1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file provides the interface for the sampled PGO profile loader base
- /// implementation.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
- #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/ProfileData/SampleProf.h"
- #include "llvm/ProfileData/SampleProfReader.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/GenericDomTree.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/SampleProfileInference.h"
- #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
- namespace llvm {
- using namespace sampleprof;
- using namespace sampleprofutil;
- using ProfileCount = Function::ProfileCount;
- #define DEBUG_TYPE "sample-profile-impl"
- namespace afdo_detail {
- template <typename BlockT> struct IRTraits;
- template <> struct IRTraits<BasicBlock> {
- using InstructionT = Instruction;
- using BasicBlockT = BasicBlock;
- using FunctionT = Function;
- using BlockFrequencyInfoT = BlockFrequencyInfo;
- using LoopT = Loop;
- using LoopInfoPtrT = std::unique_ptr<LoopInfo>;
- using DominatorTreePtrT = std::unique_ptr<DominatorTree>;
- using PostDominatorTreeT = PostDominatorTree;
- using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>;
- using OptRemarkEmitterT = OptimizationRemarkEmitter;
- using OptRemarkAnalysisT = OptimizationRemarkAnalysis;
- using PredRangeT = pred_range;
- using SuccRangeT = succ_range;
- static Function &getFunction(Function &F) { return F; }
- static const BasicBlock *getEntryBB(const Function *F) {
- return &F->getEntryBlock();
- }
- static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); }
- static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); }
- };
- } // end namespace afdo_detail
- extern cl::opt<bool> SampleProfileUseProfi;
- template <typename BT> class SampleProfileLoaderBaseImpl {
- public:
- SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName)
- : Filename(Name), RemappingFilename(RemapName) {}
- void dump() { Reader->dump(); }
- using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT;
- using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT;
- using BlockFrequencyInfoT =
- typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT;
- using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT;
- using LoopT = typename afdo_detail::IRTraits<BT>::LoopT;
- using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT;
- using DominatorTreePtrT =
- typename afdo_detail::IRTraits<BT>::DominatorTreePtrT;
- using PostDominatorTreePtrT =
- typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT;
- using PostDominatorTreeT =
- typename afdo_detail::IRTraits<BT>::PostDominatorTreeT;
- using OptRemarkEmitterT =
- typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT;
- using OptRemarkAnalysisT =
- typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT;
- using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT;
- using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT;
- using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
- using EquivalenceClassMap =
- DenseMap<const BasicBlockT *, const BasicBlockT *>;
- using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
- using EdgeWeightMap = DenseMap<Edge, uint64_t>;
- using BlockEdgeMap =
- DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;
- protected:
- ~SampleProfileLoaderBaseImpl() = default;
- friend class SampleCoverageTracker;
- Function &getFunction(FunctionT &F) {
- return afdo_detail::IRTraits<BT>::getFunction(F);
- }
- const BasicBlockT *getEntryBB(const FunctionT *F) {
- return afdo_detail::IRTraits<BT>::getEntryBB(F);
- }
- PredRangeT getPredecessors(BasicBlockT *BB) {
- return afdo_detail::IRTraits<BT>::getPredecessors(BB);
- }
- SuccRangeT getSuccessors(BasicBlockT *BB) {
- return afdo_detail::IRTraits<BT>::getSuccessors(BB);
- }
- unsigned getFunctionLoc(FunctionT &Func);
- virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst);
- ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst);
- ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB);
- mutable DenseMap<const DILocation *, const FunctionSamples *>
- DILocation2SampleMap;
- virtual const FunctionSamples *
- findFunctionSamples(const InstructionT &I) const;
- void printEdgeWeight(raw_ostream &OS, Edge E);
- void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const;
- void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB);
- bool computeBlockWeights(FunctionT &F);
- void findEquivalenceClasses(FunctionT &F);
- void findEquivalencesFor(BasicBlockT *BB1,
- ArrayRef<BasicBlockT *> Descendants,
- PostDominatorTreeT *DomTree);
- void propagateWeights(FunctionT &F);
- void applyProfi(FunctionT &F, BlockEdgeMap &Successors,
- BlockWeightMap &SampleBlockWeights,
- BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights);
- uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
- void buildEdges(FunctionT &F);
- bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
- void clearFunctionData(bool ResetDT = true);
- void computeDominanceAndLoopInfo(FunctionT &F);
- bool
- computeAndPropagateWeights(FunctionT &F,
- const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
- void initWeightPropagation(FunctionT &F,
- const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
- void
- finalizeWeightPropagation(FunctionT &F,
- const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
- void emitCoverageRemarks(FunctionT &F);
- /// Map basic blocks to their computed weights.
- ///
- /// The weight of a basic block is defined to be the maximum
- /// of all the instruction weights in that block.
- BlockWeightMap BlockWeights;
- /// Map edges to their computed weights.
- ///
- /// Edge weights are computed by propagating basic block weights in
- /// SampleProfile::propagateWeights.
- EdgeWeightMap EdgeWeights;
- /// Set of visited blocks during propagation.
- SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks;
- /// Set of visited edges during propagation.
- SmallSet<Edge, 32> VisitedEdges;
- /// Equivalence classes for block weights.
- ///
- /// Two blocks BB1 and BB2 are in the same equivalence class if they
- /// dominate and post-dominate each other, and they are in the same loop
- /// nest. When this happens, the two blocks are guaranteed to execute
- /// the same number of times.
- EquivalenceClassMap EquivalenceClass;
- /// Dominance, post-dominance and loop information.
- DominatorTreePtrT DT;
- PostDominatorTreePtrT PDT;
- LoopInfoPtrT LI;
- /// Predecessors for each basic block in the CFG.
- BlockEdgeMap Predecessors;
- /// Successors for each basic block in the CFG.
- BlockEdgeMap Successors;
- /// Profile coverage tracker.
- SampleCoverageTracker CoverageTracker;
- /// Profile reader object.
- std::unique_ptr<SampleProfileReader> Reader;
- /// Samples collected for the body of this function.
- FunctionSamples *Samples = nullptr;
- /// Name of the profile file to load.
- std::string Filename;
- /// Name of the profile remapping file to load.
- std::string RemappingFilename;
- /// Profile Summary Info computed from sample profile.
- ProfileSummaryInfo *PSI = nullptr;
- /// Optimization Remark Emitter used to emit diagnostic remarks.
- OptRemarkEmitterT *ORE = nullptr;
- };
- /// Clear all the per-function data used to load samples and propagate weights.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) {
- BlockWeights.clear();
- EdgeWeights.clear();
- VisitedBlocks.clear();
- VisitedEdges.clear();
- EquivalenceClass.clear();
- if (ResetDT) {
- DT = nullptr;
- PDT = nullptr;
- LI = nullptr;
- }
- Predecessors.clear();
- Successors.clear();
- CoverageTracker.clear();
- }
- #ifndef NDEBUG
- /// Print the weight of edge \p E on stream \p OS.
- ///
- /// \param OS Stream to emit the output to.
- /// \param E Edge to print.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) {
- OS << "weight[" << E.first->getName() << "->" << E.second->getName()
- << "]: " << EdgeWeights[E] << "\n";
- }
- /// Print the equivalence class of block \p BB on stream \p OS.
- ///
- /// \param OS Stream to emit the output to.
- /// \param BB Block to print.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence(
- raw_ostream &OS, const BasicBlockT *BB) {
- const BasicBlockT *Equiv = EquivalenceClass[BB];
- OS << "equivalence[" << BB->getName()
- << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
- }
- /// Print the weight of block \p BB on stream \p OS.
- ///
- /// \param OS Stream to emit the output to.
- /// \param BB Block to print.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::printBlockWeight(
- raw_ostream &OS, const BasicBlockT *BB) const {
- const auto &I = BlockWeights.find(BB);
- uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
- OS << "weight[" << BB->getName() << "]: " << W << "\n";
- }
- #endif
- /// Get the weight for an instruction.
- ///
- /// The "weight" of an instruction \p Inst is the number of samples
- /// collected on that instruction at runtime. To retrieve it, we
- /// need to compute the line number of \p Inst relative to the start of its
- /// function. We use HeaderLineno to compute the offset. We then
- /// look up the samples collected for \p Inst using BodySamples.
- ///
- /// \param Inst Instruction to query.
- ///
- /// \returns the weight of \p Inst.
- template <typename BT>
- ErrorOr<uint64_t>
- SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) {
- return getInstWeightImpl(Inst);
- }
- template <typename BT>
- ErrorOr<uint64_t>
- SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) {
- const FunctionSamples *FS = findFunctionSamples(Inst);
- if (!FS)
- return std::error_code();
- const DebugLoc &DLoc = Inst.getDebugLoc();
- if (!DLoc)
- return std::error_code();
- const DILocation *DIL = DLoc;
- uint32_t LineOffset = FunctionSamples::getOffset(DIL);
- uint32_t Discriminator;
- if (EnableFSDiscriminator)
- Discriminator = DIL->getDiscriminator();
- else
- Discriminator = DIL->getBaseDiscriminator();
- ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
- if (R) {
- bool FirstMark =
- CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
- if (FirstMark) {
- ORE->emit([&]() {
- OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
- Remark << "Applied " << ore::NV("NumSamples", *R);
- Remark << " samples from profile (offset: ";
- Remark << ore::NV("LineOffset", LineOffset);
- if (Discriminator) {
- Remark << ".";
- Remark << ore::NV("Discriminator", Discriminator);
- }
- Remark << ")";
- return Remark;
- });
- }
- LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":"
- << Inst << " (line offset: " << LineOffset << "."
- << Discriminator << " - weight: " << R.get() << ")\n");
- }
- return R;
- }
- /// Compute the weight of a basic block.
- ///
- /// The weight of basic block \p BB is the maximum weight of all the
- /// instructions in BB.
- ///
- /// \param BB The basic block to query.
- ///
- /// \returns the weight for \p BB.
- template <typename BT>
- ErrorOr<uint64_t>
- SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) {
- uint64_t Max = 0;
- bool HasWeight = false;
- for (auto &I : *BB) {
- const ErrorOr<uint64_t> &R = getInstWeight(I);
- if (R) {
- Max = std::max(Max, R.get());
- HasWeight = true;
- }
- }
- return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
- }
- /// Compute and store the weights of every basic block.
- ///
- /// This populates the BlockWeights map by computing
- /// the weights of every basic block in the CFG.
- ///
- /// \param F The function to query.
- template <typename BT>
- bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) {
- bool Changed = false;
- LLVM_DEBUG(dbgs() << "Block weights\n");
- for (const auto &BB : F) {
- ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
- if (Weight) {
- BlockWeights[&BB] = Weight.get();
- VisitedBlocks.insert(&BB);
- Changed = true;
- }
- LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
- }
- return Changed;
- }
- /// Get the FunctionSamples for an instruction.
- ///
- /// The FunctionSamples of an instruction \p Inst is the inlined instance
- /// in which that instruction is coming from. We traverse the inline stack
- /// of that instruction, and match it with the tree nodes in the profile.
- ///
- /// \param Inst Instruction to query.
- ///
- /// \returns the FunctionSamples pointer to the inlined instance.
- template <typename BT>
- const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples(
- const InstructionT &Inst) const {
- const DILocation *DIL = Inst.getDebugLoc();
- if (!DIL)
- return Samples;
- auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
- if (it.second) {
- it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
- }
- return it.first->second;
- }
- /// Find equivalence classes for the given block.
- ///
- /// This finds all the blocks that are guaranteed to execute the same
- /// number of times as \p BB1. To do this, it traverses all the
- /// descendants of \p BB1 in the dominator or post-dominator tree.
- ///
- /// A block BB2 will be in the same equivalence class as \p BB1 if
- /// the following holds:
- ///
- /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
- /// is a descendant of \p BB1 in the dominator tree, then BB2 should
- /// dominate BB1 in the post-dominator tree.
- ///
- /// 2- Both BB2 and \p BB1 must be in the same loop.
- ///
- /// For every block BB2 that meets those two requirements, we set BB2's
- /// equivalence class to \p BB1.
- ///
- /// \param BB1 Block to check.
- /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
- /// \param DomTree Opposite dominator tree. If \p Descendants is filled
- /// with blocks from \p BB1's dominator tree, then
- /// this is the post-dominator tree, and vice versa.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor(
- BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
- PostDominatorTreeT *DomTree) {
- const BasicBlockT *EC = EquivalenceClass[BB1];
- uint64_t Weight = BlockWeights[EC];
- for (const auto *BB2 : Descendants) {
- bool IsDomParent = DomTree->dominates(BB2, BB1);
- bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
- if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
- EquivalenceClass[BB2] = EC;
- // If BB2 is visited, then the entire EC should be marked as visited.
- if (VisitedBlocks.count(BB2)) {
- VisitedBlocks.insert(EC);
- }
- // If BB2 is heavier than BB1, make BB2 have the same weight
- // as BB1.
- //
- // Note that we don't worry about the opposite situation here
- // (when BB2 is lighter than BB1). We will deal with this
- // during the propagation phase. Right now, we just want to
- // make sure that BB1 has the largest weight of all the
- // members of its equivalence set.
- Weight = std::max(Weight, BlockWeights[BB2]);
- }
- }
- const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
- if (EC == EntryBB) {
- BlockWeights[EC] = Samples->getHeadSamples() + 1;
- } else {
- BlockWeights[EC] = Weight;
- }
- }
- /// Find equivalence classes.
- ///
- /// Since samples may be missing from blocks, we can fill in the gaps by setting
- /// the weights of all the blocks in the same equivalence class to the same
- /// weight. To compute the concept of equivalence, we use dominance and loop
- /// information. Two blocks B1 and B2 are in the same equivalence class if B1
- /// dominates B2, B2 post-dominates B1 and both are in the same loop.
- ///
- /// \param F The function to query.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) {
- SmallVector<BasicBlockT *, 8> DominatedBBs;
- LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
- // Find equivalence sets based on dominance and post-dominance information.
- for (auto &BB : F) {
- BasicBlockT *BB1 = &BB;
- // Compute BB1's equivalence class once.
- if (EquivalenceClass.count(BB1)) {
- LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
- continue;
- }
- // By default, blocks are in their own equivalence class.
- EquivalenceClass[BB1] = BB1;
- // Traverse all the blocks dominated by BB1. We are looking for
- // every basic block BB2 such that:
- //
- // 1- BB1 dominates BB2.
- // 2- BB2 post-dominates BB1.
- // 3- BB1 and BB2 are in the same loop nest.
- //
- // If all those conditions hold, it means that BB2 is executed
- // as many times as BB1, so they are placed in the same equivalence
- // class by making BB2's equivalence class be BB1.
- DominatedBBs.clear();
- DT->getDescendants(BB1, DominatedBBs);
- findEquivalencesFor(BB1, DominatedBBs, &*PDT);
- LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
- }
- // Assign weights to equivalence classes.
- //
- // All the basic blocks in the same equivalence class will execute
- // the same number of times. Since we know that the head block in
- // each equivalence class has the largest weight, assign that weight
- // to all the blocks in that equivalence class.
- LLVM_DEBUG(
- dbgs() << "\nAssign the same weight to all blocks in the same class\n");
- for (auto &BI : F) {
- const BasicBlockT *BB = &BI;
- const BasicBlockT *EquivBB = EquivalenceClass[BB];
- if (BB != EquivBB)
- BlockWeights[BB] = BlockWeights[EquivBB];
- LLVM_DEBUG(printBlockWeight(dbgs(), BB));
- }
- }
- /// Visit the given edge to decide if it has a valid weight.
- ///
- /// If \p E has not been visited before, we copy to \p UnknownEdge
- /// and increment the count of unknown edges.
- ///
- /// \param E Edge to visit.
- /// \param NumUnknownEdges Current number of unknown edges.
- /// \param UnknownEdge Set if E has not been visited before.
- ///
- /// \returns E's weight, if known. Otherwise, return 0.
- template <typename BT>
- uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E,
- unsigned *NumUnknownEdges,
- Edge *UnknownEdge) {
- if (!VisitedEdges.count(E)) {
- (*NumUnknownEdges)++;
- *UnknownEdge = E;
- return 0;
- }
- return EdgeWeights[E];
- }
- /// Propagate weights through incoming/outgoing edges.
- ///
- /// If the weight of a basic block is known, and there is only one edge
- /// with an unknown weight, we can calculate the weight of that edge.
- ///
- /// Similarly, if all the edges have a known count, we can calculate the
- /// count of the basic block, if needed.
- ///
- /// \param F Function to process.
- /// \param UpdateBlockCount Whether we should update basic block counts that
- /// has already been annotated.
- ///
- /// \returns True if new weights were assigned to edges or blocks.
- template <typename BT>
- bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges(
- FunctionT &F, bool UpdateBlockCount) {
- bool Changed = false;
- LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
- for (const auto &BI : F) {
- const BasicBlockT *BB = &BI;
- const BasicBlockT *EC = EquivalenceClass[BB];
- // Visit all the predecessor and successor edges to determine
- // which ones have a weight assigned already. Note that it doesn't
- // matter that we only keep track of a single unknown edge. The
- // only case we are interested in handling is when only a single
- // edge is unknown (see setEdgeOrBlockWeight).
- for (unsigned i = 0; i < 2; i++) {
- uint64_t TotalWeight = 0;
- unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
- Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
- if (i == 0) {
- // First, visit all predecessor edges.
- NumTotalEdges = Predecessors[BB].size();
- for (auto *Pred : Predecessors[BB]) {
- Edge E = std::make_pair(Pred, BB);
- TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
- if (E.first == E.second)
- SelfReferentialEdge = E;
- }
- if (NumTotalEdges == 1) {
- SingleEdge = std::make_pair(Predecessors[BB][0], BB);
- }
- } else {
- // On the second round, visit all successor edges.
- NumTotalEdges = Successors[BB].size();
- for (auto *Succ : Successors[BB]) {
- Edge E = std::make_pair(BB, Succ);
- TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
- }
- if (NumTotalEdges == 1) {
- SingleEdge = std::make_pair(BB, Successors[BB][0]);
- }
- }
- // After visiting all the edges, there are three cases that we
- // can handle immediately:
- //
- // - All the edge weights are known (i.e., NumUnknownEdges == 0).
- // In this case, we simply check that the sum of all the edges
- // is the same as BB's weight. If not, we change BB's weight
- // to match. Additionally, if BB had not been visited before,
- // we mark it visited.
- //
- // - Only one edge is unknown and BB has already been visited.
- // In this case, we can compute the weight of the edge by
- // subtracting the total block weight from all the known
- // edge weights. If the edges weight more than BB, then the
- // edge of the last remaining edge is set to zero.
- //
- // - There exists a self-referential edge and the weight of BB is
- // known. In this case, this edge can be based on BB's weight.
- // We add up all the other known edges and set the weight on
- // the self-referential edge as we did in the previous case.
- //
- // In any other case, we must continue iterating. Eventually,
- // all edges will get a weight, or iteration will stop when
- // it reaches SampleProfileMaxPropagateIterations.
- if (NumUnknownEdges <= 1) {
- uint64_t &BBWeight = BlockWeights[EC];
- if (NumUnknownEdges == 0) {
- if (!VisitedBlocks.count(EC)) {
- // If we already know the weight of all edges, the weight of the
- // basic block can be computed. It should be no larger than the sum
- // of all edge weights.
- if (TotalWeight > BBWeight) {
- BBWeight = TotalWeight;
- Changed = true;
- LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
- << " known. Set weight for block: ";
- printBlockWeight(dbgs(), BB););
- }
- } else if (NumTotalEdges == 1 &&
- EdgeWeights[SingleEdge] < BlockWeights[EC]) {
- // If there is only one edge for the visited basic block, use the
- // block weight to adjust edge weight if edge weight is smaller.
- EdgeWeights[SingleEdge] = BlockWeights[EC];
- Changed = true;
- }
- } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
- // If there is a single unknown edge and the block has been
- // visited, then we can compute E's weight.
- if (BBWeight >= TotalWeight)
- EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
- else
- EdgeWeights[UnknownEdge] = 0;
- const BasicBlockT *OtherEC;
- if (i == 0)
- OtherEC = EquivalenceClass[UnknownEdge.first];
- else
- OtherEC = EquivalenceClass[UnknownEdge.second];
- // Edge weights should never exceed the BB weights it connects.
- if (VisitedBlocks.count(OtherEC) &&
- EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
- EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
- VisitedEdges.insert(UnknownEdge);
- Changed = true;
- LLVM_DEBUG(dbgs() << "Set weight for edge: ";
- printEdgeWeight(dbgs(), UnknownEdge));
- }
- } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
- // If a block Weights 0, all its in/out edges should weight 0.
- if (i == 0) {
- for (auto *Pred : Predecessors[BB]) {
- Edge E = std::make_pair(Pred, BB);
- EdgeWeights[E] = 0;
- VisitedEdges.insert(E);
- }
- } else {
- for (auto *Succ : Successors[BB]) {
- Edge E = std::make_pair(BB, Succ);
- EdgeWeights[E] = 0;
- VisitedEdges.insert(E);
- }
- }
- } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
- uint64_t &BBWeight = BlockWeights[BB];
- // We have a self-referential edge and the weight of BB is known.
- if (BBWeight >= TotalWeight)
- EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
- else
- EdgeWeights[SelfReferentialEdge] = 0;
- VisitedEdges.insert(SelfReferentialEdge);
- Changed = true;
- LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
- printEdgeWeight(dbgs(), SelfReferentialEdge));
- }
- if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
- BlockWeights[EC] = TotalWeight;
- VisitedBlocks.insert(EC);
- Changed = true;
- }
- }
- }
- return Changed;
- }
- /// Build in/out edge lists for each basic block in the CFG.
- ///
- /// We are interested in unique edges. If a block B1 has multiple
- /// edges to another block B2, we only add a single B1->B2 edge.
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) {
- for (auto &BI : F) {
- BasicBlockT *B1 = &BI;
- // Add predecessors for B1.
- SmallPtrSet<BasicBlockT *, 16> Visited;
- if (!Predecessors[B1].empty())
- llvm_unreachable("Found a stale predecessors list in a basic block.");
- for (auto *B2 : getPredecessors(B1))
- if (Visited.insert(B2).second)
- Predecessors[B1].push_back(B2);
- // Add successors for B1.
- Visited.clear();
- if (!Successors[B1].empty())
- llvm_unreachable("Found a stale successors list in a basic block.");
- for (auto *B2 : getSuccessors(B1))
- if (Visited.insert(B2).second)
- Successors[B1].push_back(B2);
- }
- }
- /// Propagate weights into edges
- ///
- /// The following rules are applied to every block BB in the CFG:
- ///
- /// - If BB has a single predecessor/successor, then the weight
- /// of that edge is the weight of the block.
- ///
- /// - If all incoming or outgoing edges are known except one, and the
- /// weight of the block is already known, the weight of the unknown
- /// edge will be the weight of the block minus the sum of all the known
- /// edges. If the sum of all the known edges is larger than BB's weight,
- /// we set the unknown edge weight to zero.
- ///
- /// - If there is a self-referential edge, and the weight of the block is
- /// known, the weight for that edge is set to the weight of the block
- /// minus the weight of the other incoming edges to that block (if
- /// known).
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) {
- // Flow-based profile inference is only usable with BasicBlock instantiation
- // of SampleProfileLoaderBaseImpl.
- if (SampleProfileUseProfi) {
- // Prepare block sample counts for inference.
- BlockWeightMap SampleBlockWeights;
- for (const auto &BI : F) {
- ErrorOr<uint64_t> Weight = getBlockWeight(&BI);
- if (Weight)
- SampleBlockWeights[&BI] = Weight.get();
- }
- // Fill in BlockWeights and EdgeWeights using an inference algorithm.
- applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights);
- } else {
- bool Changed = true;
- unsigned I = 0;
- // If BB weight is larger than its corresponding loop's header BB weight,
- // use the BB weight to replace the loop header BB weight.
- for (auto &BI : F) {
- BasicBlockT *BB = &BI;
- LoopT *L = LI->getLoopFor(BB);
- if (!L) {
- continue;
- }
- BasicBlockT *Header = L->getHeader();
- if (Header && BlockWeights[BB] > BlockWeights[Header]) {
- BlockWeights[Header] = BlockWeights[BB];
- }
- }
- // Propagate until we converge or we go past the iteration limit.
- while (Changed && I++ < SampleProfileMaxPropagateIterations) {
- Changed = propagateThroughEdges(F, false);
- }
- // The first propagation propagates BB counts from annotated BBs to unknown
- // BBs. The 2nd propagation pass resets edges weights, and use all BB
- // weights to propagate edge weights.
- VisitedEdges.clear();
- Changed = true;
- while (Changed && I++ < SampleProfileMaxPropagateIterations) {
- Changed = propagateThroughEdges(F, false);
- }
- // The 3rd propagation pass allows adjust annotated BB weights that are
- // obviously wrong.
- Changed = true;
- while (Changed && I++ < SampleProfileMaxPropagateIterations) {
- Changed = propagateThroughEdges(F, true);
- }
- }
- }
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::applyProfi(
- FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights,
- BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) {
- auto Infer = SampleProfileInference<BT>(F, Successors, SampleBlockWeights);
- Infer.apply(BlockWeights, EdgeWeights);
- }
- /// Generate branch weight metadata for all branches in \p F.
- ///
- /// Branch weights are computed out of instruction samples using a
- /// propagation heuristic. Propagation proceeds in 3 phases:
- ///
- /// 1- Assignment of block weights. All the basic blocks in the function
- /// are initial assigned the same weight as their most frequently
- /// executed instruction.
- ///
- /// 2- Creation of equivalence classes. Since samples may be missing from
- /// blocks, we can fill in the gaps by setting the weights of all the
- /// blocks in the same equivalence class to the same weight. To compute
- /// the concept of equivalence, we use dominance and loop information.
- /// Two blocks B1 and B2 are in the same equivalence class if B1
- /// dominates B2, B2 post-dominates B1 and both are in the same loop.
- ///
- /// 3- Propagation of block weights into edges. This uses a simple
- /// propagation heuristic. The following rules are applied to every
- /// block BB in the CFG:
- ///
- /// - If BB has a single predecessor/successor, then the weight
- /// of that edge is the weight of the block.
- ///
- /// - If all the edges are known except one, and the weight of the
- /// block is already known, the weight of the unknown edge will
- /// be the weight of the block minus the sum of all the known
- /// edges. If the sum of all the known edges is larger than BB's weight,
- /// we set the unknown edge weight to zero.
- ///
- /// - If there is a self-referential edge, and the weight of the block is
- /// known, the weight for that edge is set to the weight of the block
- /// minus the weight of the other incoming edges to that block (if
- /// known).
- ///
- /// Since this propagation is not guaranteed to finalize for every CFG, we
- /// only allow it to proceed for a limited number of iterations (controlled
- /// by -sample-profile-max-propagate-iterations).
- ///
- /// FIXME: Try to replace this propagation heuristic with a scheme
- /// that is guaranteed to finalize. A work-list approach similar to
- /// the standard value propagation algorithm used by SSA-CCP might
- /// work here.
- ///
- /// \param F The function to query.
- ///
- /// \returns true if \p F was modified. Returns false, otherwise.
- template <typename BT>
- bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights(
- FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
- bool Changed = (InlinedGUIDs.size() != 0);
- // Compute basic block weights.
- Changed |= computeBlockWeights(F);
- if (Changed) {
- // Initialize propagation.
- initWeightPropagation(F, InlinedGUIDs);
- // Propagate weights to all edges.
- propagateWeights(F);
- // Post-process propagated weights.
- finalizeWeightPropagation(F, InlinedGUIDs);
- }
- return Changed;
- }
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation(
- FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
- // Add an entry count to the function using the samples gathered at the
- // function entry.
- // Sets the GUIDs that are inlined in the profiled binary. This is used
- // for ThinLink to make correct liveness analysis, and also make the IR
- // match the profiled binary before annotation.
- getFunction(F).setEntryCount(
- ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
- &InlinedGUIDs);
- if (!SampleProfileUseProfi) {
- // Compute dominance and loop info needed for propagation.
- computeDominanceAndLoopInfo(F);
- // Find equivalence classes.
- findEquivalenceClasses(F);
- }
- // Before propagation starts, build, for each block, a list of
- // unique predecessors and successors. This is necessary to handle
- // identical edges in multiway branches. Since we visit all blocks and all
- // edges of the CFG, it is cleaner to build these lists once at the start
- // of the pass.
- buildEdges(F);
- }
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation(
- FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
- // If we utilize a flow-based count inference, then we trust the computed
- // counts and set the entry count as computed by the algorithm. This is
- // primarily done to sync the counts produced by profi and BFI inference,
- // which uses the entry count for mass propagation.
- // If profi produces a zero-value for the entry count, we fallback to
- // Samples->getHeadSamples() + 1 to avoid functions with zero count.
- if (SampleProfileUseProfi) {
- const BasicBlockT *EntryBB = getEntryBB(&F);
- ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB);
- if (BlockWeights[EntryBB] > 0) {
- getFunction(F).setEntryCount(
- ProfileCount(BlockWeights[EntryBB], Function::PCT_Real),
- &InlinedGUIDs);
- }
- }
- }
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) {
- // If coverage checking was requested, compute it now.
- const Function &Func = getFunction(F);
- if (SampleProfileRecordCoverage) {
- unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
- unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
- unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
- if (Coverage < SampleProfileRecordCoverage) {
- Func.getContext().diagnose(DiagnosticInfoSampleProfile(
- Func.getSubprogram()->getFilename(), getFunctionLoc(F),
- Twine(Used) + " of " + Twine(Total) + " available profile records (" +
- Twine(Coverage) + "%) were applied",
- DS_Warning));
- }
- }
- if (SampleProfileSampleCoverage) {
- uint64_t Used = CoverageTracker.getTotalUsedSamples();
- uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
- unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
- if (Coverage < SampleProfileSampleCoverage) {
- Func.getContext().diagnose(DiagnosticInfoSampleProfile(
- Func.getSubprogram()->getFilename(), getFunctionLoc(F),
- Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
- Twine(Coverage) + "%) were applied",
- DS_Warning));
- }
- }
- }
- /// Get the line number for the function header.
- ///
- /// This looks up function \p F in the current compilation unit and
- /// retrieves the line number where the function is defined. This is
- /// line 0 for all the samples read from the profile file. Every line
- /// number is relative to this line.
- ///
- /// \param F Function object to query.
- ///
- /// \returns the line number where \p F is defined. If it returns 0,
- /// it means that there is no debug information available for \p F.
- template <typename BT>
- unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) {
- const Function &Func = getFunction(F);
- if (DISubprogram *S = Func.getSubprogram())
- return S->getLine();
- if (NoWarnSampleUnused)
- return 0;
- // If the start of \p F is missing, emit a diagnostic to inform the user
- // about the missed opportunity.
- Func.getContext().diagnose(DiagnosticInfoSampleProfile(
- "No debug information found in function " + Func.getName() +
- ": Function profile not used",
- DS_Warning));
- return 0;
- }
- template <typename BT>
- void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo(
- FunctionT &F) {
- DT.reset(new DominatorTree);
- DT->recalculate(F);
- PDT.reset(new PostDominatorTree(F));
- LI.reset(new LoopInfo);
- LI->analyze(*DT);
- }
- #undef DEBUG_TYPE
- } // namespace llvm
- #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|