123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- SSAUpdaterImpl.h - SSA Updater Implementation ------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides a template that implements the core algorithm for the
- // SSAUpdater and MachineSSAUpdater.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
- #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #define DEBUG_TYPE "ssaupdater"
- namespace llvm {
- template<typename T> class SSAUpdaterTraits;
- template<typename UpdaterT>
- class SSAUpdaterImpl {
- private:
- UpdaterT *Updater;
- using Traits = SSAUpdaterTraits<UpdaterT>;
- using BlkT = typename Traits::BlkT;
- using ValT = typename Traits::ValT;
- using PhiT = typename Traits::PhiT;
- /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
- /// The predecessors of each block are cached here since pred_iterator is
- /// slow and we need to iterate over the blocks at least a few times.
- class BBInfo {
- public:
- // Back-pointer to the corresponding block.
- BlkT *BB;
- // Value to use in this block.
- ValT AvailableVal;
- // Block that defines the available value.
- BBInfo *DefBB;
- // Postorder number.
- int BlkNum = 0;
- // Immediate dominator.
- BBInfo *IDom = nullptr;
- // Number of predecessor blocks.
- unsigned NumPreds = 0;
- // Array[NumPreds] of predecessor blocks.
- BBInfo **Preds = nullptr;
- // Marker for existing PHIs that match.
- PhiT *PHITag = nullptr;
- BBInfo(BlkT *ThisBB, ValT V)
- : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr) {}
- };
- using AvailableValsTy = DenseMap<BlkT *, ValT>;
- AvailableValsTy *AvailableVals;
- SmallVectorImpl<PhiT *> *InsertedPHIs;
- using BlockListTy = SmallVectorImpl<BBInfo *>;
- using BBMapTy = DenseMap<BlkT *, BBInfo *>;
- BBMapTy BBMap;
- BumpPtrAllocator Allocator;
- public:
- explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
- SmallVectorImpl<PhiT *> *Ins) :
- Updater(U), AvailableVals(A), InsertedPHIs(Ins) {}
- /// GetValue - Check to see if AvailableVals has an entry for the specified
- /// BB and if so, return it. If not, construct SSA form by first
- /// calculating the required placement of PHIs and then inserting new PHIs
- /// where needed.
- ValT GetValue(BlkT *BB) {
- SmallVector<BBInfo *, 100> BlockList;
- BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
- // Special case: bail out if BB is unreachable.
- if (BlockList.size() == 0) {
- ValT V = Traits::GetUndefVal(BB, Updater);
- (*AvailableVals)[BB] = V;
- return V;
- }
- FindDominators(&BlockList, PseudoEntry);
- FindPHIPlacement(&BlockList);
- FindAvailableVals(&BlockList);
- return BBMap[BB]->DefBB->AvailableVal;
- }
- /// BuildBlockList - Starting from the specified basic block, traverse back
- /// through its predecessors until reaching blocks with known values.
- /// Create BBInfo structures for the blocks and append them to the block
- /// list.
- BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
- SmallVector<BBInfo *, 10> RootList;
- SmallVector<BBInfo *, 64> WorkList;
- BBInfo *Info = new (Allocator) BBInfo(BB, 0);
- BBMap[BB] = Info;
- WorkList.push_back(Info);
- // Search backward from BB, creating BBInfos along the way and stopping
- // when reaching blocks that define the value. Record those defining
- // blocks on the RootList.
- SmallVector<BlkT *, 10> Preds;
- while (!WorkList.empty()) {
- Info = WorkList.pop_back_val();
- Preds.clear();
- Traits::FindPredecessorBlocks(Info->BB, &Preds);
- Info->NumPreds = Preds.size();
- if (Info->NumPreds == 0)
- Info->Preds = nullptr;
- else
- Info->Preds = static_cast<BBInfo **>(Allocator.Allocate(
- Info->NumPreds * sizeof(BBInfo *), alignof(BBInfo *)));
- for (unsigned p = 0; p != Info->NumPreds; ++p) {
- BlkT *Pred = Preds[p];
- // Check if BBMap already has a BBInfo for the predecessor block.
- typename BBMapTy::value_type &BBMapBucket =
- BBMap.FindAndConstruct(Pred);
- if (BBMapBucket.second) {
- Info->Preds[p] = BBMapBucket.second;
- continue;
- }
- // Create a new BBInfo for the predecessor.
- ValT PredVal = AvailableVals->lookup(Pred);
- BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
- BBMapBucket.second = PredInfo;
- Info->Preds[p] = PredInfo;
- if (PredInfo->AvailableVal) {
- RootList.push_back(PredInfo);
- continue;
- }
- WorkList.push_back(PredInfo);
- }
- }
- // Now that we know what blocks are backwards-reachable from the starting
- // block, do a forward depth-first traversal to assign postorder numbers
- // to those blocks.
- BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
- unsigned BlkNum = 1;
- // Initialize the worklist with the roots from the backward traversal.
- while (!RootList.empty()) {
- Info = RootList.pop_back_val();
- Info->IDom = PseudoEntry;
- Info->BlkNum = -1;
- WorkList.push_back(Info);
- }
- while (!WorkList.empty()) {
- Info = WorkList.back();
- if (Info->BlkNum == -2) {
- // All the successors have been handled; assign the postorder number.
- Info->BlkNum = BlkNum++;
- // If not a root, put it on the BlockList.
- if (!Info->AvailableVal)
- BlockList->push_back(Info);
- WorkList.pop_back();
- continue;
- }
- // Leave this entry on the worklist, but set its BlkNum to mark that its
- // successors have been put on the worklist. When it returns to the top
- // the list, after handling its successors, it will be assigned a
- // number.
- Info->BlkNum = -2;
- // Add unvisited successors to the work list.
- for (typename Traits::BlkSucc_iterator SI =
- Traits::BlkSucc_begin(Info->BB),
- E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
- BBInfo *SuccInfo = BBMap[*SI];
- if (!SuccInfo || SuccInfo->BlkNum)
- continue;
- SuccInfo->BlkNum = -1;
- WorkList.push_back(SuccInfo);
- }
- }
- PseudoEntry->BlkNum = BlkNum;
- return PseudoEntry;
- }
- /// IntersectDominators - This is the dataflow lattice "meet" operation for
- /// finding dominators. Given two basic blocks, it walks up the dominator
- /// tree until it finds a common dominator of both. It uses the postorder
- /// number of the blocks to determine how to do that.
- BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
- while (Blk1 != Blk2) {
- while (Blk1->BlkNum < Blk2->BlkNum) {
- Blk1 = Blk1->IDom;
- if (!Blk1)
- return Blk2;
- }
- while (Blk2->BlkNum < Blk1->BlkNum) {
- Blk2 = Blk2->IDom;
- if (!Blk2)
- return Blk1;
- }
- }
- return Blk1;
- }
- /// FindDominators - Calculate the dominator tree for the subset of the CFG
- /// corresponding to the basic blocks on the BlockList. This uses the
- /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
- /// and Kennedy, published in Software--Practice and Experience, 2001,
- /// 4:1-10. Because the CFG subset does not include any edges leading into
- /// blocks that define the value, the results are not the usual dominator
- /// tree. The CFG subset has a single pseudo-entry node with edges to a set
- /// of root nodes for blocks that define the value. The dominators for this
- /// subset CFG are not the standard dominators but they are adequate for
- /// placing PHIs within the subset CFG.
- void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
- bool Changed;
- do {
- Changed = false;
- // Iterate over the list in reverse order, i.e., forward on CFG edges.
- for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
- E = BlockList->rend(); I != E; ++I) {
- BBInfo *Info = *I;
- BBInfo *NewIDom = nullptr;
- // Iterate through the block's predecessors.
- for (unsigned p = 0; p != Info->NumPreds; ++p) {
- BBInfo *Pred = Info->Preds[p];
- // Treat an unreachable predecessor as a definition with 'undef'.
- if (Pred->BlkNum == 0) {
- Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
- (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
- Pred->DefBB = Pred;
- Pred->BlkNum = PseudoEntry->BlkNum;
- PseudoEntry->BlkNum++;
- }
- if (!NewIDom)
- NewIDom = Pred;
- else
- NewIDom = IntersectDominators(NewIDom, Pred);
- }
- // Check if the IDom value has changed.
- if (NewIDom && NewIDom != Info->IDom) {
- Info->IDom = NewIDom;
- Changed = true;
- }
- }
- } while (Changed);
- }
- /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
- /// any blocks containing definitions of the value. If one is found, then
- /// the successor of Pred is in the dominance frontier for the definition,
- /// and this function returns true.
- bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
- for (; Pred != IDom; Pred = Pred->IDom) {
- if (Pred->DefBB == Pred)
- return true;
- }
- return false;
- }
- /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
- /// of the known definitions. Iteratively add PHIs in the dom frontiers
- /// until nothing changes. Along the way, keep track of the nearest
- /// dominating definitions for non-PHI blocks.
- void FindPHIPlacement(BlockListTy *BlockList) {
- bool Changed;
- do {
- Changed = false;
- // Iterate over the list in reverse order, i.e., forward on CFG edges.
- for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
- E = BlockList->rend(); I != E; ++I) {
- BBInfo *Info = *I;
- // If this block already needs a PHI, there is nothing to do here.
- if (Info->DefBB == Info)
- continue;
- // Default to use the same def as the immediate dominator.
- BBInfo *NewDefBB = Info->IDom->DefBB;
- for (unsigned p = 0; p != Info->NumPreds; ++p) {
- if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
- // Need a PHI here.
- NewDefBB = Info;
- break;
- }
- }
- // Check if anything changed.
- if (NewDefBB != Info->DefBB) {
- Info->DefBB = NewDefBB;
- Changed = true;
- }
- }
- } while (Changed);
- }
- /// Check all predecessors and if all of them have the same AvailableVal use
- /// it as value for block represented by Info. Return true if singluar value
- /// is found.
- bool FindSingularVal(BBInfo *Info) {
- if (!Info->NumPreds)
- return false;
- ValT Singular = Info->Preds[0]->DefBB->AvailableVal;
- if (!Singular)
- return false;
- for (unsigned Idx = 1; Idx < Info->NumPreds; ++Idx) {
- ValT PredVal = Info->Preds[Idx]->DefBB->AvailableVal;
- if (!PredVal || Singular != PredVal)
- return false;
- }
- // Record Singular value.
- (*AvailableVals)[Info->BB] = Singular;
- assert(BBMap[Info->BB] == Info && "Info missed in BBMap?");
- Info->AvailableVal = Singular;
- Info->DefBB = Info->Preds[0]->DefBB;
- return true;
- }
- /// FindAvailableVal - If this block requires a PHI, first check if an
- /// existing PHI matches the PHI placement and reaching definitions computed
- /// earlier, and if not, create a new PHI. Visit all the block's
- /// predecessors to calculate the available value for each one and fill in
- /// the incoming values for a new PHI.
- void FindAvailableVals(BlockListTy *BlockList) {
- // Go through the worklist in forward order (i.e., backward through the CFG)
- // and check if existing PHIs can be used. If not, create empty PHIs where
- // they are needed.
- for (typename BlockListTy::iterator I = BlockList->begin(),
- E = BlockList->end(); I != E; ++I) {
- BBInfo *Info = *I;
- // Check if there needs to be a PHI in BB.
- if (Info->DefBB != Info)
- continue;
- // Look for singular value.
- if (FindSingularVal(Info))
- continue;
- // Look for an existing PHI.
- FindExistingPHI(Info->BB, BlockList);
- if (Info->AvailableVal)
- continue;
- ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
- Info->AvailableVal = PHI;
- (*AvailableVals)[Info->BB] = PHI;
- }
- // Now go back through the worklist in reverse order to fill in the
- // arguments for any new PHIs added in the forward traversal.
- for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
- E = BlockList->rend(); I != E; ++I) {
- BBInfo *Info = *I;
- if (Info->DefBB != Info) {
- // Record the available value to speed up subsequent uses of this
- // SSAUpdater for the same value.
- (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
- continue;
- }
- // Check if this block contains a newly added PHI.
- PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
- if (!PHI)
- continue;
- // Iterate through the block's predecessors.
- for (unsigned p = 0; p != Info->NumPreds; ++p) {
- BBInfo *PredInfo = Info->Preds[p];
- BlkT *Pred = PredInfo->BB;
- // Skip to the nearest preceding definition.
- if (PredInfo->DefBB != PredInfo)
- PredInfo = PredInfo->DefBB;
- Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
- }
- LLVM_DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
- // If the client wants to know about all new instructions, tell it.
- if (InsertedPHIs) InsertedPHIs->push_back(PHI);
- }
- }
- /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
- /// them match what is needed.
- void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
- for (auto &SomePHI : BB->phis()) {
- if (CheckIfPHIMatches(&SomePHI)) {
- RecordMatchingPHIs(BlockList);
- break;
- }
- // Match failed: clear all the PHITag values.
- for (typename BlockListTy::iterator I = BlockList->begin(),
- E = BlockList->end(); I != E; ++I)
- (*I)->PHITag = nullptr;
- }
- }
- /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
- /// in the BBMap.
- bool CheckIfPHIMatches(PhiT *PHI) {
- SmallVector<PhiT *, 20> WorkList;
- WorkList.push_back(PHI);
- // Mark that the block containing this PHI has been visited.
- BBMap[PHI->getParent()]->PHITag = PHI;
- while (!WorkList.empty()) {
- PHI = WorkList.pop_back_val();
- // Iterate through the PHI's incoming values.
- for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
- E = Traits::PHI_end(PHI); I != E; ++I) {
- ValT IncomingVal = I.getIncomingValue();
- BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
- // Skip to the nearest preceding definition.
- if (PredInfo->DefBB != PredInfo)
- PredInfo = PredInfo->DefBB;
- // Check if it matches the expected value.
- if (PredInfo->AvailableVal) {
- if (IncomingVal == PredInfo->AvailableVal)
- continue;
- return false;
- }
- // Check if the value is a PHI in the correct block.
- PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
- if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
- return false;
- // If this block has already been visited, check if this PHI matches.
- if (PredInfo->PHITag) {
- if (IncomingPHIVal == PredInfo->PHITag)
- continue;
- return false;
- }
- PredInfo->PHITag = IncomingPHIVal;
- WorkList.push_back(IncomingPHIVal);
- }
- }
- return true;
- }
- /// RecordMatchingPHIs - For each PHI node that matches, record it in both
- /// the BBMap and the AvailableVals mapping.
- void RecordMatchingPHIs(BlockListTy *BlockList) {
- for (typename BlockListTy::iterator I = BlockList->begin(),
- E = BlockList->end(); I != E; ++I)
- if (PhiT *PHI = (*I)->PHITag) {
- BlkT *BB = PHI->getParent();
- ValT PHIVal = Traits::GetPHIValue(PHI);
- (*AvailableVals)[BB] = PHIVal;
- BBMap[BB]->AvailableVal = PHIVal;
- }
- }
- };
- } // end namespace llvm
- #undef DEBUG_TYPE // "ssaupdater"
- #endif // LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|