123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===-- IntervalTree.h ------------------------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements an interval tree.
- //
- // Further information:
- // https://en.wikipedia.org/wiki/Interval_tree
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_INTERVALTREE_H
- #define LLVM_ADT_INTERVALTREE_H
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/Format.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- // IntervalTree is a light tree data structure to hold intervals. It allows
- // finding all intervals that overlap with any given point. At this time,
- // it does not support any deletion or rebalancing operations.
- //
- // The IntervalTree is designed to be set up once, and then queried without
- // any further additions.
- //
- // Synopsis:
- // Closed intervals delimited by PointT objects are mapped to ValueT objects.
- //
- // Restrictions:
- // PointT must be a fundamental type.
- // ValueT must be a fundamental or pointer type.
- //
- // template <typename PointT, typename ValueT, typename DataT>
- // class IntervalTree {
- // public:
- //
- // IntervalTree();
- // ~IntervalTree():
- //
- // using IntervalReferences = SmallVector<IntervalData *>;
- //
- // void create();
- // void insert(PointT Left, PointT Right, ValueT Value);
- //
- // IntervalReferences getContaining(PointT Point);
- // static void sortIntervals(IntervalReferences &Intervals, Sorting Sort);
- //
- // find_iterator begin(PointType Point) const;
- // find_iterator end() const;
- //
- // bool empty() const;
- // void clear();
- //
- // void print(raw_ostream &OS, bool HexFormat = true);
- // };
- //
- //===----------------------------------------------------------------------===//
- //
- // In the below given dataset
- //
- // [a, b] <- (x)
- //
- // 'a' and 'b' describe a range and 'x' the value for that interval.
- //
- // The following data are purely for illustrative purposes:
- //
- // [30, 35] <- (3035), [39, 50] <- (3950), [55, 61] <- (5561),
- // [31, 56] <- (3156), [12, 21] <- (1221), [25, 41] <- (2541),
- // [49, 65] <- (4965), [71, 79] <- (7179), [11, 16] <- (1116),
- // [20, 30] <- (2030), [36, 54] <- (3654), [60, 70] <- (6070),
- // [74, 80] <- (7480), [15, 40] <- (1540), [43, 43] <- (4343),
- // [50, 75] <- (5075), [10, 85] <- (1085)
- //
- // The data represents a set of overlapping intervals:
- //
- // 30--35 39------------50 55----61
- // 31------------------------56
- // 12--------21 25------------41 49-------------65 71-----79
- // 11----16 20-----30 36----------------54 60------70 74---- 80
- // 15---------------------40 43--43 50--------------------75
- // 10----------------------------------------------------------------------85
- //
- // The items are stored in a binary tree with each node storing:
- //
- // MP: A middle point.
- // IL: All intervals whose left value are completely to the left of the middle
- // point. They are sorted in ascending order by their beginning point.
- // IR: All intervals whose right value are completely to the right of the
- // middle point. They are sorted in descending order by their ending point.
- // LS: Left subtree.
- // RS: Right subtree.
- //
- // As IL and IR will contain the same intervals, in order to optimize space,
- // instead of storing intervals on each node, we use two vectors that will
- // contain the intervals described by IL and IR. Each node will contain an
- // index into that vector (global bucket), to indicate the beginning of the
- // intervals assigned to the node.
- //
- // The following is the output from print():
- //
- // 0: MP:43 IR [10,85] [31,56] [36,54] [39,50] [43,43]
- // 0: MP:43 IL [10,85] [31,56] [36,54] [39,50] [43,43]
- // 1: MP:25 IR [25,41] [15,40] [20,30]
- // 1: MP:25 IL [15,40] [20,30] [25,41]
- // 2: MP:15 IR [12,21] [11,16]
- // 2: MP:15 IL [11,16] [12,21]
- // 2: MP:36 IR []
- // 2: MP:36 IL []
- // 3: MP:31 IR [30,35]
- // 3: MP:31 IL [30,35]
- // 1: MP:61 IR [50,75] [60,70] [49,65] [55,61]
- // 1: MP:61 IL [49,65] [50,75] [55,61] [60,70]
- // 2: MP:74 IR [74,80] [71,79]
- // 2: MP:74 IL [71,79] [74,80]
- //
- // with:
- // 0: Root Node.
- // MP: Middle point.
- // IL: Intervals to the left (in ascending order by beginning point).
- // IR: Intervals to the right (in descending order by ending point).
- //
- // Root
- // |
- // V
- // +------------MP:43------------+
- // | IL IR |
- // | [10,85] [10,85] |
- // LS | [31,56] [31,56] | RS
- // | [36,54] [36,54] |
- // | [39,50] [39,50] |
- // | [43,43] [43,43] |
- // V V
- // +------------MP:25------------+ MP:61------------+
- // | IL IR | IL IR |
- // | [15,40] [25,41] | [49,65] [50,75] |
- // LS | [20,30] [15,40] | RS [50,75] [60,70] | RS
- // | [25,41] [20,30] | [55,61] [49,65] |
- // | | [60,70] [55,61] |
- // V V V
- // MP:15 +-------MP:36 MP:74
- // IL IR | IL IR IL IR
- // [11,16] [12,21] LS | [] [] [71,79] [74,80]
- // [12,21] [11,16] | [74,80] [71,79]
- // V
- // MP:31
- // IL IR
- // [30,35] [30,35]
- //
- // The creation of an interval tree is done in 2 steps:
- // 1) Insert the interval items by calling
- // void insert(PointT Left, PointT Right, ValueT Value);
- // Left, Right: the interval left and right limits.
- // Value: the data associated with that specific interval.
- //
- // 2) Create the interval tree by calling
- // void create();
- //
- // Once the tree is created, it is switched to query mode.
- // Query the tree by using iterators or container.
- //
- // a) Iterators over intervals overlapping the given point with very weak
- // ordering guarantees.
- // find_iterator begin(PointType Point) const;
- // find_iterator end() const;
- // Point: a target point to be tested for inclusion in any interval.
- //
- // b) Container:
- // IntervalReferences getContaining(PointT Point);
- // Point: a target point to be tested for inclusion in any interval.
- // Returns vector with all the intervals containing the target point.
- //
- // The returned intervals are in their natural tree location. They can
- // be sorted:
- //
- // static void sortIntervals(IntervalReferences &Intervals, Sorting Sort);
- //
- // Ability to print the constructed interval tree:
- // void print(raw_ostream &OS, bool HexFormat = true);
- // Display the associated data in hexadecimal format.
- namespace llvm {
- //===----------------------------------------------------------------------===//
- //--- IntervalData ----//
- //===----------------------------------------------------------------------===//
- /// An interval data composed by a \a Left and \a Right points and an
- /// associated \a Value.
- /// \a PointT corresponds to the interval endpoints type.
- /// \a ValueT corresponds to the interval value type.
- template <typename PointT, typename ValueT> class IntervalData {
- protected:
- using PointType = PointT;
- using ValueType = ValueT;
- private:
- PointType Left;
- PointType Right;
- ValueType Value;
- public:
- IntervalData() = delete;
- IntervalData(PointType Left, PointType Right, ValueType Value)
- : Left(Left), Right(Right), Value(Value) {
- assert(Left <= Right && "'Left' must be less or equal to 'Right'");
- }
- virtual ~IntervalData() = default;
- PointType left() const { return Left; }
- PointType right() const { return Right; }
- ValueType value() const { return Value; }
- /// Return true if \a Point is inside the left bound of closed interval \a
- /// [Left;Right]. This is Left <= Point for closed intervals.
- bool left(const PointType &Point) const { return left() <= Point; }
- /// Return true if \a Point is inside the right bound of closed interval \a
- /// [Left;Right]. This is Point <= Right for closed intervals.
- bool right(const PointType &Point) const { return Point <= right(); }
- /// Return true when \a Point is contained in interval \a [Left;Right].
- /// This is Left <= Point <= Right for closed intervals.
- bool contains(const PointType &Point) const {
- return left(Point) && right(Point);
- }
- };
- //===----------------------------------------------------------------------===//
- //--- IntervalTree ----//
- //===----------------------------------------------------------------------===//
- // Helper class template that is used by the IntervalTree to ensure that one
- // does instantiate using only fundamental and/or pointer types.
- template <typename T>
- using PointTypeIsValid = std::bool_constant<std::is_fundamental<T>::value>;
- template <typename T>
- using ValueTypeIsValid = std::bool_constant<std::is_fundamental<T>::value ||
- std::is_pointer<T>::value>;
- template <typename PointT, typename ValueT,
- typename DataT = IntervalData<PointT, ValueT>>
- class IntervalTree {
- static_assert(PointTypeIsValid<PointT>::value,
- "PointT must be a fundamental type");
- static_assert(ValueTypeIsValid<ValueT>::value,
- "ValueT must be a fundamental or pointer type");
- public:
- using PointType = PointT;
- using ValueType = ValueT;
- using DataType = DataT;
- using Allocator = BumpPtrAllocator;
- enum class Sorting { Ascending, Descending };
- using IntervalReferences = SmallVector<const DataType *, 4>;
- private:
- using IntervalVector = SmallVector<DataType, 4>;
- using PointsVector = SmallVector<PointType, 4>;
- class IntervalNode {
- PointType MiddlePoint; // MP - Middle point.
- IntervalNode *Left = nullptr; // LS - Left subtree.
- IntervalNode *Right = nullptr; // RS - Right subtree.
- unsigned BucketIntervalsStart = 0; // Starting index in global bucket.
- unsigned BucketIntervalsSize = 0; // Size of bucket.
- public:
- PointType middle() const { return MiddlePoint; }
- unsigned start() const { return BucketIntervalsStart; }
- unsigned size() const { return BucketIntervalsSize; }
- IntervalNode(PointType Point, unsigned Start)
- : MiddlePoint(Point), BucketIntervalsStart(Start) {}
- friend IntervalTree;
- };
- Allocator &NodeAllocator; // Allocator used for creating interval nodes.
- IntervalNode *Root = nullptr; // Interval tree root.
- IntervalVector Intervals; // Storage for each interval and all of the fields
- // point back into it.
- PointsVector EndPoints; // Sorted left and right points of all the intervals.
- // These vectors provide storage that nodes carve buckets of overlapping
- // intervals out of. All intervals are recorded on each vector.
- // The bucket with the intervals associated to a node, is determined by
- // the fields 'BucketIntervalStart' and 'BucketIntervalSize' in the node.
- // The buckets in the first vector are sorted in ascending order using
- // the left value and the buckets in the second vector are sorted in
- // descending order using the right value. Every interval in a bucket
- // contains the middle point for the node.
- IntervalReferences IntervalsLeft; // Intervals to the left of middle point.
- IntervalReferences IntervalsRight; // Intervals to the right of middle point.
- // Working vector used during the tree creation to sort the intervals. It is
- // cleared once the tree is created.
- IntervalReferences References;
- /// Recursively delete the constructed tree.
- void deleteTree(IntervalNode *Node) {
- if (Node) {
- deleteTree(Node->Left);
- deleteTree(Node->Right);
- Node->~IntervalNode();
- NodeAllocator.Deallocate(Node);
- }
- }
- /// Print the interval list (left and right) for a given \a Node.
- static void printList(raw_ostream &OS, IntervalReferences &IntervalSet,
- unsigned Start, unsigned Size, bool HexFormat = true) {
- assert(Start + Size <= IntervalSet.size() &&
- "Start + Size must be in bounds of the IntervalSet");
- const char *Format = HexFormat ? "[0x%08x,0x%08x] " : "[%2d,%2d] ";
- if (Size) {
- for (unsigned Position = Start; Position < Start + Size; ++Position)
- OS << format(Format, IntervalSet[Position]->left(),
- IntervalSet[Position]->right());
- } else {
- OS << "[]";
- }
- OS << "\n";
- }
- /// Print an interval tree \a Node.
- void printNode(raw_ostream &OS, unsigned Level, IntervalNode *Node,
- bool HexFormat = true) {
- const char *Format = HexFormat ? "MP:0x%08x " : "MP:%2d ";
- auto PrintNodeData = [&](StringRef Text, IntervalReferences &IntervalSet) {
- OS << format("%5d: ", Level);
- OS.indent(Level * 2);
- OS << format(Format, Node->middle()) << Text << " ";
- printList(OS, IntervalSet, Node->start(), Node->size(), HexFormat);
- };
- PrintNodeData("IR", IntervalsRight);
- PrintNodeData("IL", IntervalsLeft);
- }
- /// Recursively print all the interval nodes.
- void printTree(raw_ostream &OS, unsigned Level, IntervalNode *Node,
- bool HexFormat = true) {
- if (Node) {
- printNode(OS, Level, Node, HexFormat);
- ++Level;
- printTree(OS, Level, Node->Left, HexFormat);
- printTree(OS, Level, Node->Right, HexFormat);
- }
- }
- /// Recursively construct the interval tree.
- /// IntervalsSize: Number of intervals that have been processed and it will
- /// be used as the start for the intervals bucket for a node.
- /// PointsBeginIndex, PointsEndIndex: Determine the range into the EndPoints
- /// vector of end points to be processed.
- /// ReferencesBeginIndex, ReferencesSize: Determine the range into the
- /// intervals being processed.
- IntervalNode *createTree(unsigned &IntervalsSize, int PointsBeginIndex,
- int PointsEndIndex, int ReferencesBeginIndex,
- int ReferencesSize) {
- // We start by taking the entire range of all the intervals and dividing
- // it in half at x_middle (in practice, x_middle should be picked to keep
- // the tree relatively balanced).
- // This gives three sets of intervals, those completely to the left of
- // x_middle which we'll call S_left, those completely to the right of
- // x_middle which we'll call S_right, and those overlapping x_middle
- // which we'll call S_middle.
- // The intervals in S_left and S_right are recursively divided in the
- // same manner until there are no intervals remaining.
- if (PointsBeginIndex > PointsEndIndex ||
- ReferencesBeginIndex >= ReferencesSize)
- return nullptr;
- int MiddleIndex = (PointsBeginIndex + PointsEndIndex) / 2;
- PointType MiddlePoint = EndPoints[MiddleIndex];
- unsigned NewBucketStart = IntervalsSize;
- unsigned NewBucketSize = 0;
- int ReferencesRightIndex = ReferencesSize;
- IntervalNode *Root =
- new (NodeAllocator) IntervalNode(MiddlePoint, NewBucketStart);
- // A quicksort implementation where all the intervals that overlap
- // with the pivot are put into the "bucket", and "References" is the
- // partition space where we recursively sort the remaining intervals.
- for (int Index = ReferencesBeginIndex; Index < ReferencesRightIndex;) {
- // Current interval contains the middle point.
- if (References[Index]->contains(MiddlePoint)) {
- IntervalsLeft[IntervalsSize] = References[Index];
- IntervalsRight[IntervalsSize] = References[Index];
- ++IntervalsSize;
- Root->BucketIntervalsSize = ++NewBucketSize;
- if (Index < --ReferencesRightIndex)
- std::swap(References[Index], References[ReferencesRightIndex]);
- if (ReferencesRightIndex < --ReferencesSize)
- std::swap(References[ReferencesRightIndex],
- References[ReferencesSize]);
- continue;
- }
- if (References[Index]->left() > MiddlePoint) {
- if (Index < --ReferencesRightIndex)
- std::swap(References[Index], References[ReferencesRightIndex]);
- continue;
- }
- ++Index;
- }
- // Sort intervals on the left and right of the middle point.
- if (NewBucketSize > 1) {
- // Sort the intervals in ascending order by their beginning point.
- std::stable_sort(IntervalsLeft.begin() + NewBucketStart,
- IntervalsLeft.begin() + NewBucketStart + NewBucketSize,
- [](const DataType *LHS, const DataType *RHS) {
- return LHS->left() < RHS->left();
- });
- // Sort the intervals in descending order by their ending point.
- std::stable_sort(IntervalsRight.begin() + NewBucketStart,
- IntervalsRight.begin() + NewBucketStart + NewBucketSize,
- [](const DataType *LHS, const DataType *RHS) {
- return LHS->right() > RHS->right();
- });
- }
- if (PointsBeginIndex <= MiddleIndex - 1) {
- Root->Left = createTree(IntervalsSize, PointsBeginIndex, MiddleIndex - 1,
- ReferencesBeginIndex, ReferencesRightIndex);
- }
- if (MiddleIndex + 1 <= PointsEndIndex) {
- Root->Right = createTree(IntervalsSize, MiddleIndex + 1, PointsEndIndex,
- ReferencesRightIndex, ReferencesSize);
- }
- return Root;
- }
- public:
- class find_iterator {
- public:
- using iterator_category = std::forward_iterator_tag;
- using value_type = DataType;
- using difference_type = DataType;
- using pointer = DataType *;
- using reference = DataType &;
- private:
- const IntervalReferences *AscendingBuckets = nullptr;
- const IntervalReferences *DescendingBuckets = nullptr;
- // Current node and index while traversing the intervals that contain
- // the reference point.
- IntervalNode *Node = nullptr;
- PointType Point;
- unsigned Index = 0;
- // For the current node, check if we have intervals that contain the
- // reference point. We return when the node does have intervals that
- // contain such point. Otherwise we keep descending on that branch.
- void initNode() {
- Index = 0;
- while (Node) {
- // Return if the reference point is the same as the middle point or
- // the current node doesn't have any intervals at all.
- if (Point == Node->middle()) {
- if (Node->size() == 0) {
- // No intervals that contain the reference point.
- Node = nullptr;
- }
- return;
- }
- if (Point < Node->middle()) {
- // The reference point can be at the left or right of the middle
- // point. Return if the current node has intervals that contain the
- // reference point; otherwise descend on the respective branch.
- if (Node->size() && (*AscendingBuckets)[Node->start()]->left(Point)) {
- return;
- }
- Node = Node->Left;
- } else {
- if (Node->size() &&
- (*DescendingBuckets)[Node->start()]->right(Point)) {
- return;
- }
- Node = Node->Right;
- }
- }
- }
- // Given the current node (which was initialized by initNode), move to
- // the next interval in the list of intervals that contain the reference
- // point. Otherwise move to the next node, as the intervals contained
- // in that node, can contain the reference point.
- void nextInterval() {
- // If there are available intervals that contain the reference point,
- // traverse them; otherwise move to the left or right node, depending
- // on the middle point value.
- if (++Index < Node->size()) {
- if (Node->middle() == Point)
- return;
- if (Point < Node->middle()) {
- // Reference point is on the left.
- if (!(*AscendingBuckets)[Node->start() + Index]->left(Point)) {
- // The intervals don't contain the reference point. Move to the
- // next node, preserving the descending order.
- Node = Node->Left;
- initNode();
- }
- } else {
- // Reference point is on the right.
- if (!(*DescendingBuckets)[Node->start() + Index]->right(Point)) {
- // The intervals don't contain the reference point. Move to the
- // next node, preserving the ascending order.
- Node = Node->Right;
- initNode();
- }
- }
- } else {
- // We have traversed all the intervals in the current node.
- if (Point == Node->middle()) {
- Node = nullptr;
- Index = 0;
- return;
- }
- // Select a branch based on the middle point.
- Node = Point < Node->middle() ? Node->Left : Node->Right;
- initNode();
- }
- }
- find_iterator() = default;
- explicit find_iterator(const IntervalReferences *Left,
- const IntervalReferences *Right, IntervalNode *Node,
- PointType Point)
- : AscendingBuckets(Left), DescendingBuckets(Right), Node(Node),
- Point(Point), Index(0) {
- initNode();
- }
- const DataType *current() const {
- return (Point <= Node->middle())
- ? (*AscendingBuckets)[Node->start() + Index]
- : (*DescendingBuckets)[Node->start() + Index];
- }
- public:
- find_iterator &operator++() {
- nextInterval();
- return *this;
- }
- find_iterator operator++(int) {
- find_iterator Iter(*this);
- nextInterval();
- return Iter;
- }
- /// Dereference operators.
- const DataType *operator->() const { return current(); }
- const DataType &operator*() const { return *(current()); }
- /// Comparison operators.
- friend bool operator==(const find_iterator &LHS, const find_iterator &RHS) {
- return (!LHS.Node && !RHS.Node && !LHS.Index && !RHS.Index) ||
- (LHS.Point == RHS.Point && LHS.Node == RHS.Node &&
- LHS.Index == RHS.Index);
- }
- friend bool operator!=(const find_iterator &LHS, const find_iterator &RHS) {
- return !(LHS == RHS);
- }
- friend IntervalTree;
- };
- private:
- find_iterator End;
- public:
- explicit IntervalTree(Allocator &NodeAllocator)
- : NodeAllocator(NodeAllocator) {}
- ~IntervalTree() { clear(); }
- /// Return true when no intervals are mapped.
- bool empty() const { return Root == nullptr; }
- /// Remove all entries.
- void clear() {
- deleteTree(Root);
- Root = nullptr;
- Intervals.clear();
- IntervalsLeft.clear();
- IntervalsRight.clear();
- EndPoints.clear();
- }
- /// Add a mapping of [Left;Right] to \a Value.
- void insert(PointType Left, PointType Right, ValueType Value) {
- assert(empty() && "Invalid insertion. Interval tree already constructed.");
- Intervals.emplace_back(Left, Right, Value);
- }
- /// Return all the intervals in their natural tree location, that
- /// contain the given point.
- IntervalReferences getContaining(PointType Point) const {
- assert(!empty() && "Interval tree it is not constructed.");
- IntervalReferences IntervalSet;
- for (find_iterator Iter = find(Point), E = find_end(); Iter != E; ++Iter)
- IntervalSet.push_back(const_cast<DataType *>(&(*Iter)));
- return IntervalSet;
- }
- /// Sort the given intervals using the following sort options:
- /// Ascending: return the intervals with the smallest at the front.
- /// Descending: return the intervals with the biggest at the front.
- static void sortIntervals(IntervalReferences &IntervalSet, Sorting Sort) {
- std::stable_sort(IntervalSet.begin(), IntervalSet.end(),
- [Sort](const DataType *RHS, const DataType *LHS) {
- return Sort == Sorting::Ascending
- ? (LHS->right() - LHS->left()) >
- (RHS->right() - RHS->left())
- : (LHS->right() - LHS->left()) <
- (RHS->right() - RHS->left());
- });
- }
- /// Print the interval tree.
- /// When \a HexFormat is true, the interval tree interval ranges and
- /// associated values are printed in hexadecimal format.
- void print(raw_ostream &OS, bool HexFormat = true) {
- printTree(OS, 0, Root, HexFormat);
- }
- /// Create the interval tree.
- void create() {
- assert(empty() && "Interval tree already constructed.");
- // Sorted vector of unique end points values of all the intervals.
- // Records references to the collected intervals.
- SmallVector<PointType, 4> Points;
- for (const DataType &Data : Intervals) {
- Points.push_back(Data.left());
- Points.push_back(Data.right());
- References.push_back(std::addressof(Data));
- }
- std::stable_sort(Points.begin(), Points.end());
- auto Last = std::unique(Points.begin(), Points.end());
- Points.erase(Last, Points.end());
- EndPoints.assign(Points.begin(), Points.end());
- IntervalsLeft.resize(Intervals.size());
- IntervalsRight.resize(Intervals.size());
- // Given a set of n intervals, construct a data structure so that
- // we can efficiently retrieve all intervals overlapping another
- // interval or point.
- unsigned IntervalsSize = 0;
- Root =
- createTree(IntervalsSize, /*PointsBeginIndex=*/0, EndPoints.size() - 1,
- /*ReferencesBeginIndex=*/0, References.size());
- // Save to clear this storage, as it used only to sort the intervals.
- References.clear();
- }
- /// Iterator to start a find operation; it returns find_end() if the
- /// tree has not been built.
- /// There is no support to iterate over all the elements of the tree.
- find_iterator find(PointType Point) const {
- return empty()
- ? find_end()
- : find_iterator(&IntervalsLeft, &IntervalsRight, Root, Point);
- }
- /// Iterator to end find operation.
- find_iterator find_end() const { return End; }
- };
- } // namespace llvm
- #endif // LLVM_ADT_INTERVALTREE_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|