true;
- if (FoundOuterInduction) {
- GoodOrder++;
- break;
- }
- }
- // If we find the outer induction after an inner induction e.g.
- // for(int i=0;i<N;i++)
- // for(int j=0;j<N;j++)
- // A[j][i] = A[j-1][i-1]+k;
- // then it is a bad order.
- if (AR->getLoop() == OuterLoop) {
- // We found an OuterLoop induction after InnerLoop induction. It is
- // a bad order.
- FoundOuterInduction = true;
- if (FoundInnerInduction) {
- BadOrder++;
- break;
- }
- }
- }
- }
- }
- }
- return GoodOrder - BadOrder;
- }
- std::optional<bool>
- LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis(
- const DenseMap<const Loop *, unsigned> &CostMap,
- std::unique_ptr<CacheCost> &CC) {
- // This is the new cost model returned from loop cache analysis.
- // A smaller index means the loop should be placed an outer loop, and vice
- // versa.
- if (CostMap.find(InnerLoop) != CostMap.end() &&
- CostMap.find(OuterLoop) != CostMap.end()) {
- unsigned InnerIndex = 0, OuterIndex = 0;
- InnerIndex = CostMap.find(InnerLoop)->second;
- OuterIndex = CostMap.find(OuterLoop)->second;
- LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
- << ", OuterIndex = " << OuterIndex << "\n");
- if (InnerIndex < OuterIndex)
- return std::optional<bool>(true);
- assert(InnerIndex != OuterIndex && "CostMap should assign unique "
- "numbers to each loop");
- if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop))
- return std::nullopt;
- return std::optional<bool>(false);
- }
- return std::nullopt;
- }
- std::optional<bool>
- LoopInterchangeProfitability::isProfitablePerInstrOrderCost() {
- // Legacy cost model: this is rough cost estimation algorithm. It counts the
- // good and bad order of induction variables in the instruction and allows
- // reordering if number of bad orders is more than good.
- int Cost = getInstrOrderCost();
- LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
- if (Cost < 0 && Cost < LoopInterchangeCostThreshold)
- return std::optional<bool>(true);
- return std::nullopt;
- }
- std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization(
- unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) {
- for (auto &Row : DepMatrix) {
- // If the inner loop is loop independent or doesn't carry any dependency
- // it is not profitable to move this to outer position, since we are
- // likely able to do inner loop vectorization already.
- if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=')
- return std::optional<bool>(false);
- // If the outer loop is not loop independent it is not profitable to move
- // this to inner position, since doing so would not enable inner loop
- // parallelism.
- if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=')
- return std::optional<bool>(false);
- }
- // If inner loop has dependence and outer loop is loop independent then it
- // is/ profitable to interchange to enable inner loop parallelism.
- // If there are no dependences, interchanging will not improve anything.
- return std::optional<bool>(!DepMatrix.empty());
- }
- bool LoopInterchangeProfitability::isProfitable(
- const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
- unsigned OuterLoopId, CharMatrix &DepMatrix,
- const DenseMap<const Loop *, unsigned> &CostMap,
- std::unique_ptr<CacheCost> &CC) {
- // isProfitable() is structured to avoid endless loop interchange.
- // If loop cache analysis could decide the profitability then,
- // profitability check will stop and return the analysis result.
- // If cache analysis failed to analyze the loopnest (e.g.,
- // due to delinearization issues) then only check whether it is
- // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to
- // analysis the profitability then only, isProfitableForVectorization
- // will decide.
- std::optional<bool> shouldInterchange =
- isProfitablePerLoopCacheAnalysis(CostMap, CC);
- if (!shouldInterchange.has_value()) {
- shouldInterchange = isProfitablePerInstrOrderCost();
- if (!shouldInterchange.has_value())
- shouldInterchange =
- isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
- }
- if (!shouldInterchange.has_value()) {
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Insufficient information to calculate the cost of loop for "
- "interchange.";
- });
- return false;
- } else if (!shouldInterchange.value()) {
- ORE->emit([&]() {
- return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
- InnerLoop->getStartLoc(),
- InnerLoop->getHeader())
- << "Interchanging loops is not considered to improve cache "
- "locality nor vectorization.";
- });
- return false;
- }
- return true;
- }
- void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
- Loop *InnerLoop) {
- for (Loop *L : *OuterLoop)
- if (L == InnerLoop) {
- OuterLoop->removeChildLoop(L);
- return;
- }
- llvm_unreachable("Couldn't find loop");
- }
- /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
- /// new inner and outer loop after interchanging: NewInner is the original
- /// outer loop and NewOuter is the original inner loop.
- ///
- /// Before interchanging, we have the following structure
- /// Outer preheader
- // Outer header
- // Inner preheader
- // Inner header
- // Inner body
- // Inner latch
- // outer bbs
- // Outer latch
- //
- // After interchanging:
- // Inner preheader
- // Inner header
- // Outer preheader
- // Outer header
- // Inner body
- // outer bbs
- // Outer latch
- // Inner latch
- void LoopInterchangeTransform::restructureLoops(
- Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
- BasicBlock *OrigOuterPreHeader) {
- Loop *OuterLoopParent = OuterLoop->getParentLoop();
- // The original inner loop preheader moves from the new inner loop to
- // the parent loop, if there is one.
- NewInner->removeBlockFromLoop(OrigInnerPreHeader);
- LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
- // Switch the loop levels.
- if (OuterLoopParent) {
- // Remove the loop from its parent loop.
- removeChildLoop(OuterLoopParent, NewInner);
- removeChildLoop(NewInner, NewOuter);
- OuterLoopParent->addChildLoop(NewOuter);
- } else {
- removeChildLoop(NewInner, NewOuter);
- LI->changeTopLevelLoop(NewInner, NewOuter);
- }
- while (!NewOuter->isInnermost())
- NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
- NewOuter->addChildLoop(NewInner);
- // BBs from the original inner loop.
- SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
- // Add BBs from the original outer loop to the original inner loop (excluding
- // BBs already in inner loop)
- for (BasicBlock *BB : NewInner->blocks())
- if (LI->getLoopFor(BB) == NewInner)
- NewOuter->addBlockEntry(BB);
- // Now remove inner loop header and latch from the new inner loop and move
- // other BBs (the loop body) to the new inner loop.
- BasicBlock *OuterHeader = NewOuter->getHeader();
- BasicBlock *OuterLatch = NewOuter->getLoopLatch();
- for (BasicBlock *BB : OrigInnerBBs) {
- // Nothing will change for BBs in child loops.
- if (LI->getLoopFor(BB) != NewOuter)
- continue;
- // Remove the new outer loop header and latch from the new inner loop.
- if (BB == OuterHeader || BB == OuterLatch)
- NewInner->removeBlockFromLoop(BB);
- else
- LI->changeLoopFor(BB, NewInner);
- }
- // The preheader of the original outer loop becomes part of the new
- // outer loop.
- NewOuter->addBlockEntry(OrigOuterPreHeader);
- LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
- // Tell SE that we move the loops around.
- SE->forgetLoop(NewOuter);
- }
- bool LoopInterchangeTransform::transform() {
- bool Transformed = false;
- if (InnerLoop->getSubLoops().empty()) {
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
- auto &InductionPHIs = LIL.getInnerLoopInductions();
- if (InductionPHIs.empty()) {
- LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
- return false;
- }
- SmallVector<Instruction *, 8> InnerIndexVarList;
- for (PHINode *CurInductionPHI : InductionPHIs) {
- if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
- InnerIndexVarList.push_back(
- dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
- else
- InnerIndexVarList.push_back(
- dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
- }
- // Create a new latch block for the inner loop. We split at the
- // current latch's terminator and then move the condition and all
- // operands that are not either loop-invariant or the induction PHI into the
- // new latch block.
- BasicBlock *NewLatch =
- SplitBlock(InnerLoop->getLoopLatch(),
- InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
- SmallSetVector<Instruction *, 4> WorkList;
- unsigned i = 0;
- auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
- for (; i < WorkList.size(); i++) {
- // Duplicate instruction and move it the new latch. Update uses that
- // have been moved.
- Instruction *NewI = WorkList[i]->clone();
- NewI->insertBefore(NewLatch->getFirstNonPHI());
- assert(!NewI->mayHaveSideEffects() &&
- "Moving instructions with side-effects may change behavior of "
- "the loop nest!");
- for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
- Instruction *UserI = cast<Instruction>(U.getUser());
- if (!InnerLoop->contains(UserI->getParent()) ||
- UserI->getParent() == NewLatch ||
- llvm::is_contained(InductionPHIs, UserI))
- U.set(NewI);
- }
- // Add operands of moved instruction to the worklist, except if they are
- // outside the inner loop or are the induction PHI.
- for (Value *Op : WorkList[i]->operands()) {
- Instruction *OpI = dyn_cast<Instruction>(Op);
- if (!OpI ||
- this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
- llvm::is_contained(InductionPHIs, OpI))
- continue;
- WorkList.insert(OpI);
- }
- }
- };
- // FIXME: Should we interchange when we have a constant condition?
- Instruction *CondI = dyn_cast<Instruction>(
- cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
- ->getCondition());
- if (CondI)
- WorkList.insert(CondI);
- MoveInstructions();
- for (Instruction *InnerIndexVar : InnerIndexVarList)
- WorkList.insert(cast<Instruction>(InnerIndexVar));
- MoveInstructions();
- }
- // Ensure the inner loop phi nodes have a separate basic block.
- BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
- if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
- SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
- LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
- }
- // Instructions in the original inner loop preheader may depend on values
- // defined in the outer loop header. Move them there, because the original
- // inner loop preheader will become the entry into the interchanged loop nest.
- // Currently we move all instructions and rely on LICM to move invariant
- // instructions outside the loop nest.
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
- if (InnerLoopPreHeader != OuterLoopHeader) {
- SmallPtrSet<Instruction *, 4> NeedsMoving;
- for (Instruction &I :
- make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
- std::prev(InnerLoopPreHeader->end()))))
- I.moveBefore(OuterLoopHeader->getTerminator());
- }
- Transformed |= adjustLoopLinks();
- if (!Transformed) {
- LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
- return false;
- }
- return true;
- }
- /// \brief Move all instructions except the terminator from FromBB right before
- /// InsertBefore
- static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
- BasicBlock *ToBB = InsertBefore->getParent();
- ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(),
- FromBB->getTerminator()->getIterator());
- }
- /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
- static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
- // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
- // from BB1 afterwards.
- auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
- SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
- for (Instruction *I : TempInstrs)
- I->removeFromParent();
- // Move instructions from BB2 to BB1.
- moveBBContents(BB2, BB1->getTerminator());
- // Move instructions from TempInstrs to BB2.
- for (Instruction *I : TempInstrs)
- I->insertBefore(BB2->getTerminator());
- }
- // Update BI to jump to NewBB instead of OldBB. Records updates to the
- // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
- // \p OldBB is exactly once in BI's successor list.
- static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
- BasicBlock *NewBB,
- std::vector<DominatorTree::UpdateType> &DTUpdates,
- bool MustUpdateOnce = true) {
- assert((!MustUpdateOnce ||
- llvm::count_if(successors(BI),
- [OldBB](BasicBlock *BB) {
- return BB == OldBB;
- }) == 1) && "BI must jump to OldBB exactly once.");
- bool Changed = false;
- for (Use &Op : BI->operands())
- if (Op == OldBB) {
- Op.set(NewBB);
- Changed = true;
- }
- if (Changed) {
- DTUpdates.push_back(
- {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
- DTUpdates.push_back(
- {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
- }
- assert(Changed && "Expected a successor to be updated");
- }
- // Move Lcssa PHIs to the right place.
- static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
- BasicBlock *InnerLatch, BasicBlock *OuterHeader,
- BasicBlock *OuterLatch, BasicBlock *OuterExit,
- Loop *InnerLoop, LoopInfo *LI) {
- // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
- // defined either in the header or latch. Those blocks will become header and
- // latch of the new outer loop, and the only possible users can PHI nodes
- // in the exit block of the loop nest or the outer loop header (reduction
- // PHIs, in that case, the incoming value must be defined in the inner loop
- // header). We can just substitute the user with the incoming value and remove
- // the PHI.
- for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
- assert(P.getNumIncomingValues() == 1 &&
- "Only loops with a single exit are supported!");
- // Incoming values are guaranteed be instructions currently.
- auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
- // In case of multi-level nested loops, follow LCSSA to find the incoming
- // value defined from the innermost loop.
- auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
- // Skip phis with incoming values from the inner loop body, excluding the
- // header and latch.
- if (IncIInnerMost->getParent() != InnerLatch &&
- IncIInnerMost->getParent() != InnerHeader)
- continue;
- assert(all_of(P.users(),
- [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
- return (cast<PHINode>(U)->getParent() == OuterHeader &&
- IncI->getParent() == InnerHeader) ||
- cast<PHINode>(U)->getParent() == OuterExit;
- }) &&
- "Can only replace phis iff the uses are in the loop nest exit or "
- "the incoming value is defined in the inner header (it will "
- "dominate all loop blocks after interchanging)");
- P.replaceAllUsesWith(IncI);
- P.eraseFromParent();
- }
- SmallVector<PHINode *, 8> LcssaInnerExit;
- for (PHINode &P : InnerExit->phis())
- LcssaInnerExit.push_back(&P);
- SmallVector<PHINode *, 8> LcssaInnerLatch;
- for (PHINode &P : InnerLatch->phis())
- LcssaInnerLatch.push_back(&P);
- // Lcssa PHIs for values used outside the inner loop are in InnerExit.
- // If a PHI node has users outside of InnerExit, it has a use outside the
- // interchanged loop and we have to preserve it. We move these to
- // InnerLatch, which will become the new exit block for the innermost
- // loop after interchanging.
- for (PHINode *P : LcssaInnerExit)
- P->moveBefore(InnerLatch->getFirstNonPHI());
- // If the inner loop latch contains LCSSA PHIs, those come from a child loop
- // and we have to move them to the new inner latch.
- for (PHINode *P : LcssaInnerLatch)
- P->moveBefore(InnerExit->getFirstNonPHI());
- // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
- // incoming values defined in the outer loop, we have to add a new PHI
- // in the inner loop latch, which became the exit block of the outer loop,
- // after interchanging.
- if (OuterExit) {
- for (PHINode &P : OuterExit->phis()) {
- if (P.getNumIncomingValues() != 1)
- continue;
- // Skip Phis with incoming values defined in the inner loop. Those should
- // already have been updated.
- auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
- if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
- continue;
- PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
- NewPhi->setIncomingValue(0, P.getIncomingValue(0));
- NewPhi->setIncomingBlock(0, OuterLatch);
- // We might have incoming edges from other BBs, i.e., the original outer
- // header.
- for (auto *Pred : predecessors(InnerLatch)) {
- if (Pred == OuterLatch)
- continue;
- NewPhi->addIncoming(P.getIncomingValue(0), Pred);
- }
- NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
- P.setIncomingValue(0, NewPhi);
- }
- }
- // Now adjust the incoming blocks for the LCSSA PHIs.
- // For PHIs moved from Inner's exit block, we need to replace Inner's latch
- // with the new latch.
- InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
- }
- bool LoopInterchangeTransform::adjustLoopBranches() {
- LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
- std::vector<DominatorTree::UpdateType> DTUpdates;
- BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
- InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
- InnerLoopPreHeader && "Guaranteed by loop-simplify form");
- // Ensure that both preheaders do not contain PHI nodes and have single
- // predecessors. This allows us to move them easily. We use
- // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
- // preheaders do not satisfy those conditions.
- if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
- !OuterLoopPreHeader->getUniquePredecessor())
- OuterLoopPreHeader =
- InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
- if (InnerLoopPreHeader == OuterLoop->getHeader())
- InnerLoopPreHeader =
- InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
- // Adjust the loop preheader
- BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
- BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
- BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
- BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
- BasicBlock *InnerLoopLatchPredecessor =
- InnerLoopLatch->getUniquePredecessor();
- BasicBlock *InnerLoopLatchSuccessor;
- BasicBlock *OuterLoopLatchSuccessor;
- BranchInst *OuterLoopLatchBI =
- dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
- BranchInst *InnerLoopLatchBI =
- dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
- BranchInst *OuterLoopHeaderBI =
- dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
- BranchInst *InnerLoopHeaderBI =
- dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
- if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
- !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
- !InnerLoopHeaderBI)
- return false;
- BranchInst *InnerLoopLatchPredecessorBI =
- dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
- BranchInst *OuterLoopPredecessorBI =
- dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
- if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
- return false;
- BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
- if (!InnerLoopHeaderSuccessor)
- return false;
- // Adjust Loop Preheader and headers.
- // The branches in the outer loop predecessor and the outer loop header can
- // be unconditional branches or conditional branches with duplicates. Consider
- // this when updating the successors.
- updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
- InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
- // The outer loop header might or might not branch to the outer latch.
- // We are guaranteed to branch to the inner loop preheader.
- if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
- // In this case the outerLoopHeader should branch to the InnerLoopLatch.
- updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
- DTUpdates,
- /*MustUpdateOnce=*/false);
- }
- updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
- InnerLoopHeaderSuccessor, DTUpdates,
- /*MustUpdateOnce=*/false);
- // Adjust reduction PHI's now that the incoming block has changed.
- InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
- OuterLoopHeader);
- updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
- OuterLoopPreHeader, DTUpdates);
- // -------------Adjust loop latches-----------
- if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
- InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
- else
- InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
- updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
- InnerLoopLatchSuccessor, DTUpdates);
- if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
- OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
- else
- OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
- updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
- OuterLoopLatchSuccessor, DTUpdates);
- updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
- DTUpdates);
- DT->applyUpdates(DTUpdates);
- restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
- OuterLoopPreHeader);
- moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
- OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
- InnerLoop, LI);
- // For PHIs in the exit block of the outer loop, outer's latch has been
- // replaced by Inners'.
- OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
- auto &OuterInnerReductions = LIL.getOuterInnerReductions();
- // Now update the reduction PHIs in the inner and outer loop headers.
- SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
- for (PHINode &PHI : InnerLoopHeader->phis())
- if (OuterInnerReductions.contains(&PHI))
- InnerLoopPHIs.push_back(&PHI);
- for (PHINode &PHI : OuterLoopHeader->phis())
- if (OuterInnerReductions.contains(&PHI))
- OuterLoopPHIs.push_back(&PHI);
- // Now move the remaining reduction PHIs from outer to inner loop header and
- // vice versa. The PHI nodes must be part of a reduction across the inner and
- // outer loop and all the remains to do is and updating the incoming blocks.
- for (PHINode *PHI : OuterLoopPHIs) {
- LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
- PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
- assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
- }
- for (PHINode *PHI : InnerLoopPHIs) {
- LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
- PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
- assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
- }
- // Update the incoming blocks for moved PHI nodes.
- OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
- OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
- InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
- InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
- // Values defined in the outer loop header could be used in the inner loop
- // latch. In that case, we need to create LCSSA phis for them, because after
- // interchanging they will be defined in the new inner loop and used in the
- // new outer loop.
- IRBuilder<> Builder(OuterLoopHeader->getContext());
- SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
- for (Instruction &I :
- make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
- MayNeedLCSSAPhis.push_back(&I);
- formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
- return true;
- }
- bool LoopInterchangeTransform::adjustLoopLinks() {
- // Adjust all branches in the inner and outer loop.
- bool Changed = adjustLoopBranches();
- if (Changed) {
- // We have interchanged the preheaders so we need to interchange the data in
- // the preheaders as well. This is because the content of the inner
- // preheader was previously executed inside the outer loop.
- BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
- BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
- swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
- }
- return Changed;
- }
- namespace {
- /// Main LoopInterchange Pass.
- struct LoopInterchangeLegacyPass : public LoopPass {
- static char ID;
- LoopInterchangeLegacyPass() : LoopPass(ID) {
- initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DependenceAnalysisWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- std::unique_ptr<CacheCost> CC = nullptr;
- return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L);
- }
- };
- } // namespace
- char LoopInterchangeLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
- "Interchanges loops for cache reuse", false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopPass)
- INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
- "Interchanges loops for cache reuse", false, false)
- Pass *llvm::createLoopInterchangePass() {
- return new LoopInterchangeLegacyPass();
- }
- PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
- LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- Function &F = *LN.getParent();
- DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
- std::unique_ptr<CacheCost> CC =
- CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
- OptimizationRemarkEmitter ORE(&F);
- if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
- return PreservedAnalyses::all();
- U.markLoopNestChanged(true);
- return getLoopPassPreservedAnalyses();
- }
|