123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- ModuloSchedule.h - Software pipeline schedule expansion ------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Software pipelining (SWP) is an instruction scheduling technique for loops
- // that overlaps loop iterations and exploits ILP via compiler transformations.
- //
- // There are multiple methods for analyzing a loop and creating a schedule.
- // An example algorithm is Swing Modulo Scheduling (implemented by the
- // MachinePipeliner). The details of how a schedule is arrived at are irrelevant
- // for the task of actually rewriting a loop to adhere to the schedule, which
- // is what this file does.
- //
- // A schedule is, for every instruction in a block, a Cycle and a Stage. Note
- // that we only support single-block loops, so "block" and "loop" can be used
- // interchangably.
- //
- // The Cycle of an instruction defines a partial order of the instructions in
- // the remapped loop. Instructions within a cycle must not consume the output
- // of any instruction in the same cycle. Cycle information is assumed to have
- // been calculated such that the processor will execute instructions in
- // lock-step (for example in a VLIW ISA).
- //
- // The Stage of an instruction defines the mapping between logical loop
- // iterations and pipelined loop iterations. An example (unrolled) pipeline
- // may look something like:
- //
- // I0[0] Execute instruction I0 of iteration 0
- // I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1
- // I1[1], I0[2]
- // I1[2], I0[3]
- //
- // In the schedule for this unrolled sequence we would say that I0 was scheduled
- // in stage 0 and I1 in stage 1:
- //
- // loop:
- // [stage 0] x = I0
- // [stage 1] I1 x (from stage 0)
- //
- // And to actually generate valid code we must insert a phi:
- //
- // loop:
- // x' = phi(x)
- // x = I0
- // I1 x'
- //
- // This is a simple example; the rules for how to generate correct code given
- // an arbitrary schedule containing loop-carried values are complex.
- //
- // Note that these examples only mention the steady-state kernel of the
- // generated loop; prologs and epilogs must be generated also that prime and
- // flush the pipeline. Doing so is nontrivial.
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_CODEGEN_MODULOSCHEDULE_H
- #define LLVM_CODEGEN_MODULOSCHEDULE_H
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineLoopUtils.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include <deque>
- #include <vector>
- namespace llvm {
- class MachineBasicBlock;
- class MachineLoop;
- class MachineRegisterInfo;
- class MachineInstr;
- class LiveIntervals;
- /// Represents a schedule for a single-block loop. For every instruction we
- /// maintain a Cycle and Stage.
- class ModuloSchedule {
- private:
- /// The block containing the loop instructions.
- MachineLoop *Loop;
- /// The instructions to be generated, in total order. Cycle provides a partial
- /// order; the total order within cycles has been decided by the schedule
- /// producer.
- std::vector<MachineInstr *> ScheduledInstrs;
- /// The cycle for each instruction.
- DenseMap<MachineInstr *, int> Cycle;
- /// The stage for each instruction.
- DenseMap<MachineInstr *, int> Stage;
- /// The number of stages in this schedule (Max(Stage) + 1).
- int NumStages;
- public:
- /// Create a new ModuloSchedule.
- /// \arg ScheduledInstrs The new loop instructions, in total resequenced
- /// order.
- /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does
- /// not need to start at zero. ScheduledInstrs must be partially ordered by
- /// Cycle.
- /// \arg Stage Stage index for all instructions in ScheduleInstrs.
- ModuloSchedule(MachineFunction &MF, MachineLoop *Loop,
- std::vector<MachineInstr *> ScheduledInstrs,
- DenseMap<MachineInstr *, int> Cycle,
- DenseMap<MachineInstr *, int> Stage)
- : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)),
- Stage(std::move(Stage)) {
- NumStages = 0;
- for (auto &KV : this->Stage)
- NumStages = std::max(NumStages, KV.second);
- ++NumStages;
- }
- /// Return the single-block loop being scheduled.
- MachineLoop *getLoop() const { return Loop; }
- /// Return the number of stages contained in this schedule, which is the
- /// largest stage index + 1.
- int getNumStages() const { return NumStages; }
- /// Return the first cycle in the schedule, which is the cycle index of the
- /// first instruction.
- int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; }
- /// Return the final cycle in the schedule, which is the cycle index of the
- /// last instruction.
- int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; }
- /// Return the stage that MI is scheduled in, or -1.
- int getStage(MachineInstr *MI) {
- auto I = Stage.find(MI);
- return I == Stage.end() ? -1 : I->second;
- }
- /// Return the cycle that MI is scheduled at, or -1.
- int getCycle(MachineInstr *MI) {
- auto I = Cycle.find(MI);
- return I == Cycle.end() ? -1 : I->second;
- }
- /// Set the stage of a newly created instruction.
- void setStage(MachineInstr *MI, int MIStage) {
- assert(Stage.count(MI) == 0);
- Stage[MI] = MIStage;
- }
- /// Return the rescheduled instructions in order.
- ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; }
- void dump() { print(dbgs()); }
- void print(raw_ostream &OS);
- };
- /// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place,
- /// rewriting the old loop and inserting prologs and epilogs as required.
- class ModuloScheduleExpander {
- public:
- using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>;
- private:
- using ValueMapTy = DenseMap<unsigned, unsigned>;
- using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
- using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
- ModuloSchedule &Schedule;
- MachineFunction &MF;
- const TargetSubtargetInfo &ST;
- MachineRegisterInfo &MRI;
- const TargetInstrInfo *TII;
- LiveIntervals &LIS;
- MachineBasicBlock *BB;
- MachineBasicBlock *Preheader;
- MachineBasicBlock *NewKernel = nullptr;
- std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
- /// Map for each register and the max difference between its uses and def.
- /// The first element in the pair is the max difference in stages. The
- /// second is true if the register defines a Phi value and loop value is
- /// scheduled before the Phi.
- std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
- /// Instructions to change when emitting the final schedule.
- InstrChangesTy InstrChanges;
- void generatePipelinedLoop();
- void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap, MBBVectorTy &PrologBBs);
- void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB,
- MachineBasicBlock *OrigBB, ValueMapTy *VRMap,
- ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
- MBBVectorTy &PrologBBs);
- void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap, InstrMapTy &InstrMap,
- unsigned LastStageNum, unsigned CurStageNum,
- bool IsLast);
- void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
- InstrMapTy &InstrMap, unsigned LastStageNum,
- unsigned CurStageNum, bool IsLast);
- void removeDeadInstructions(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs);
- void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs);
- void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
- MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
- ValueMapTy *VRMap);
- bool computeDelta(MachineInstr &MI, unsigned &Delta);
- void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
- unsigned Num);
- MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
- unsigned InstStageNum);
- MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
- unsigned InstStageNum);
- void updateInstruction(MachineInstr *NewMI, bool LastDef,
- unsigned CurStageNum, unsigned InstrStageNum,
- ValueMapTy *VRMap);
- MachineInstr *findDefInLoop(unsigned Reg);
- unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
- unsigned LoopStage, ValueMapTy *VRMap,
- MachineBasicBlock *BB);
- void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
- ValueMapTy *VRMap, InstrMapTy &InstrMap);
- void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap,
- unsigned CurStageNum, unsigned PhiNum,
- MachineInstr *Phi, unsigned OldReg,
- unsigned NewReg, unsigned PrevReg = 0);
- bool isLoopCarried(MachineInstr &Phi);
- /// Return the max. number of stages/iterations that can occur between a
- /// register definition and its uses.
- unsigned getStagesForReg(int Reg, unsigned CurStage) {
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
- if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 &&
- Stages.second)
- return 1;
- return Stages.first;
- }
- /// The number of stages for a Phi is a little different than other
- /// instructions. The minimum value computed in RegToStageDiff is 1
- /// because we assume the Phi is needed for at least 1 iteration.
- /// This is not the case if the loop value is scheduled prior to the
- /// Phi in the same stage. This function returns the number of stages
- /// or iterations needed between the Phi definition and any uses.
- unsigned getStagesForPhi(int Reg) {
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
- if (Stages.second)
- return Stages.first;
- return Stages.first - 1;
- }
- public:
- /// Create a new ModuloScheduleExpander.
- /// \arg InstrChanges Modifications to make to instructions with memory
- /// operands.
- /// FIXME: InstrChanges is opaque and is an implementation detail of an
- /// optimization in MachinePipeliner that crosses abstraction boundaries.
- ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
- LiveIntervals &LIS, InstrChangesTy InstrChanges)
- : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
- TII(ST.getInstrInfo()), LIS(LIS),
- InstrChanges(std::move(InstrChanges)) {}
- /// Performs the actual expansion.
- void expand();
- /// Performs final cleanup after expansion.
- void cleanup();
- /// Returns the newly rewritten kernel block, or nullptr if this was
- /// optimized away.
- MachineBasicBlock *getRewrittenKernel() { return NewKernel; }
- };
- /// A reimplementation of ModuloScheduleExpander. It works by generating a
- /// standalone kernel loop and peeling out the prologs and epilogs.
- class PeelingModuloScheduleExpander {
- public:
- PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
- LiveIntervals *LIS)
- : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
- TII(ST.getInstrInfo()), LIS(LIS) {}
- void expand();
- /// Runs ModuloScheduleExpander and treats it as a golden input to validate
- /// aspects of the code generated by PeelingModuloScheduleExpander.
- void validateAgainstModuloScheduleExpander();
- protected:
- ModuloSchedule &Schedule;
- MachineFunction &MF;
- const TargetSubtargetInfo &ST;
- MachineRegisterInfo &MRI;
- const TargetInstrInfo *TII;
- LiveIntervals *LIS;
- /// The original loop block that gets rewritten in-place.
- MachineBasicBlock *BB;
- /// The original loop preheader.
- MachineBasicBlock *Preheader;
- /// All prolog and epilog blocks.
- SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs;
- /// For every block, the stages that are produced.
- DenseMap<MachineBasicBlock *, BitVector> LiveStages;
- /// For every block, the stages that are available. A stage can be available
- /// but not produced (in the epilog) or produced but not available (in the
- /// prolog).
- DenseMap<MachineBasicBlock *, BitVector> AvailableStages;
- /// When peeling the epilogue keep track of the distance between the phi
- /// nodes and the kernel.
- DenseMap<MachineInstr *, unsigned> PhiNodeLoopIteration;
- /// CanonicalMIs and BlockMIs form a bidirectional map between any of the
- /// loop kernel clones.
- DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs;
- DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *>
- BlockMIs;
- /// State passed from peelKernel to peelPrologAndEpilogs().
- std::deque<MachineBasicBlock *> PeeledFront, PeeledBack;
- /// Illegal phis that need to be deleted once we re-link stages.
- SmallVector<MachineInstr *, 4> IllegalPhisToDelete;
- /// Converts BB from the original loop body to the rewritten, pipelined
- /// steady-state.
- void rewriteKernel();
- /// Peels one iteration of the rewritten kernel (BB) in the specified
- /// direction.
- MachineBasicBlock *peelKernel(LoopPeelDirection LPD);
- // Delete instructions whose stage is less than MinStage in the given basic
- // block.
- void filterInstructions(MachineBasicBlock *MB, int MinStage);
- // Move instructions of the given stage from sourceBB to DestBB. Remap the phi
- // instructions to keep a valid IR.
- void moveStageBetweenBlocks(MachineBasicBlock *DestBB,
- MachineBasicBlock *SourceBB, unsigned Stage);
- /// Peel the kernel forwards and backwards to produce prologs and epilogs,
- /// and stitch them together.
- void peelPrologAndEpilogs();
- /// All prolog and epilog blocks are clones of the kernel, so any produced
- /// register in one block has an corollary in all other blocks.
- Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB);
- /// Change all users of MI, if MI is predicated out
- /// (LiveStages[MI->getParent()] == false).
- void rewriteUsesOf(MachineInstr *MI);
- /// Insert branches between prologs, kernel and epilogs.
- void fixupBranches();
- /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block
- /// to a block dominated by all prologs and epilogs. This allows us to treat
- /// the loop exiting block as any other kernel clone.
- MachineBasicBlock *CreateLCSSAExitingBlock();
- /// Helper to get the stage of an instruction in the schedule.
- unsigned getStage(MachineInstr *MI) {
- if (CanonicalMIs.count(MI))
- MI = CanonicalMIs[MI];
- return Schedule.getStage(MI);
- }
- /// Helper function to find the right canonical register for a phi instruction
- /// coming from a peeled out prologue.
- Register getPhiCanonicalReg(MachineInstr* CanonicalPhi, MachineInstr* Phi);
- /// Target loop info before kernel peeling.
- std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
- };
- /// Expander that simply annotates each scheduled instruction with a post-instr
- /// symbol that can be consumed by the ModuloScheduleTest pass.
- ///
- /// The post-instr symbol is a way of annotating an instruction that can be
- /// roundtripped in MIR. The syntax is:
- /// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5>
- class ModuloScheduleTestAnnotater {
- MachineFunction &MF;
- ModuloSchedule &S;
- public:
- ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S)
- : MF(MF), S(S) {}
- /// Performs the annotation.
- void annotate();
- };
- } // end namespace llvm
- #endif // LLVM_CODEGEN_MODULOSCHEDULE_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|