1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392 |
- //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs loop invariant code motion, attempting to remove as much
- // code from the body of a loop as possible. It does this by either hoisting
- // code into the preheader block, or by sinking code to the exit blocks if it is
- // safe. This pass also promotes must-aliased memory locations in the loop to
- // live in registers, thus hoisting and sinking "invariant" loads and stores.
- //
- // Hoisting operations out of loops is a canonicalization transform. It
- // enables and simplifies subsequent optimizations in the middle-end.
- // Rematerialization of hoisted instructions to reduce register pressure is the
- // responsibility of the back-end, which has more accurate information about
- // register pressure and also handles other optimizations than LICM that
- // increase live-ranges.
- //
- // This pass uses alias analysis for two purposes:
- //
- // 1. Moving loop invariant loads and calls out of loops. If we can determine
- // that a load or call inside of a loop never aliases anything stored to,
- // we can hoist it or sink it like any other instruction.
- // 2. Scalar Promotion of Memory - If there is a store instruction inside of
- // the loop, we try to move the store to happen AFTER the loop instead of
- // inside of the loop. This can only happen if a few conditions are true:
- // A. The pointer stored through is loop invariant
- // B. There are no stores or loads in the loop which _may_ alias the
- // pointer. There are no calls in the loop which mod/ref the pointer.
- // If these conditions are true, we can promote the loads and stores in the
- // loop of the pointer to use a temporary alloca'd variable. We then use
- // the SSAUpdater to construct the appropriate SSA form for the value.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LICM.h"
- #include "llvm/ADT/PriorityWorklist.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopNestAnalysis.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/PredIteratorCache.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include <algorithm>
- #include <utility>
- using namespace llvm;
- namespace llvm {
- class LPMUpdater;
- } // namespace llvm
- #define DEBUG_TYPE "licm"
- STATISTIC(NumCreatedBlocks, "Number of blocks created");
- STATISTIC(NumClonedBranches, "Number of branches cloned");
- STATISTIC(NumSunk, "Number of instructions sunk out of loop");
- STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
- STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
- STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
- STATISTIC(NumPromotionCandidates, "Number of promotion candidates");
- STATISTIC(NumLoadPromoted, "Number of load-only promotions");
- STATISTIC(NumLoadStorePromoted, "Number of load and store promotions");
- /// Memory promotion is enabled by default.
- static cl::opt<bool>
- DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
- cl::desc("Disable memory promotion in LICM pass"));
- static cl::opt<bool> ControlFlowHoisting(
- "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
- cl::desc("Enable control flow (and PHI) hoisting in LICM"));
- static cl::opt<bool>
- SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false),
- cl::desc("Force thread model single in LICM pass"));
- static cl::opt<uint32_t> MaxNumUsesTraversed(
- "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
- cl::desc("Max num uses visited for identifying load "
- "invariance in loop using invariant start (default = 8)"));
- // Experimental option to allow imprecision in LICM in pathological cases, in
- // exchange for faster compile. This is to be removed if MemorySSA starts to
- // address the same issue. LICM calls MemorySSAWalker's
- // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
- // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
- // which may not be precise, since optimizeUses is capped. The result is
- // correct, but we may not get as "far up" as possible to get which access is
- // clobbering the one queried.
- cl::opt<unsigned> llvm::SetLicmMssaOptCap(
- "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
- cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
- "for faster compile. Caps the MemorySSA clobbering calls."));
- // Experimentally, memory promotion carries less importance than sinking and
- // hoisting. Limit when we do promotion when using MemorySSA, in order to save
- // compile time.
- cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
- "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
- cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
- "effect. When MSSA in LICM is enabled, then this is the maximum "
- "number of accesses allowed to be present in a loop in order to "
- "enable memory promotion."));
- static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
- static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop,
- bool LoopNestMode);
- static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE);
- static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE);
- static bool isSafeToExecuteUnconditionally(
- Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
- const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
- AssumptionCache *AC, bool AllowSpeculation);
- static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
- Loop *CurLoop, Instruction &I,
- SinkAndHoistLICMFlags &Flags);
- static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA,
- MemoryUse &MU);
- static Instruction *cloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU);
- static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater &MSSAU);
- static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater &MSSAU, ScalarEvolution *SE);
- static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
- function_ref<void(Instruction *)> Fn);
- using PointersAndHasReadsOutsideSet =
- std::pair<SmallSetVector<Value *, 8>, bool>;
- static SmallVector<PointersAndHasReadsOutsideSet, 0>
- collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
- namespace {
- struct LoopInvariantCodeMotion {
- bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
- AssumptionCache *AC, TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
- OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
- LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap,
- bool LicmAllowSpeculation)
- : LicmMssaOptCap(LicmMssaOptCap),
- LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
- LicmAllowSpeculation(LicmAllowSpeculation) {}
- private:
- unsigned LicmMssaOptCap;
- unsigned LicmMssaNoAccForPromotionCap;
- bool LicmAllowSpeculation;
- };
- struct LegacyLICMPass : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
- LegacyLICMPass(
- unsigned LicmMssaOptCap = SetLicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
- bool LicmAllowSpeculation = true)
- : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- LicmAllowSpeculation) {
- initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
- LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
- << L->getHeader()->getNameOrAsOperand() << "\n");
- Function *F = L->getHeader()->getParent();
- auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
- // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
- return LICM.runOnLoop(
- L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
- &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
- &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F),
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F),
- &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F),
- SE ? &SE->getSE() : nullptr, MSSA, &ORE);
- }
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- getLoopAnalysisUsage(AU);
- LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
- AU.addPreserved<LazyBlockFrequencyInfoPass>();
- AU.addPreserved<LazyBranchProbabilityInfoPass>();
- }
- private:
- LoopInvariantCodeMotion LICM;
- };
- } // namespace
- PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- if (!AR.MSSA)
- report_fatal_error("LICM requires MemorySSA (loop-mssa)",
- /*GenCrashDiag*/false);
- // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
- LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
- Opts.AllowSpeculation);
- if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI,
- &AR.SE, AR.MSSA, &ORE))
- return PreservedAnalyses::all();
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- void LICMPass::printPipeline(
- raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
- static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline(
- OS, MapClassName2PassName);
- OS << "<";
- OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
- OS << ">";
- }
- PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- if (!AR.MSSA)
- report_fatal_error("LNICM requires MemorySSA (loop-mssa)",
- /*GenCrashDiag*/false);
- // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(LN.getParent());
- LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
- Opts.AllowSpeculation);
- Loop &OutermostLoop = LN.getOutermostLoop();
- bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC,
- &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
- if (!Changed)
- return PreservedAnalyses::all();
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- void LNICMPass::printPipeline(
- raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
- static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline(
- OS, MapClassName2PassName);
- OS << "<";
- OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
- OS << ">";
- }
- char LegacyLICMPass::ID = 0;
- INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
- INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
- false)
- Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
- Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap,
- bool LicmAllowSpeculation) {
- return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- LicmAllowSpeculation);
- }
- llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
- MemorySSA *MSSA)
- : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
- IsSink, L, MSSA) {}
- llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
- unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
- Loop *L, MemorySSA *MSSA)
- : LicmMssaOptCap(LicmMssaOptCap),
- LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
- IsSink(IsSink) {
- assert(((L != nullptr) == (MSSA != nullptr)) &&
- "Unexpected values for SinkAndHoistLICMFlags");
- if (!MSSA)
- return;
- unsigned AccessCapCount = 0;
- for (auto *BB : L->getBlocks())
- if (const auto *Accesses = MSSA->getBlockAccesses(BB))
- for (const auto &MA : *Accesses) {
- (void)MA;
- ++AccessCapCount;
- if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
- NoOfMemAccTooLarge = true;
- return;
- }
- }
- }
- /// Hoist expressions out of the specified loop. Note, alias info for inner
- /// loop is not preserved so it is not a good idea to run LICM multiple
- /// times on one loop.
- bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI,
- DominatorTree *DT, AssumptionCache *AC,
- TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI,
- ScalarEvolution *SE, MemorySSA *MSSA,
- OptimizationRemarkEmitter *ORE,
- bool LoopNestMode) {
- bool Changed = false;
- assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
- MSSA->ensureOptimizedUses();
- // If this loop has metadata indicating that LICM is not to be performed then
- // just exit.
- if (hasDisableLICMTransformsHint(L)) {
- return false;
- }
- // Don't sink stores from loops with coroutine suspend instructions.
- // LICM would sink instructions into the default destination of
- // the coroutine switch. The default destination of the switch is to
- // handle the case where the coroutine is suspended, by which point the
- // coroutine frame may have been destroyed. No instruction can be sunk there.
- // FIXME: This would unfortunately hurt the performance of coroutines, however
- // there is currently no general solution for this. Similar issues could also
- // potentially happen in other passes where instructions are being moved
- // across that edge.
- bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
- return llvm::any_of(*BB, [](Instruction &I) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
- return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
- });
- });
- MemorySSAUpdater MSSAU(MSSA);
- SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- /*IsSink=*/true, L, MSSA);
- // Get the preheader block to move instructions into...
- BasicBlock *Preheader = L->getLoopPreheader();
- // Compute loop safety information.
- ICFLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(L);
- // We want to visit all of the instructions in this loop... that are not parts
- // of our subloops (they have already had their invariants hoisted out of
- // their loop, into this loop, so there is no need to process the BODIES of
- // the subloops).
- //
- // Traverse the body of the loop in depth first order on the dominator tree so
- // that we are guaranteed to see definitions before we see uses. This allows
- // us to sink instructions in one pass, without iteration. After sinking
- // instructions, we perform another pass to hoist them out of the loop.
- if (L->hasDedicatedExits())
- Changed |=
- LoopNestMode
- ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT,
- TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE)
- : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
- MSSAU, &SafetyInfo, Flags, ORE);
- Flags.setIsSink(false);
- if (Preheader)
- Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L,
- MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
- LicmAllowSpeculation);
- // Now that all loop invariants have been removed from the loop, promote any
- // memory references to scalars that we can.
- // Don't sink stores from loops without dedicated block exits. Exits
- // containing indirect branches are not transformed by loop simplify,
- // make sure we catch that. An additional load may be generated in the
- // preheader for SSA updater, so also avoid sinking when no preheader
- // is available.
- if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
- !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
- // Figure out the loop exits and their insertion points
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- // We can't insert into a catchswitch.
- bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
- return isa<CatchSwitchInst>(Exit->getTerminator());
- });
- if (!HasCatchSwitch) {
- SmallVector<Instruction *, 8> InsertPts;
- SmallVector<MemoryAccess *, 8> MSSAInsertPts;
- InsertPts.reserve(ExitBlocks.size());
- MSSAInsertPts.reserve(ExitBlocks.size());
- for (BasicBlock *ExitBlock : ExitBlocks) {
- InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
- MSSAInsertPts.push_back(nullptr);
- }
- PredIteratorCache PIC;
- // Promoting one set of accesses may make the pointers for another set
- // loop invariant, so run this in a loop.
- bool Promoted = false;
- bool LocalPromoted;
- do {
- LocalPromoted = false;
- for (auto [PointerMustAliases, HasReadsOutsideSet] :
- collectPromotionCandidates(MSSA, AA, L)) {
- LocalPromoted |= promoteLoopAccessesToScalars(
- PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
- DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE,
- LicmAllowSpeculation, HasReadsOutsideSet);
- }
- Promoted |= LocalPromoted;
- } while (LocalPromoted);
- // Once we have promoted values across the loop body we have to
- // recursively reform LCSSA as any nested loop may now have values defined
- // within the loop used in the outer loop.
- // FIXME: This is really heavy handed. It would be a bit better to use an
- // SSAUpdater strategy during promotion that was LCSSA aware and reformed
- // it as it went.
- if (Promoted)
- formLCSSARecursively(*L, *DT, LI, SE);
- Changed |= Promoted;
- }
- }
- // Check that neither this loop nor its parent have had LCSSA broken. LICM is
- // specifically moving instructions across the loop boundary and so it is
- // especially in need of basic functional correctness checking here.
- assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
- assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
- "Parent loop not left in LCSSA form after LICM!");
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- if (Changed && SE)
- SE->forgetLoopDispositions();
- return Changed;
- }
- /// Walk the specified region of the CFG (defined by all blocks dominated by
- /// the specified block, and that are in the current loop) in reverse depth
- /// first order w.r.t the DominatorTree. This allows us to visit uses before
- /// definitions, allowing us to sink a loop body in one pass without iteration.
- ///
- bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
- DominatorTree *DT, TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI, Loop *CurLoop,
- MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to sinkRegion.");
- // We want to visit children before parents. We will enqueue all the parents
- // before their children in the worklist and process the worklist in reverse
- // order.
- SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
- bool Changed = false;
- for (DomTreeNode *DTN : reverse(Worklist)) {
- BasicBlock *BB = DTN->getBlock();
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (inSubLoop(BB, CurLoop, LI))
- continue;
- for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
- Instruction &I = *--II;
- // The instruction is not used in the loop if it is dead. In this case,
- // we just delete it instead of sinking it.
- if (isInstructionTriviallyDead(&I, TLI)) {
- LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
- salvageKnowledge(&I);
- salvageDebugInfo(I);
- ++II;
- eraseInstruction(I, *SafetyInfo, MSSAU);
- Changed = true;
- continue;
- }
- // Check to see if we can sink this instruction to the exit blocks
- // of the loop. We can do this if the all users of the instruction are
- // outside of the loop. In this case, it doesn't even matter if the
- // operands of the instruction are loop invariant.
- //
- bool FreeInLoop = false;
- bool LoopNestMode = OutermostLoop != nullptr;
- if (!I.mayHaveSideEffects() &&
- isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
- SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) {
- if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
- if (!FreeInLoop) {
- ++II;
- salvageDebugInfo(I);
- eraseInstruction(I, *SafetyInfo, MSSAU);
- }
- Changed = true;
- }
- }
- }
- }
- if (VerifyMemorySSA)
- MSSAU.getMemorySSA()->verifyMemorySSA();
- return Changed;
- }
- bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
- DominatorTree *DT, TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI, Loop *CurLoop,
- MemorySSAUpdater &MSSAU,
- ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE) {
- bool Changed = false;
- SmallPriorityWorklist<Loop *, 4> Worklist;
- Worklist.insert(CurLoop);
- appendLoopsToWorklist(*CurLoop, Worklist);
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
- Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
- MSSAU, SafetyInfo, Flags, ORE, CurLoop);
- }
- return Changed;
- }
- namespace {
- // This is a helper class for hoistRegion to make it able to hoist control flow
- // in order to be able to hoist phis. The way this works is that we initially
- // start hoisting to the loop preheader, and when we see a loop invariant branch
- // we make note of this. When we then come to hoist an instruction that's
- // conditional on such a branch we duplicate the branch and the relevant control
- // flow, then hoist the instruction into the block corresponding to its original
- // block in the duplicated control flow.
- class ControlFlowHoister {
- private:
- // Information about the loop we are hoisting from
- LoopInfo *LI;
- DominatorTree *DT;
- Loop *CurLoop;
- MemorySSAUpdater &MSSAU;
- // A map of blocks in the loop to the block their instructions will be hoisted
- // to.
- DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
- // The branches that we can hoist, mapped to the block that marks a
- // convergence point of their control flow.
- DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
- public:
- ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
- MemorySSAUpdater &MSSAU)
- : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
- void registerPossiblyHoistableBranch(BranchInst *BI) {
- // We can only hoist conditional branches with loop invariant operands.
- if (!ControlFlowHoisting || !BI->isConditional() ||
- !CurLoop->hasLoopInvariantOperands(BI))
- return;
- // The branch destinations need to be in the loop, and we don't gain
- // anything by duplicating conditional branches with duplicate successors,
- // as it's essentially the same as an unconditional branch.
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
- TrueDest == FalseDest)
- return;
- // We can hoist BI if one branch destination is the successor of the other,
- // or both have common successor which we check by seeing if the
- // intersection of their successors is non-empty.
- // TODO: This could be expanded to allowing branches where both ends
- // eventually converge to a single block.
- SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
- TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
- FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
- BasicBlock *CommonSucc = nullptr;
- if (TrueDestSucc.count(FalseDest)) {
- CommonSucc = FalseDest;
- } else if (FalseDestSucc.count(TrueDest)) {
- CommonSucc = TrueDest;
- } else {
- set_intersect(TrueDestSucc, FalseDestSucc);
- // If there's one common successor use that.
- if (TrueDestSucc.size() == 1)
- CommonSucc = *TrueDestSucc.begin();
- // If there's more than one pick whichever appears first in the block list
- // (we can't use the value returned by TrueDestSucc.begin() as it's
- // unpredicatable which element gets returned).
- else if (!TrueDestSucc.empty()) {
- Function *F = TrueDest->getParent();
- auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
- auto It = llvm::find_if(*F, IsSucc);
- assert(It != F->end() && "Could not find successor in function");
- CommonSucc = &*It;
- }
- }
- // The common successor has to be dominated by the branch, as otherwise
- // there will be some other path to the successor that will not be
- // controlled by this branch so any phi we hoist would be controlled by the
- // wrong condition. This also takes care of avoiding hoisting of loop back
- // edges.
- // TODO: In some cases this could be relaxed if the successor is dominated
- // by another block that's been hoisted and we can guarantee that the
- // control flow has been replicated exactly.
- if (CommonSucc && DT->dominates(BI, CommonSucc))
- HoistableBranches[BI] = CommonSucc;
- }
- bool canHoistPHI(PHINode *PN) {
- // The phi must have loop invariant operands.
- if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
- return false;
- // We can hoist phis if the block they are in is the target of hoistable
- // branches which cover all of the predecessors of the block.
- SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
- BasicBlock *BB = PN->getParent();
- for (BasicBlock *PredBB : predecessors(BB))
- PredecessorBlocks.insert(PredBB);
- // If we have less predecessor blocks than predecessors then the phi will
- // have more than one incoming value for the same block which we can't
- // handle.
- // TODO: This could be handled be erasing some of the duplicate incoming
- // values.
- if (PredecessorBlocks.size() != pred_size(BB))
- return false;
- for (auto &Pair : HoistableBranches) {
- if (Pair.second == BB) {
- // Which blocks are predecessors via this branch depends on if the
- // branch is triangle-like or diamond-like.
- if (Pair.first->getSuccessor(0) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- } else if (Pair.first->getSuccessor(1) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- } else {
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- }
- }
- }
- // PredecessorBlocks will now be empty if for every predecessor of BB we
- // found a hoistable branch source.
- return PredecessorBlocks.empty();
- }
- BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
- if (!ControlFlowHoisting)
- return CurLoop->getLoopPreheader();
- // If BB has already been hoisted, return that
- if (HoistDestinationMap.count(BB))
- return HoistDestinationMap[BB];
- // Check if this block is conditional based on a pending branch
- auto HasBBAsSuccessor =
- [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
- return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
- Pair.first->getSuccessor(1) == BB);
- };
- auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
- // If not involved in a pending branch, hoist to preheader
- BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
- if (It == HoistableBranches.end()) {
- LLVM_DEBUG(dbgs() << "LICM using "
- << InitialPreheader->getNameOrAsOperand()
- << " as hoist destination for "
- << BB->getNameOrAsOperand() << "\n");
- HoistDestinationMap[BB] = InitialPreheader;
- return InitialPreheader;
- }
- BranchInst *BI = It->first;
- assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
- HoistableBranches.end() &&
- "BB is expected to be the target of at most one branch");
- LLVMContext &C = BB->getContext();
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- BasicBlock *CommonSucc = HoistableBranches[BI];
- BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
- // Create hoisted versions of blocks that currently don't have them
- auto CreateHoistedBlock = [&](BasicBlock *Orig) {
- if (HoistDestinationMap.count(Orig))
- return HoistDestinationMap[Orig];
- BasicBlock *New =
- BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
- HoistDestinationMap[Orig] = New;
- DT->addNewBlock(New, HoistTarget);
- if (CurLoop->getParentLoop())
- CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
- ++NumCreatedBlocks;
- LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
- << " as hoist destination for " << Orig->getName()
- << "\n");
- return New;
- };
- BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
- BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
- BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
- // Link up these blocks with branches.
- if (!HoistCommonSucc->getTerminator()) {
- // The new common successor we've generated will branch to whatever that
- // hoist target branched to.
- BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
- assert(TargetSucc && "Expected hoist target to have a single successor");
- HoistCommonSucc->moveBefore(TargetSucc);
- BranchInst::Create(TargetSucc, HoistCommonSucc);
- }
- if (!HoistTrueDest->getTerminator()) {
- HoistTrueDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistTrueDest);
- }
- if (!HoistFalseDest->getTerminator()) {
- HoistFalseDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistFalseDest);
- }
- // If BI is being cloned to what was originally the preheader then
- // HoistCommonSucc will now be the new preheader.
- if (HoistTarget == InitialPreheader) {
- // Phis in the loop header now need to use the new preheader.
- InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
- MSSAU.wireOldPredecessorsToNewImmediatePredecessor(
- HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
- // The new preheader dominates the loop header.
- DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
- DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
- DT->changeImmediateDominator(HeaderNode, PreheaderNode);
- // The preheader hoist destination is now the new preheader, with the
- // exception of the hoist destination of this branch.
- for (auto &Pair : HoistDestinationMap)
- if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
- Pair.second = HoistCommonSucc;
- }
- // Now finally clone BI.
- ReplaceInstWithInst(
- HoistTarget->getTerminator(),
- BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
- ++NumClonedBranches;
- assert(CurLoop->getLoopPreheader() &&
- "Hoisting blocks should not have destroyed preheader");
- return HoistDestinationMap[BB];
- }
- };
- } // namespace
- /// Walk the specified region of the CFG (defined by all blocks dominated by
- /// the specified block, and that are in the current loop) in depth first
- /// order w.r.t the DominatorTree. This allows us to visit definitions before
- /// uses, allowing us to hoist a loop body in one pass without iteration.
- ///
- bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
- DominatorTree *DT, AssumptionCache *AC,
- TargetLibraryInfo *TLI, Loop *CurLoop,
- MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
- ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE, bool LoopNestMode,
- bool AllowSpeculation) {
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to hoistRegion.");
- ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
- // Keep track of instructions that have been hoisted, as they may need to be
- // re-hoisted if they end up not dominating all of their uses.
- SmallVector<Instruction *, 16> HoistedInstructions;
- // For PHI hoisting to work we need to hoist blocks before their successors.
- // We can do this by iterating through the blocks in the loop in reverse
- // post-order.
- LoopBlocksRPO Worklist(CurLoop);
- Worklist.perform(LI);
- bool Changed = false;
- for (BasicBlock *BB : Worklist) {
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
- continue;
- for (Instruction &I : llvm::make_early_inc_range(*BB)) {
- // Try constant folding this instruction. If all the operands are
- // constants, it is technically hoistable, but it would be better to
- // just fold it.
- if (Constant *C = ConstantFoldInstruction(
- &I, I.getModule()->getDataLayout(), TLI)) {
- LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
- << '\n');
- // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
- I.replaceAllUsesWith(C);
- if (isInstructionTriviallyDead(&I, TLI))
- eraseInstruction(I, *SafetyInfo, MSSAU);
- Changed = true;
- continue;
- }
- // Try hoisting the instruction out to the preheader. We can only do
- // this if all of the operands of the instruction are loop invariant and
- // if it is safe to hoist the instruction. We also check block frequency
- // to make sure instruction only gets hoisted into colder blocks.
- // TODO: It may be safe to hoist if we are hoisting to a conditional block
- // and we have accurately duplicated the control flow from the loop header
- // to that block.
- if (CurLoop->hasLoopInvariantOperands(&I) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) &&
- isSafeToExecuteUnconditionally(
- I, DT, TLI, CurLoop, SafetyInfo, ORE,
- CurLoop->getLoopPreheader()->getTerminator(), AC,
- AllowSpeculation)) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
- // Attempt to remove floating point division out of the loop by
- // converting it to a reciprocal multiplication.
- if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
- CurLoop->isLoopInvariant(I.getOperand(1))) {
- auto Divisor = I.getOperand(1);
- auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
- auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
- ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
- ReciprocalDivisor->insertBefore(&I);
- auto Product =
- BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
- Product->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(Product, I.getParent());
- Product->insertAfter(&I);
- I.replaceAllUsesWith(Product);
- eraseInstruction(I, *SafetyInfo, MSSAU);
- hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
- SafetyInfo, MSSAU, SE, ORE);
- HoistedInstructions.push_back(ReciprocalDivisor);
- Changed = true;
- continue;
- }
- auto IsInvariantStart = [&](Instruction &I) {
- using namespace PatternMatch;
- return I.use_empty() &&
- match(&I, m_Intrinsic<Intrinsic::invariant_start>());
- };
- auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
- return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
- SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
- };
- if ((IsInvariantStart(I) || isGuard(&I)) &&
- CurLoop->hasLoopInvariantOperands(&I) &&
- MustExecuteWithoutWritesBefore(I)) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
- if (PHINode *PN = dyn_cast<PHINode>(&I)) {
- if (CFH.canHoistPHI(PN)) {
- // Redirect incoming blocks first to ensure that we create hoisted
- // versions of those blocks before we hoist the phi.
- for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
- PN->setIncomingBlock(
- i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
- hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
- Changed = true;
- continue;
- }
- }
- // Remember possibly hoistable branches so we can actually hoist them
- // later if needed.
- if (BranchInst *BI = dyn_cast<BranchInst>(&I))
- CFH.registerPossiblyHoistableBranch(BI);
- }
- }
- // If we hoisted instructions to a conditional block they may not dominate
- // their uses that weren't hoisted (such as phis where some operands are not
- // loop invariant). If so make them unconditional by moving them to their
- // immediate dominator. We iterate through the instructions in reverse order
- // which ensures that when we rehoist an instruction we rehoist its operands,
- // and also keep track of where in the block we are rehoisting to to make sure
- // that we rehoist instructions before the instructions that use them.
- Instruction *HoistPoint = nullptr;
- if (ControlFlowHoisting) {
- for (Instruction *I : reverse(HoistedInstructions)) {
- if (!llvm::all_of(I->uses(),
- [&](Use &U) { return DT->dominates(I, U); })) {
- BasicBlock *Dominator =
- DT->getNode(I->getParent())->getIDom()->getBlock();
- if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
- if (HoistPoint)
- assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
- "New hoist point expected to dominate old hoist point");
- HoistPoint = Dominator->getTerminator();
- }
- LLVM_DEBUG(dbgs() << "LICM rehoisting to "
- << HoistPoint->getParent()->getNameOrAsOperand()
- << ": " << *I << "\n");
- moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
- HoistPoint = I;
- Changed = true;
- }
- }
- }
- if (VerifyMemorySSA)
- MSSAU.getMemorySSA()->verifyMemorySSA();
- // Now that we've finished hoisting make sure that LI and DT are still
- // valid.
- #ifdef EXPENSIVE_CHECKS
- if (Changed) {
- assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
- "Dominator tree verification failed");
- LI->verify(*DT);
- }
- #endif
- return Changed;
- }
- // Return true if LI is invariant within scope of the loop. LI is invariant if
- // CurLoop is dominated by an invariant.start representing the same memory
- // location and size as the memory location LI loads from, and also the
- // invariant.start has no uses.
- static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
- Loop *CurLoop) {
- Value *Addr = LI->getOperand(0);
- const DataLayout &DL = LI->getModule()->getDataLayout();
- const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
- // It is not currently possible for clang to generate an invariant.start
- // intrinsic with scalable vector types because we don't support thread local
- // sizeless types and we don't permit sizeless types in structs or classes.
- // Furthermore, even if support is added for this in future the intrinsic
- // itself is defined to have a size of -1 for variable sized objects. This
- // makes it impossible to verify if the intrinsic envelops our region of
- // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
- // types would have a -1 parameter, but the former is clearly double the size
- // of the latter.
- if (LocSizeInBits.isScalable())
- return false;
- // if the type is i8 addrspace(x)*, we know this is the type of
- // llvm.invariant.start operand
- auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
- LI->getPointerAddressSpace());
- unsigned BitcastsVisited = 0;
- // Look through bitcasts until we reach the i8* type (this is invariant.start
- // operand type).
- while (Addr->getType() != PtrInt8Ty) {
- auto *BC = dyn_cast<BitCastInst>(Addr);
- // Avoid traversing high number of bitcast uses.
- if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
- return false;
- Addr = BC->getOperand(0);
- }
- // If we've ended up at a global/constant, bail. We shouldn't be looking at
- // uselists for non-local Values in a loop pass.
- if (isa<Constant>(Addr))
- return false;
- unsigned UsesVisited = 0;
- // Traverse all uses of the load operand value, to see if invariant.start is
- // one of the uses, and whether it dominates the load instruction.
- for (auto *U : Addr->users()) {
- // Avoid traversing for Load operand with high number of users.
- if (++UsesVisited > MaxNumUsesTraversed)
- return false;
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- // If there are escaping uses of invariant.start instruction, the load maybe
- // non-invariant.
- if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
- !II->use_empty())
- continue;
- ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
- // The intrinsic supports having a -1 argument for variable sized objects
- // so we should check for that here.
- if (InvariantSize->isNegative())
- continue;
- uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
- // Confirm the invariant.start location size contains the load operand size
- // in bits. Also, the invariant.start should dominate the load, and we
- // should not hoist the load out of a loop that contains this dominating
- // invariant.start.
- if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits &&
- DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
- return true;
- }
- return false;
- }
- namespace {
- /// Return true if-and-only-if we know how to (mechanically) both hoist and
- /// sink a given instruction out of a loop. Does not address legality
- /// concerns such as aliasing or speculation safety.
- bool isHoistableAndSinkableInst(Instruction &I) {
- // Only these instructions are hoistable/sinkable.
- return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
- isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
- isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
- isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
- isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
- isa<InsertValueInst>(I) || isa<FreezeInst>(I));
- }
- /// Return true if MSSA knows there are no MemoryDefs in the loop.
- bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) {
- for (auto *BB : L->getBlocks())
- if (MSSAU.getMemorySSA()->getBlockDefs(BB))
- return false;
- return true;
- }
- /// Return true if I is the only Instruction with a MemoryAccess in L.
- bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
- const MemorySSAUpdater &MSSAU) {
- for (auto *BB : L->getBlocks())
- if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) {
- int NotAPhi = 0;
- for (const auto &Acc : *Accs) {
- if (isa<MemoryPhi>(&Acc))
- continue;
- const auto *MUD = cast<MemoryUseOrDef>(&Acc);
- if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
- return false;
- }
- }
- return true;
- }
- }
- bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
- Loop *CurLoop, MemorySSAUpdater &MSSAU,
- bool TargetExecutesOncePerLoop,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE) {
- // If we don't understand the instruction, bail early.
- if (!isHoistableAndSinkableInst(I))
- return false;
- MemorySSA *MSSA = MSSAU.getMemorySSA();
- // Loads have extra constraints we have to verify before we can hoist them.
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (!LI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic loads!
- // Loads from constant memory are always safe to move, even if they end up
- // in the same alias set as something that ends up being modified.
- if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))))
- return true;
- if (LI->hasMetadata(LLVMContext::MD_invariant_load))
- return true;
- if (LI->isAtomic() && !TargetExecutesOncePerLoop)
- return false; // Don't risk duplicating unordered loads
- // This checks for an invariant.start dominating the load.
- if (isLoadInvariantInLoop(LI, DT, CurLoop))
- return true;
- bool Invalidated = pointerInvalidatedByLoop(
- MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, Flags);
- // Check loop-invariant address because this may also be a sinkable load
- // whose address is not necessarily loop-invariant.
- if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
- << "failed to move load with loop-invariant address "
- "because the loop may invalidate its value";
- });
- return !Invalidated;
- } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- // Don't sink or hoist dbg info; it's legal, but not useful.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
- // Don't sink calls which can throw.
- if (CI->mayThrow())
- return false;
- // Convergent attribute has been used on operations that involve
- // inter-thread communication which results are implicitly affected by the
- // enclosing control flows. It is not safe to hoist or sink such operations
- // across control flow.
- if (CI->isConvergent())
- return false;
- using namespace PatternMatch;
- if (match(CI, m_Intrinsic<Intrinsic::assume>()))
- // Assumes don't actually alias anything or throw
- return true;
- if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
- // Widenable conditions don't actually alias anything or throw
- return true;
- // Handle simple cases by querying alias analysis.
- MemoryEffects Behavior = AA->getMemoryEffects(CI);
- if (Behavior.doesNotAccessMemory())
- return true;
- if (Behavior.onlyReadsMemory()) {
- // A readonly argmemonly function only reads from memory pointed to by
- // it's arguments with arbitrary offsets. If we can prove there are no
- // writes to this memory in the loop, we can hoist or sink.
- if (Behavior.onlyAccessesArgPointees()) {
- // TODO: expand to writeable arguments
- for (Value *Op : CI->args())
- if (Op->getType()->isPointerTy() &&
- pointerInvalidatedByLoop(
- MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
- Flags))
- return false;
- return true;
- }
- // If this call only reads from memory and there are no writes to memory
- // in the loop, we can hoist or sink the call as appropriate.
- if (isReadOnly(MSSAU, CurLoop))
- return true;
- }
- // FIXME: This should use mod/ref information to see if we can hoist or
- // sink the call.
- return false;
- } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
- // Fences alias (most) everything to provide ordering. For the moment,
- // just give up if there are any other memory operations in the loop.
- return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
- } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic store!
- // We can only hoist a store that we can prove writes a value which is not
- // read or overwritten within the loop. For those cases, we fallback to
- // load store promotion instead. TODO: We can extend this to cases where
- // there is exactly one write to the location and that write dominates an
- // arbitrary number of reads in the loop.
- if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
- return true;
- // If there are more accesses than the Promotion cap or no "quota" to
- // check clobber, then give up as we're not walking a list that long.
- if (Flags.tooManyMemoryAccesses() || Flags.tooManyClobberingCalls())
- return false;
- // If there are interfering Uses (i.e. their defining access is in the
- // loop), or ordered loads (stored as Defs!), don't move this store.
- // Could do better here, but this is conservatively correct.
- // TODO: Cache set of Uses on the first walk in runOnLoop, update when
- // moving accesses. Can also extend to dominating uses.
- auto *SIMD = MSSA->getMemoryAccess(SI);
- for (auto *BB : CurLoop->getBlocks())
- if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
- for (const auto &MA : *Accesses)
- if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
- auto *MD = MU->getDefiningAccess();
- if (!MSSA->isLiveOnEntryDef(MD) &&
- CurLoop->contains(MD->getBlock()))
- return false;
- // Disable hoisting past potentially interfering loads. Optimized
- // Uses may point to an access outside the loop, as getClobbering
- // checks the previous iteration when walking the backedge.
- // FIXME: More precise: no Uses that alias SI.
- if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU))
- return false;
- } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
- if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
- (void)LI; // Silence warning.
- assert(!LI->isUnordered() && "Expected unordered load");
- return false;
- }
- // Any call, while it may not be clobbering SI, it may be a use.
- if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
- // Check if the call may read from the memory location written
- // to by SI. Check CI's attributes and arguments; the number of
- // such checks performed is limited above by NoOfMemAccTooLarge.
- ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
- if (isModOrRefSet(MRI))
- return false;
- }
- }
- }
- auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
- Flags.incrementClobberingCalls();
- // If there are no clobbering Defs in the loop, store is safe to hoist.
- return MSSA->isLiveOnEntryDef(Source) ||
- !CurLoop->contains(Source->getBlock());
- }
- assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
- // We've established mechanical ability and aliasing, it's up to the caller
- // to check fault safety
- return true;
- }
- /// Returns true if a PHINode is a trivially replaceable with an
- /// Instruction.
- /// This is true when all incoming values are that instruction.
- /// This pattern occurs most often with LCSSA PHI nodes.
- ///
- static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
- for (const Value *IncValue : PN.incoming_values())
- if (IncValue != &I)
- return false;
- return true;
- }
- /// Return true if the instruction is free in the loop.
- static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const TargetTransformInfo *TTI) {
- InstructionCost CostI =
- TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
- if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- if (CostI != TargetTransformInfo::TCC_Free)
- return false;
- // For a GEP, we cannot simply use getInstructionCost because currently
- // it optimistically assumes that a GEP will fold into addressing mode
- // regardless of its users.
- const BasicBlock *BB = GEP->getParent();
- for (const User *U : GEP->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (CurLoop->contains(UI) &&
- (BB != UI->getParent() ||
- (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
- return false;
- }
- return true;
- }
- return CostI == TargetTransformInfo::TCC_Free;
- }
- /// Return true if the only users of this instruction are outside of
- /// the loop. If this is true, we can sink the instruction to the exit
- /// blocks of the loop.
- ///
- /// We also return true if the instruction could be folded away in lowering.
- /// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
- static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop,
- bool LoopNestMode) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
- bool IsFree = isFreeInLoop(I, CurLoop, TTI);
- for (const User *U : I.users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- const BasicBlock *BB = PN->getParent();
- // We cannot sink uses in catchswitches.
- if (isa<CatchSwitchInst>(BB->getTerminator()))
- return false;
- // We need to sink a callsite to a unique funclet. Avoid sinking if the
- // phi use is too muddled.
- if (isa<CallInst>(I))
- if (!BlockColors.empty() &&
- BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
- return false;
- if (LoopNestMode) {
- while (isa<PHINode>(UI) && UI->hasOneUser() &&
- UI->getNumOperands() == 1) {
- if (!CurLoop->contains(UI))
- break;
- UI = cast<Instruction>(UI->user_back());
- }
- }
- }
- if (CurLoop->contains(UI)) {
- if (IsFree) {
- FreeInLoop = true;
- continue;
- }
- return false;
- }
- }
- return true;
- }
- static Instruction *cloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) {
- Instruction *New;
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
- // Sinking call-sites need to be handled differently from other
- // instructions. The cloned call-site needs a funclet bundle operand
- // appropriate for its location in the CFG.
- SmallVector<OperandBundleDef, 1> OpBundles;
- for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
- BundleIdx != BundleEnd; ++BundleIdx) {
- OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
- if (Bundle.getTagID() == LLVMContext::OB_funclet)
- continue;
- OpBundles.emplace_back(Bundle);
- }
- if (!BlockColors.empty()) {
- const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
- assert(CV.size() == 1 && "non-unique color for exit block!");
- BasicBlock *BBColor = CV.front();
- Instruction *EHPad = BBColor->getFirstNonPHI();
- if (EHPad->isEHPad())
- OpBundles.emplace_back("funclet", EHPad);
- }
- New = CallInst::Create(CI, OpBundles);
- } else {
- New = I.clone();
- }
- New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt());
- if (!I.getName().empty())
- New->setName(I.getName() + ".le");
- if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) {
- // Create a new MemoryAccess and let MemorySSA set its defining access.
- MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB(
- New, nullptr, New->getParent(), MemorySSA::Beginning);
- if (NewMemAcc) {
- if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
- MSSAU.insertDef(MemDef, /*RenameUses=*/true);
- else {
- auto *MemUse = cast<MemoryUse>(NewMemAcc);
- MSSAU.insertUse(MemUse, /*RenameUses=*/true);
- }
- }
- }
- // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
- // this is particularly cheap because we can rip off the PHI node that we're
- // replacing for the number and blocks of the predecessors.
- // OPT: If this shows up in a profile, we can instead finish sinking all
- // invariant instructions, and then walk their operands to re-establish
- // LCSSA. That will eliminate creating PHI nodes just to nuke them when
- // sinking bottom-up.
- for (Use &Op : New->operands())
- if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
- auto *OInst = cast<Instruction>(Op.get());
- PHINode *OpPN =
- PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
- OInst->getName() + ".lcssa", &ExitBlock.front());
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
- Op = OpPN;
- }
- return New;
- }
- static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater &MSSAU) {
- MSSAU.removeMemoryAccess(&I);
- SafetyInfo.removeInstruction(&I);
- I.eraseFromParent();
- }
- static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater &MSSAU,
- ScalarEvolution *SE) {
- SafetyInfo.removeInstruction(&I);
- SafetyInfo.insertInstructionTo(&I, Dest.getParent());
- I.moveBefore(&Dest);
- if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
- MSSAU.getMemorySSA()->getMemoryAccess(&I)))
- MSSAU.moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::BeforeTerminator);
- if (SE)
- SE->forgetValue(&I);
- }
- static Instruction *sinkThroughTriviallyReplaceablePHI(
- PHINode *TPN, Instruction *I, LoopInfo *LI,
- SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
- const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
- MemorySSAUpdater &MSSAU) {
- assert(isTriviallyReplaceablePHI(*TPN, *I) &&
- "Expect only trivially replaceable PHI");
- BasicBlock *ExitBlock = TPN->getParent();
- Instruction *New;
- auto It = SunkCopies.find(ExitBlock);
- if (It != SunkCopies.end())
- New = It->second;
- else
- New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
- *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
- return New;
- }
- static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
- BasicBlock *BB = PN->getParent();
- if (!BB->canSplitPredecessors())
- return false;
- // It's not impossible to split EHPad blocks, but if BlockColors already exist
- // it require updating BlockColors for all offspring blocks accordingly. By
- // skipping such corner case, we can make updating BlockColors after splitting
- // predecessor fairly simple.
- if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
- return false;
- for (BasicBlock *BBPred : predecessors(BB)) {
- if (isa<IndirectBrInst>(BBPred->getTerminator()))
- return false;
- }
- return true;
- }
- static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
- LoopInfo *LI, const Loop *CurLoop,
- LoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU) {
- #ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- #endif
- BasicBlock *ExitBB = PN->getParent();
- assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
- // Split predecessors of the loop exit to make instructions in the loop are
- // exposed to exit blocks through trivially replaceable PHIs while keeping the
- // loop in the canonical form where each predecessor of each exit block should
- // be contained within the loop. For example, this will convert the loop below
- // from
- //
- // LB1:
- // %v1 =
- // br %LE, %LB2
- // LB2:
- // %v2 =
- // br %LE, %LB1
- // LE:
- // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
- //
- // to
- //
- // LB1:
- // %v1 =
- // br %LE.split, %LB2
- // LB2:
- // %v2 =
- // br %LE.split2, %LB1
- // LE.split:
- // %p1 = phi [%v1, %LB1] <-- trivially replaceable
- // br %LE
- // LE.split2:
- // %p2 = phi [%v2, %LB2] <-- trivially replaceable
- // br %LE
- // LE:
- // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
- //
- const auto &BlockColors = SafetyInfo->getBlockColors();
- SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
- while (!PredBBs.empty()) {
- BasicBlock *PredBB = *PredBBs.begin();
- assert(CurLoop->contains(PredBB) &&
- "Expect all predecessors are in the loop");
- if (PN->getBasicBlockIndex(PredBB) >= 0) {
- BasicBlock *NewPred = SplitBlockPredecessors(
- ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
- // Since we do not allow splitting EH-block with BlockColors in
- // canSplitPredecessors(), we can simply assign predecessor's color to
- // the new block.
- if (!BlockColors.empty())
- // Grab a reference to the ColorVector to be inserted before getting the
- // reference to the vector we are copying because inserting the new
- // element in BlockColors might cause the map to be reallocated.
- SafetyInfo->copyColors(NewPred, PredBB);
- }
- PredBBs.remove(PredBB);
- }
- }
- /// When an instruction is found to only be used outside of the loop, this
- /// function moves it to the exit blocks and patches up SSA form as needed.
- /// This method is guaranteed to remove the original instruction from its
- /// position, and may either delete it or move it to outside of the loop.
- ///
- static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) {
- bool Changed = false;
- LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
- // Iterate over users to be ready for actual sinking. Replace users via
- // unreachable blocks with undef and make all user PHIs trivially replaceable.
- SmallPtrSet<Instruction *, 8> VisitedUsers;
- for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
- auto *User = cast<Instruction>(*UI);
- Use &U = UI.getUse();
- ++UI;
- if (VisitedUsers.count(User) || CurLoop->contains(User))
- continue;
- if (!DT->isReachableFromEntry(User->getParent())) {
- U = PoisonValue::get(I.getType());
- Changed = true;
- continue;
- }
- // The user must be a PHI node.
- PHINode *PN = cast<PHINode>(User);
- // Surprisingly, instructions can be used outside of loops without any
- // exits. This can only happen in PHI nodes if the incoming block is
- // unreachable.
- BasicBlock *BB = PN->getIncomingBlock(U);
- if (!DT->isReachableFromEntry(BB)) {
- U = PoisonValue::get(I.getType());
- Changed = true;
- continue;
- }
- VisitedUsers.insert(PN);
- if (isTriviallyReplaceablePHI(*PN, I))
- continue;
- if (!canSplitPredecessors(PN, SafetyInfo))
- return Changed;
- // Split predecessors of the PHI so that we can make users trivially
- // replaceable.
- splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU);
- // Should rebuild the iterators, as they may be invalidated by
- // splitPredecessorsOfLoopExit().
- UI = I.user_begin();
- UE = I.user_end();
- }
- if (VisitedUsers.empty())
- return Changed;
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
- << "sinking " << ore::NV("Inst", &I);
- });
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumSunk;
- #ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- #endif
- // Clones of this instruction. Don't create more than one per exit block!
- SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
- // If this instruction is only used outside of the loop, then all users are
- // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
- // the instruction.
- // First check if I is worth sinking for all uses. Sink only when it is worth
- // across all uses.
- SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
- for (auto *UI : Users) {
- auto *User = cast<Instruction>(UI);
- if (CurLoop->contains(User))
- continue;
- PHINode *PN = cast<PHINode>(User);
- assert(ExitBlockSet.count(PN->getParent()) &&
- "The LCSSA PHI is not in an exit block!");
- // The PHI must be trivially replaceable.
- Instruction *New = sinkThroughTriviallyReplaceablePHI(
- PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
- PN->replaceAllUsesWith(New);
- eraseInstruction(*PN, *SafetyInfo, MSSAU);
- Changed = true;
- }
- return Changed;
- }
- /// When an instruction is found to only use loop invariant operands that
- /// is safe to hoist, this instruction is called to do the dirty work.
- ///
- static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE) {
- LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
- << I << "\n");
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
- << ore::NV("Inst", &I);
- });
- // Metadata can be dependent on conditions we are hoisting above.
- // Conservatively strip all metadata on the instruction unless we were
- // guaranteed to execute I if we entered the loop, in which case the metadata
- // is valid in the loop preheader.
- // Similarly, If I is a call and it is not guaranteed to execute in the loop,
- // then moving to the preheader means we should strip attributes on the call
- // that can cause UB since we may be hoisting above conditions that allowed
- // inferring those attributes. They may not be valid at the preheader.
- if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
- // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
- // time in isGuaranteedToExecute if we don't actually have anything to
- // drop. It is a compile time optimization, not required for correctness.
- !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
- I.dropUndefImplyingAttrsAndUnknownMetadata();
- if (isa<PHINode>(I))
- // Move the new node to the end of the phi list in the destination block.
- moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
- else
- // Move the new node to the destination block, before its terminator.
- moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
- I.updateLocationAfterHoist();
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumHoisted;
- }
- /// Only sink or hoist an instruction if it is not a trapping instruction,
- /// or if the instruction is known not to trap when moved to the preheader.
- /// or if it is a trapping instruction and is guaranteed to execute.
- static bool isSafeToExecuteUnconditionally(
- Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
- const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
- AssumptionCache *AC, bool AllowSpeculation) {
- if (AllowSpeculation &&
- isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI))
- return true;
- bool GuaranteedToExecute =
- SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
- if (!GuaranteedToExecute) {
- auto *LI = dyn_cast<LoadInst>(&Inst);
- if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
- << "failed to hoist load with loop-invariant address "
- "because load is conditionally executed";
- });
- }
- return GuaranteedToExecute;
- }
- namespace {
- class LoopPromoter : public LoadAndStorePromoter {
- Value *SomePtr; // Designated pointer to store to.
- SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
- SmallVectorImpl<Instruction *> &LoopInsertPts;
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
- PredIteratorCache &PredCache;
- MemorySSAUpdater &MSSAU;
- LoopInfo &LI;
- DebugLoc DL;
- Align Alignment;
- bool UnorderedAtomic;
- AAMDNodes AATags;
- ICFLoopSafetyInfo &SafetyInfo;
- bool CanInsertStoresInExitBlocks;
- ArrayRef<const Instruction *> Uses;
- // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
- // (if legal) if doing so would add an out-of-loop use to an instruction
- // defined in-loop.
- Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
- if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
- return V;
- Instruction *I = cast<Instruction>(V);
- // We need to create an LCSSA PHI node for the incoming value and
- // store that.
- PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
- I->getName() + ".lcssa", &BB->front());
- for (BasicBlock *Pred : PredCache.get(BB))
- PN->addIncoming(I, Pred);
- return PN;
- }
- public:
- LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
- SmallVectorImpl<BasicBlock *> &LEB,
- SmallVectorImpl<Instruction *> &LIP,
- SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
- MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl,
- Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
- ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
- : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB),
- LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU),
- LI(li), DL(std::move(dl)), Alignment(Alignment),
- UnorderedAtomic(UnorderedAtomic), AATags(AATags),
- SafetyInfo(SafetyInfo),
- CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {}
- void insertStoresInLoopExitBlocks() {
- // Insert stores after in the loop exit blocks. Each exit block gets a
- // store of the live-out values that feed them. Since we've already told
- // the SSA updater about the defs in the loop and the preheader
- // definition, it is all set and we can start using it.
- DIAssignID *NewID = nullptr;
- for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = LoopExitBlocks[i];
- Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
- LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
- Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
- Instruction *InsertPos = LoopInsertPts[i];
- StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
- if (UnorderedAtomic)
- NewSI->setOrdering(AtomicOrdering::Unordered);
- NewSI->setAlignment(Alignment);
- NewSI->setDebugLoc(DL);
- // Attach DIAssignID metadata to the new store, generating it on the
- // first loop iteration.
- if (i == 0) {
- // NewSI will have its DIAssignID set here if there are any stores in
- // Uses with a DIAssignID attachment. This merged ID will then be
- // attached to the other inserted stores (in the branch below).
- NewSI->mergeDIAssignID(Uses);
- NewID = cast_or_null<DIAssignID>(
- NewSI->getMetadata(LLVMContext::MD_DIAssignID));
- } else {
- // Attach the DIAssignID (or nullptr) merged from Uses in the branch
- // above.
- NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID);
- }
- if (AATags)
- NewSI->setAAMetadata(AATags);
- MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
- MemoryAccess *NewMemAcc;
- if (!MSSAInsertPoint) {
- NewMemAcc = MSSAU.createMemoryAccessInBB(
- NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
- } else {
- NewMemAcc =
- MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
- }
- MSSAInsertPts[i] = NewMemAcc;
- MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true);
- // FIXME: true for safety, false may still be correct.
- }
- }
- void doExtraRewritesBeforeFinalDeletion() override {
- if (CanInsertStoresInExitBlocks)
- insertStoresInLoopExitBlocks();
- }
- void instructionDeleted(Instruction *I) const override {
- SafetyInfo.removeInstruction(I);
- MSSAU.removeMemoryAccess(I);
- }
- bool shouldDelete(Instruction *I) const override {
- if (isa<StoreInst>(I))
- return CanInsertStoresInExitBlocks;
- return true;
- }
- };
- bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
- DominatorTree *DT) {
- // We can perform the captured-before check against any instruction in the
- // loop header, as the loop header is reachable from any instruction inside
- // the loop.
- // TODO: ReturnCaptures=true shouldn't be necessary here.
- return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
- /* StoreCaptures */ true,
- L->getHeader()->getTerminator(), DT);
- }
- /// Return true if we can prove that a caller cannot inspect the object if an
- /// unwind occurs inside the loop.
- bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
- DominatorTree *DT) {
- bool RequiresNoCaptureBeforeUnwind;
- if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
- return false;
- return !RequiresNoCaptureBeforeUnwind ||
- isNotCapturedBeforeOrInLoop(Object, L, DT);
- }
- bool isWritableObject(const Value *Object) {
- // TODO: Alloca might not be writable after its lifetime ends.
- // See https://github.com/llvm/llvm-project/issues/51838.
- if (isa<AllocaInst>(Object))
- return true;
- // TODO: Also handle sret.
- if (auto *A = dyn_cast<Argument>(Object))
- return A->hasByValAttr();
- if (auto *G = dyn_cast<GlobalVariable>(Object))
- return !G->isConstant();
- // TODO: Noalias has nothing to do with writability, this should check for
- // an allocator function.
- return isNoAliasCall(Object);
- }
- bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT,
- TargetTransformInfo *TTI) {
- // The object must be function-local to start with, and then not captured
- // before/in the loop.
- return (isIdentifiedFunctionLocal(Object) &&
- isNotCapturedBeforeOrInLoop(Object, L, DT)) ||
- (TTI->isSingleThreaded() || SingleThread);
- }
- } // namespace
- /// Try to promote memory values to scalars by sinking stores out of the
- /// loop and moving loads to before the loop. We do this by looping over
- /// the stores in the loop, looking for stores to Must pointers which are
- /// loop invariant.
- ///
- bool llvm::promoteLoopAccessesToScalars(
- const SmallSetVector<Value *, 8> &PointerMustAliases,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- SmallVectorImpl<Instruction *> &InsertPts,
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
- LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
- const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop,
- MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE, bool AllowSpeculation,
- bool HasReadsOutsideSet) {
- // Verify inputs.
- assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
- SafetyInfo != nullptr &&
- "Unexpected Input to promoteLoopAccessesToScalars");
- LLVM_DEBUG({
- dbgs() << "Trying to promote set of must-aliased pointers:\n";
- for (Value *Ptr : PointerMustAliases)
- dbgs() << " " << *Ptr << "\n";
- });
- ++NumPromotionCandidates;
- Value *SomePtr = *PointerMustAliases.begin();
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- // It is not safe to promote a load/store from the loop if the load/store is
- // conditional. For example, turning:
- //
- // for () { if (c) *P += 1; }
- //
- // into:
- //
- // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
- //
- // is not safe, because *P may only be valid to access if 'c' is true.
- //
- // The safety property divides into two parts:
- // p1) The memory may not be dereferenceable on entry to the loop. In this
- // case, we can't insert the required load in the preheader.
- // p2) The memory model does not allow us to insert a store along any dynamic
- // path which did not originally have one.
- //
- // If at least one store is guaranteed to execute, both properties are
- // satisfied, and promotion is legal.
- //
- // This, however, is not a necessary condition. Even if no store/load is
- // guaranteed to execute, we can still establish these properties.
- // We can establish (p1) by proving that hoisting the load into the preheader
- // is safe (i.e. proving dereferenceability on all paths through the loop). We
- // can use any access within the alias set to prove dereferenceability,
- // since they're all must alias.
- //
- // There are two ways establish (p2):
- // a) Prove the location is thread-local. In this case the memory model
- // requirement does not apply, and stores are safe to insert.
- // b) Prove a store dominates every exit block. In this case, if an exit
- // blocks is reached, the original dynamic path would have taken us through
- // the store, so inserting a store into the exit block is safe. Note that this
- // is different from the store being guaranteed to execute. For instance,
- // if an exception is thrown on the first iteration of the loop, the original
- // store is never executed, but the exit blocks are not executed either.
- bool DereferenceableInPH = false;
- bool StoreIsGuanteedToExecute = false;
- bool FoundLoadToPromote = false;
- // Goes from Unknown to either Safe or Unsafe, but can't switch between them.
- enum {
- StoreSafe,
- StoreUnsafe,
- StoreSafetyUnknown,
- } StoreSafety = StoreSafetyUnknown;
- SmallVector<Instruction *, 64> LoopUses;
- // We start with an alignment of one and try to find instructions that allow
- // us to prove better alignment.
- Align Alignment;
- // Keep track of which types of access we see
- bool SawUnorderedAtomic = false;
- bool SawNotAtomic = false;
- AAMDNodes AATags;
- const DataLayout &MDL = Preheader->getModule()->getDataLayout();
- // If there are reads outside the promoted set, then promoting stores is
- // definitely not safe.
- if (HasReadsOutsideSet)
- StoreSafety = StoreUnsafe;
- if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) {
- // If a loop can throw, we have to insert a store along each unwind edge.
- // That said, we can't actually make the unwind edge explicit. Therefore,
- // we have to prove that the store is dead along the unwind edge. We do
- // this by proving that the caller can't have a reference to the object
- // after return and thus can't possibly load from the object.
- Value *Object = getUnderlyingObject(SomePtr);
- if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
- StoreSafety = StoreUnsafe;
- }
- // Check that all accesses to pointers in the alias set use the same type.
- // We cannot (yet) promote a memory location that is loaded and stored in
- // different sizes. While we are at it, collect alignment and AA info.
- Type *AccessTy = nullptr;
- for (Value *ASIV : PointerMustAliases) {
- for (Use &U : ASIV->uses()) {
- // Ignore instructions that are outside the loop.
- Instruction *UI = dyn_cast<Instruction>(U.getUser());
- if (!UI || !CurLoop->contains(UI))
- continue;
- // If there is an non-load/store instruction in the loop, we can't promote
- // it.
- if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
- if (!Load->isUnordered())
- return false;
- SawUnorderedAtomic |= Load->isAtomic();
- SawNotAtomic |= !Load->isAtomic();
- FoundLoadToPromote = true;
- Align InstAlignment = Load->getAlign();
- // Note that proving a load safe to speculate requires proving
- // sufficient alignment at the target location. Proving it guaranteed
- // to execute does as well. Thus we can increase our guaranteed
- // alignment as well.
- if (!DereferenceableInPH || (InstAlignment > Alignment))
- if (isSafeToExecuteUnconditionally(
- *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
- Preheader->getTerminator(), AC, AllowSpeculation)) {
- DereferenceableInPH = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
- // Stores *of* the pointer are not interesting, only stores *to* the
- // pointer.
- if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
- continue;
- if (!Store->isUnordered())
- return false;
- SawUnorderedAtomic |= Store->isAtomic();
- SawNotAtomic |= !Store->isAtomic();
- // If the store is guaranteed to execute, both properties are satisfied.
- // We may want to check if a store is guaranteed to execute even if we
- // already know that promotion is safe, since it may have higher
- // alignment than any other guaranteed stores, in which case we can
- // raise the alignment on the promoted store.
- Align InstAlignment = Store->getAlign();
- bool GuaranteedToExecute =
- SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop);
- StoreIsGuanteedToExecute |= GuaranteedToExecute;
- if (GuaranteedToExecute) {
- DereferenceableInPH = true;
- if (StoreSafety == StoreSafetyUnknown)
- StoreSafety = StoreSafe;
- Alignment = std::max(Alignment, InstAlignment);
- }
- // If a store dominates all exit blocks, it is safe to sink.
- // As explained above, if an exit block was executed, a dominating
- // store must have been executed at least once, so we are not
- // introducing stores on paths that did not have them.
- // Note that this only looks at explicit exit blocks. If we ever
- // start sinking stores into unwind edges (see above), this will break.
- if (StoreSafety == StoreSafetyUnknown &&
- llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
- return DT->dominates(Store->getParent(), Exit);
- }))
- StoreSafety = StoreSafe;
- // If the store is not guaranteed to execute, we may still get
- // deref info through it.
- if (!DereferenceableInPH) {
- DereferenceableInPH = isDereferenceableAndAlignedPointer(
- Store->getPointerOperand(), Store->getValueOperand()->getType(),
- Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI);
- }
- } else
- continue; // Not a load or store.
- if (!AccessTy)
- AccessTy = getLoadStoreType(UI);
- else if (AccessTy != getLoadStoreType(UI))
- return false;
- // Merge the AA tags.
- if (LoopUses.empty()) {
- // On the first load/store, just take its AA tags.
- AATags = UI->getAAMetadata();
- } else if (AATags) {
- AATags = AATags.merge(UI->getAAMetadata());
- }
- LoopUses.push_back(UI);
- }
- }
- // If we found both an unordered atomic instruction and a non-atomic memory
- // access, bail. We can't blindly promote non-atomic to atomic since we
- // might not be able to lower the result. We can't downgrade since that
- // would violate memory model. Also, align 0 is an error for atomics.
- if (SawUnorderedAtomic && SawNotAtomic)
- return false;
- // If we're inserting an atomic load in the preheader, we must be able to
- // lower it. We're only guaranteed to be able to lower naturally aligned
- // atomics.
- if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
- return false;
- // If we couldn't prove we can hoist the load, bail.
- if (!DereferenceableInPH) {
- LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n");
- return false;
- }
- // We know we can hoist the load, but don't have a guaranteed store.
- // Check whether the location is writable and thread-local. If it is, then we
- // can insert stores along paths which originally didn't have them without
- // violating the memory model.
- if (StoreSafety == StoreSafetyUnknown) {
- Value *Object = getUnderlyingObject(SomePtr);
- if (isWritableObject(Object) &&
- isThreadLocalObject(Object, CurLoop, DT, TTI))
- StoreSafety = StoreSafe;
- }
- // If we've still failed to prove we can sink the store, hoist the load
- // only, if possible.
- if (StoreSafety != StoreSafe && !FoundLoadToPromote)
- // If we cannot hoist the load either, give up.
- return false;
- // Lets do the promotion!
- if (StoreSafety == StoreSafe) {
- LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
- << '\n');
- ++NumLoadStorePromoted;
- } else {
- LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
- << '\n');
- ++NumLoadPromoted;
- }
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
- LoopUses[0])
- << "Moving accesses to memory location out of the loop";
- });
- // Look at all the loop uses, and try to merge their locations.
- std::vector<const DILocation *> LoopUsesLocs;
- for (auto *U : LoopUses)
- LoopUsesLocs.push_back(U->getDebugLoc().get());
- auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
- // We use the SSAUpdater interface to insert phi nodes as required.
- SmallVector<PHINode *, 16> NewPHIs;
- SSAUpdater SSA(&NewPHIs);
- LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts,
- MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment,
- SawUnorderedAtomic, AATags, *SafetyInfo,
- StoreSafety == StoreSafe);
- // Set up the preheader to have a definition of the value. It is the live-out
- // value from the preheader that uses in the loop will use.
- LoadInst *PreheaderLoad = nullptr;
- if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
- PreheaderLoad =
- new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted",
- Preheader->getTerminator());
- if (SawUnorderedAtomic)
- PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
- PreheaderLoad->setAlignment(Alignment);
- PreheaderLoad->setDebugLoc(DebugLoc());
- if (AATags)
- PreheaderLoad->setAAMetadata(AATags);
- MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB(
- PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
- MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
- MSSAU.insertUse(NewMemUse, /*RenameUses=*/true);
- SSA.AddAvailableValue(Preheader, PreheaderLoad);
- } else {
- SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy));
- }
- if (VerifyMemorySSA)
- MSSAU.getMemorySSA()->verifyMemorySSA();
- // Rewrite all the loads in the loop and remember all the definitions from
- // stores in the loop.
- Promoter.run(LoopUses);
- if (VerifyMemorySSA)
- MSSAU.getMemorySSA()->verifyMemorySSA();
- // If the SSAUpdater didn't use the load in the preheader, just zap it now.
- if (PreheaderLoad && PreheaderLoad->use_empty())
- eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
- return true;
- }
- static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
- function_ref<void(Instruction *)> Fn) {
- for (const BasicBlock *BB : L->blocks())
- if (const auto *Accesses = MSSA->getBlockAccesses(BB))
- for (const auto &Access : *Accesses)
- if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
- Fn(MUD->getMemoryInst());
- }
- // The bool indicates whether there might be reads outside the set, in which
- // case only loads may be promoted.
- static SmallVector<PointersAndHasReadsOutsideSet, 0>
- collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
- BatchAAResults BatchAA(*AA);
- AliasSetTracker AST(BatchAA);
- auto IsPotentiallyPromotable = [L](const Instruction *I) {
- if (const auto *SI = dyn_cast<StoreInst>(I))
- return L->isLoopInvariant(SI->getPointerOperand());
- if (const auto *LI = dyn_cast<LoadInst>(I))
- return L->isLoopInvariant(LI->getPointerOperand());
- return false;
- };
- // Populate AST with potentially promotable accesses.
- SmallPtrSet<Value *, 16> AttemptingPromotion;
- foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
- if (IsPotentiallyPromotable(I)) {
- AttemptingPromotion.insert(I);
- AST.add(I);
- }
- });
- // We're only interested in must-alias sets that contain a mod.
- SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets;
- for (AliasSet &AS : AST)
- if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
- Sets.push_back({&AS, false});
- if (Sets.empty())
- return {}; // Nothing to promote...
- // Discard any sets for which there is an aliasing non-promotable access.
- foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
- if (AttemptingPromotion.contains(I))
- return;
- llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) {
- ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA);
- // Cannot promote if there are writes outside the set.
- if (isModSet(MR))
- return true;
- if (isRefSet(MR)) {
- // Remember reads outside the set.
- Pair.setInt(true);
- // If this is a mod-only set and there are reads outside the set,
- // we will not be able to promote, so bail out early.
- return !Pair.getPointer()->isRef();
- }
- return false;
- });
- });
- SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result;
- for (auto [Set, HasReadsOutsideSet] : Sets) {
- SmallSetVector<Value *, 8> PointerMustAliases;
- for (const auto &ASI : *Set)
- PointerMustAliases.insert(ASI.getValue());
- Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet);
- }
- return Result;
- }
- static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
- Loop *CurLoop, Instruction &I,
- SinkAndHoistLICMFlags &Flags) {
- // For hoisting, use the walker to determine safety
- if (!Flags.getIsSink()) {
- MemoryAccess *Source;
- // See declaration of SetLicmMssaOptCap for usage details.
- if (Flags.tooManyClobberingCalls())
- Source = MU->getDefiningAccess();
- else {
- Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
- Flags.incrementClobberingCalls();
- }
- return !MSSA->isLiveOnEntryDef(Source) &&
- CurLoop->contains(Source->getBlock());
- }
- // For sinking, we'd need to check all Defs below this use. The getClobbering
- // call will look on the backedge of the loop, but will check aliasing with
- // the instructions on the previous iteration.
- // For example:
- // for (i ... )
- // load a[i] ( Use (LoE)
- // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
- // i++;
- // The load sees no clobbering inside the loop, as the backedge alias check
- // does phi translation, and will check aliasing against store a[i-1].
- // However sinking the load outside the loop, below the store is incorrect.
- // For now, only sink if there are no Defs in the loop, and the existing ones
- // precede the use and are in the same block.
- // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
- // needs PostDominatorTreeAnalysis.
- // FIXME: More precise: no Defs that alias this Use.
- if (Flags.tooManyMemoryAccesses())
- return true;
- for (auto *BB : CurLoop->getBlocks())
- if (pointerInvalidatedByBlock(*BB, *MSSA, *MU))
- return true;
- // When sinking, the source block may not be part of the loop so check it.
- if (!CurLoop->contains(&I))
- return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU);
- return false;
- }
- bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) {
- if (const auto *Accesses = MSSA.getBlockDefs(&BB))
- for (const auto &MA : *Accesses)
- if (const auto *MD = dyn_cast<MemoryDef>(&MA))
- if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
- return true;
- return false;
- }
- /// Little predicate that returns true if the specified basic block is in
- /// a subloop of the current one, not the current one itself.
- ///
- static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
- assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
- return LI->getLoopFor(BB) != CurLoop;
- }
|