123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735 |
- #pragma once
- #ifdef __GNUC__
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Wunused-parameter"
- #endif
- //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_ADT_ARRAYREF_H
- #define LLVM_ADT_ARRAYREF_H
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/Compiler.h"
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cstddef>
- #include <initializer_list>
- #include <iterator>
- #include <memory>
- #include <type_traits>
- #include <vector>
- namespace llvm {
- template<typename T> class [[nodiscard]] MutableArrayRef;
- /// ArrayRef - Represent a constant reference to an array (0 or more elements
- /// consecutively in memory), i.e. a start pointer and a length. It allows
- /// various APIs to take consecutive elements easily and conveniently.
- ///
- /// This class does not own the underlying data, it is expected to be used in
- /// situations where the data resides in some other buffer, whose lifetime
- /// extends past that of the ArrayRef. For this reason, it is not in general
- /// safe to store an ArrayRef.
- ///
- /// This is intended to be trivially copyable, so it should be passed by
- /// value.
- template<typename T>
- class LLVM_GSL_POINTER [[nodiscard]] ArrayRef {
- public:
- using value_type = T;
- using pointer = value_type *;
- using const_pointer = const value_type *;
- using reference = value_type &;
- using const_reference = const value_type &;
- using iterator = const_pointer;
- using const_iterator = const_pointer;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- private:
- /// The start of the array, in an external buffer.
- const T *Data = nullptr;
- /// The number of elements.
- size_type Length = 0;
- public:
- /// @name Constructors
- /// @{
- /// Construct an empty ArrayRef.
- /*implicit*/ ArrayRef() = default;
- /// Construct an empty ArrayRef from std::nullopt.
- /*implicit*/ ArrayRef(std::nullopt_t) {}
- /// Construct an ArrayRef from a single element.
- /*implicit*/ ArrayRef(const T &OneElt)
- : Data(&OneElt), Length(1) {}
- /// Construct an ArrayRef from a pointer and length.
- constexpr /*implicit*/ ArrayRef(const T *data, size_t length)
- : Data(data), Length(length) {}
- /// Construct an ArrayRef from a range.
- constexpr ArrayRef(const T *begin, const T *end)
- : Data(begin), Length(end - begin) {}
- /// Construct an ArrayRef from a SmallVector. This is templated in order to
- /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
- /// copy-construct an ArrayRef.
- template<typename U>
- /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
- : Data(Vec.data()), Length(Vec.size()) {
- }
- /// Construct an ArrayRef from a std::vector.
- template<typename A>
- /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
- : Data(Vec.data()), Length(Vec.size()) {}
- /// Construct an ArrayRef from a std::array
- template <size_t N>
- /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
- : Data(Arr.data()), Length(N) {}
- /// Construct an ArrayRef from a C array.
- template <size_t N>
- /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
- /// Construct an ArrayRef from a std::initializer_list.
- #if LLVM_GNUC_PREREQ(9, 0, 0)
- // Disable gcc's warning in this constructor as it generates an enormous amount
- // of messages. Anyone using ArrayRef should already be aware of the fact that
- // it does not do lifetime extension.
- #pragma GCC diagnostic push
- #pragma GCC diagnostic ignored "-Winit-list-lifetime"
- #endif
- constexpr /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
- : Data(Vec.begin() == Vec.end() ? (T *)nullptr : Vec.begin()),
- Length(Vec.size()) {}
- #if LLVM_GNUC_PREREQ(9, 0, 0)
- #pragma GCC diagnostic pop
- #endif
- /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
- /// ensure that only ArrayRefs of pointers can be converted.
- template <typename U>
- ArrayRef(const ArrayRef<U *> &A,
- std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
- * = nullptr)
- : Data(A.data()), Length(A.size()) {}
- /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
- /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
- /// whenever we copy-construct an ArrayRef.
- template <typename U, typename DummyT>
- /*implicit*/ ArrayRef(
- const SmallVectorTemplateCommon<U *, DummyT> &Vec,
- std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
- nullptr)
- : Data(Vec.data()), Length(Vec.size()) {}
- /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
- /// to ensure that only vectors of pointers can be converted.
- template <typename U, typename A>
- ArrayRef(const std::vector<U *, A> &Vec,
- std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
- * = nullptr)
- : Data(Vec.data()), Length(Vec.size()) {}
- /// @}
- /// @name Simple Operations
- /// @{
- iterator begin() const { return Data; }
- iterator end() const { return Data + Length; }
- reverse_iterator rbegin() const { return reverse_iterator(end()); }
- reverse_iterator rend() const { return reverse_iterator(begin()); }
- /// empty - Check if the array is empty.
- bool empty() const { return Length == 0; }
- const T *data() const { return Data; }
- /// size - Get the array size.
- size_t size() const { return Length; }
- /// front - Get the first element.
- const T &front() const {
- assert(!empty());
- return Data[0];
- }
- /// back - Get the last element.
- const T &back() const {
- assert(!empty());
- return Data[Length-1];
- }
- // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
- template <typename Allocator> MutableArrayRef<T> copy(Allocator &A) {
- T *Buff = A.template Allocate<T>(Length);
- std::uninitialized_copy(begin(), end(), Buff);
- return MutableArrayRef<T>(Buff, Length);
- }
- /// equals - Check for element-wise equality.
- bool equals(ArrayRef RHS) const {
- if (Length != RHS.Length)
- return false;
- return std::equal(begin(), end(), RHS.begin());
- }
- /// slice(n, m) - Chop off the first N elements of the array, and keep M
- /// elements in the array.
- ArrayRef<T> slice(size_t N, size_t M) const {
- assert(N+M <= size() && "Invalid specifier");
- return ArrayRef<T>(data()+N, M);
- }
- /// slice(n) - Chop off the first N elements of the array.
- ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
- /// Drop the first \p N elements of the array.
- ArrayRef<T> drop_front(size_t N = 1) const {
- assert(size() >= N && "Dropping more elements than exist");
- return slice(N, size() - N);
- }
- /// Drop the last \p N elements of the array.
- ArrayRef<T> drop_back(size_t N = 1) const {
- assert(size() >= N && "Dropping more elements than exist");
- return slice(0, size() - N);
- }
- /// Return a copy of *this with the first N elements satisfying the
- /// given predicate removed.
- template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
- return ArrayRef<T>(find_if_not(*this, Pred), end());
- }
- /// Return a copy of *this with the first N elements not satisfying
- /// the given predicate removed.
- template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
- return ArrayRef<T>(find_if(*this, Pred), end());
- }
- /// Return a copy of *this with only the first \p N elements.
- ArrayRef<T> take_front(size_t N = 1) const {
- if (N >= size())
- return *this;
- return drop_back(size() - N);
- }
- /// Return a copy of *this with only the last \p N elements.
- ArrayRef<T> take_back(size_t N = 1) const {
- if (N >= size())
- return *this;
- return drop_front(size() - N);
- }
- /// Return the first N elements of this Array that satisfy the given
- /// predicate.
- template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
- return ArrayRef<T>(begin(), find_if_not(*this, Pred));
- }
- /// Return the first N elements of this Array that don't satisfy the
- /// given predicate.
- template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
- return ArrayRef<T>(begin(), find_if(*this, Pred));
- }
- /// @}
- /// @name Operator Overloads
- /// @{
- const T &operator[](size_t Index) const {
- assert(Index < Length && "Invalid index!");
- return Data[Index];
- }
- /// Disallow accidental assignment from a temporary.
- ///
- /// The declaration here is extra complicated so that "arrayRef = {}"
- /// continues to select the move assignment operator.
- template <typename U>
- std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
- operator=(U &&Temporary) = delete;
- /// Disallow accidental assignment from a temporary.
- ///
- /// The declaration here is extra complicated so that "arrayRef = {}"
- /// continues to select the move assignment operator.
- template <typename U>
- std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
- operator=(std::initializer_list<U>) = delete;
- /// @}
- /// @name Expensive Operations
- /// @{
- std::vector<T> vec() const {
- return std::vector<T>(Data, Data+Length);
- }
- /// @}
- /// @name Conversion operators
- /// @{
- operator std::vector<T>() const {
- return std::vector<T>(Data, Data+Length);
- }
- /// @}
- };
- /// MutableArrayRef - Represent a mutable reference to an array (0 or more
- /// elements consecutively in memory), i.e. a start pointer and a length. It
- /// allows various APIs to take and modify consecutive elements easily and
- /// conveniently.
- ///
- /// This class does not own the underlying data, it is expected to be used in
- /// situations where the data resides in some other buffer, whose lifetime
- /// extends past that of the MutableArrayRef. For this reason, it is not in
- /// general safe to store a MutableArrayRef.
- ///
- /// This is intended to be trivially copyable, so it should be passed by
- /// value.
- template<typename T>
- class [[nodiscard]] MutableArrayRef : public ArrayRef<T> {
- public:
- using value_type = T;
- using pointer = value_type *;
- using const_pointer = const value_type *;
- using reference = value_type &;
- using const_reference = const value_type &;
- using iterator = pointer;
- using const_iterator = const_pointer;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- /// Construct an empty MutableArrayRef.
- /*implicit*/ MutableArrayRef() = default;
- /// Construct an empty MutableArrayRef from std::nullopt.
- /*implicit*/ MutableArrayRef(std::nullopt_t) : ArrayRef<T>() {}
- /// Construct a MutableArrayRef from a single element.
- /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
- /// Construct a MutableArrayRef from a pointer and length.
- /*implicit*/ MutableArrayRef(T *data, size_t length)
- : ArrayRef<T>(data, length) {}
- /// Construct a MutableArrayRef from a range.
- MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
- /// Construct a MutableArrayRef from a SmallVector.
- /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
- : ArrayRef<T>(Vec) {}
- /// Construct a MutableArrayRef from a std::vector.
- /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
- : ArrayRef<T>(Vec) {}
- /// Construct a MutableArrayRef from a std::array
- template <size_t N>
- /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
- : ArrayRef<T>(Arr) {}
- /// Construct a MutableArrayRef from a C array.
- template <size_t N>
- /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
- T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
- iterator begin() const { return data(); }
- iterator end() const { return data() + this->size(); }
- reverse_iterator rbegin() const { return reverse_iterator(end()); }
- reverse_iterator rend() const { return reverse_iterator(begin()); }
- /// front - Get the first element.
- T &front() const {
- assert(!this->empty());
- return data()[0];
- }
- /// back - Get the last element.
- T &back() const {
- assert(!this->empty());
- return data()[this->size()-1];
- }
- /// slice(n, m) - Chop off the first N elements of the array, and keep M
- /// elements in the array.
- MutableArrayRef<T> slice(size_t N, size_t M) const {
- assert(N + M <= this->size() && "Invalid specifier");
- return MutableArrayRef<T>(this->data() + N, M);
- }
- /// slice(n) - Chop off the first N elements of the array.
- MutableArrayRef<T> slice(size_t N) const {
- return slice(N, this->size() - N);
- }
- /// Drop the first \p N elements of the array.
- MutableArrayRef<T> drop_front(size_t N = 1) const {
- assert(this->size() >= N && "Dropping more elements than exist");
- return slice(N, this->size() - N);
- }
- MutableArrayRef<T> drop_back(size_t N = 1) const {
- assert(this->size() >= N && "Dropping more elements than exist");
- return slice(0, this->size() - N);
- }
- /// Return a copy of *this with the first N elements satisfying the
- /// given predicate removed.
- template <class PredicateT>
- MutableArrayRef<T> drop_while(PredicateT Pred) const {
- return MutableArrayRef<T>(find_if_not(*this, Pred), end());
- }
- /// Return a copy of *this with the first N elements not satisfying
- /// the given predicate removed.
- template <class PredicateT>
- MutableArrayRef<T> drop_until(PredicateT Pred) const {
- return MutableArrayRef<T>(find_if(*this, Pred), end());
- }
- /// Return a copy of *this with only the first \p N elements.
- MutableArrayRef<T> take_front(size_t N = 1) const {
- if (N >= this->size())
- return *this;
- return drop_back(this->size() - N);
- }
- /// Return a copy of *this with only the last \p N elements.
- MutableArrayRef<T> take_back(size_t N = 1) const {
- if (N >= this->size())
- return *this;
- return drop_front(this->size() - N);
- }
- /// Return the first N elements of this Array that satisfy the given
- /// predicate.
- template <class PredicateT>
- MutableArrayRef<T> take_while(PredicateT Pred) const {
- return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
- }
- /// Return the first N elements of this Array that don't satisfy the
- /// given predicate.
- template <class PredicateT>
- MutableArrayRef<T> take_until(PredicateT Pred) const {
- return MutableArrayRef<T>(begin(), find_if(*this, Pred));
- }
- /// @}
- /// @name Operator Overloads
- /// @{
- T &operator[](size_t Index) const {
- assert(Index < this->size() && "Invalid index!");
- return data()[Index];
- }
- };
- /// This is a MutableArrayRef that owns its array.
- template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
- public:
- OwningArrayRef() = default;
- OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
- OwningArrayRef(ArrayRef<T> Data)
- : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
- std::copy(Data.begin(), Data.end(), this->begin());
- }
- OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
- OwningArrayRef &operator=(OwningArrayRef &&Other) {
- delete[] this->data();
- this->MutableArrayRef<T>::operator=(Other);
- Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
- return *this;
- }
- ~OwningArrayRef() { delete[] this->data(); }
- };
- /// @name ArrayRef Deduction guides
- /// @{
- /// Deduction guide to construct an ArrayRef from a single element.
- template <typename T> ArrayRef(const T &OneElt) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a pointer and length
- template <typename T> ArrayRef(const T *data, size_t length) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a range
- template <typename T> ArrayRef(const T *data, const T *end) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a SmallVector
- template <typename T> ArrayRef(const SmallVectorImpl<T> &Vec) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a SmallVector
- template <typename T, unsigned N>
- ArrayRef(const SmallVector<T, N> &Vec) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a std::vector
- template <typename T> ArrayRef(const std::vector<T> &Vec) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a std::array
- template <typename T, std::size_t N>
- ArrayRef(const std::array<T, N> &Vec) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from an ArrayRef (const)
- template <typename T> ArrayRef(const ArrayRef<T> &Vec) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from an ArrayRef
- template <typename T> ArrayRef(ArrayRef<T> &Vec) -> ArrayRef<T>;
- /// Deduction guide to construct an ArrayRef from a C array.
- template <typename T, size_t N> ArrayRef(const T (&Arr)[N]) -> ArrayRef<T>;
- /// @}
- /// @name ArrayRef Convenience constructors
- /// @{
- /// Construct an ArrayRef from a single element.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const T &OneElt) {
- return OneElt;
- }
- /// Construct an ArrayRef from a pointer and length.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const T *data, size_t length) {
- return ArrayRef<T>(data, length);
- }
- /// Construct an ArrayRef from a range.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
- return ArrayRef<T>(begin, end);
- }
- /// Construct an ArrayRef from a SmallVector.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a SmallVector.
- template <typename T, unsigned N>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a std::vector.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a std::array.
- template <typename T, std::size_t N>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
- return Arr;
- }
- /// Construct an ArrayRef from an ArrayRef (no-op) (const)
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from an ArrayRef (no-op)
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
- return Vec;
- }
- /// Construct an ArrayRef from a C array.
- template <typename T, size_t N>
- LLVM_DEPRECATED("Use deduction guide instead", "ArrayRef")
- ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
- return ArrayRef<T>(Arr);
- }
- /// @name MutableArrayRef Deduction guides
- /// @{
- /// Deduction guide to construct a `MutableArrayRef` from a single element
- template <class T> MutableArrayRef(T &OneElt) -> MutableArrayRef<T>;
- /// Deduction guide to construct a `MutableArrayRef` from a pointer and
- /// length.
- template <class T>
- MutableArrayRef(T *data, size_t length) -> MutableArrayRef<T>;
- /// Deduction guide to construct a `MutableArrayRef` from a `SmallVector`.
- template <class T>
- MutableArrayRef(SmallVectorImpl<T> &Vec) -> MutableArrayRef<T>;
- template <class T, unsigned N>
- MutableArrayRef(SmallVector<T, N> &Vec) -> MutableArrayRef<T>;
- /// Deduction guide to construct a `MutableArrayRef` from a `std::vector`.
- template <class T> MutableArrayRef(std::vector<T> &Vec) -> MutableArrayRef<T>;
- /// Deduction guide to construct a `MutableArrayRef` from a `std::array`.
- template <class T, std::size_t N>
- MutableArrayRef(std::array<T, N> &Vec) -> MutableArrayRef<T>;
- /// Deduction guide to construct a `MutableArrayRef` from a C array.
- template <typename T, size_t N>
- MutableArrayRef(T (&Arr)[N]) -> MutableArrayRef<T>;
- /// @}
- /// Construct a MutableArrayRef from a single element.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
- return OneElt;
- }
- /// Construct a MutableArrayRef from a pointer and length.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
- return MutableArrayRef<T>(data, length);
- }
- /// Construct a MutableArrayRef from a SmallVector.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(SmallVectorImpl<T> &Vec) {
- return Vec;
- }
- /// Construct a MutableArrayRef from a SmallVector.
- template <typename T, unsigned N>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(SmallVector<T, N> &Vec) {
- return Vec;
- }
- /// Construct a MutableArrayRef from a std::vector.
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(std::vector<T> &Vec) {
- return Vec;
- }
- /// Construct a MutableArrayRef from a std::array.
- template <typename T, std::size_t N>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(std::array<T, N> &Arr) {
- return Arr;
- }
- /// Construct a MutableArrayRef from a MutableArrayRef (no-op) (const)
- template <typename T>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(const MutableArrayRef<T> &Vec) {
- return Vec;
- }
- /// Construct a MutableArrayRef from a C array.
- template <typename T, size_t N>
- LLVM_DEPRECATED("Use deduction guide instead", "MutableArrayRef")
- MutableArrayRef<T> makeMutableArrayRef(T (&Arr)[N]) {
- return MutableArrayRef<T>(Arr);
- }
- /// @}
- /// @name ArrayRef Comparison Operators
- /// @{
- template<typename T>
- inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
- return LHS.equals(RHS);
- }
- template <typename T>
- inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
- return ArrayRef<T>(LHS).equals(RHS);
- }
- template <typename T>
- inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
- return !(LHS == RHS);
- }
- template <typename T>
- inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
- return !(LHS == RHS);
- }
- /// @}
- template <typename T> hash_code hash_value(ArrayRef<T> S) {
- return hash_combine_range(S.begin(), S.end());
- }
- // Provide DenseMapInfo for ArrayRefs.
- template <typename T> struct DenseMapInfo<ArrayRef<T>, void> {
- static inline ArrayRef<T> getEmptyKey() {
- return ArrayRef<T>(
- reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0));
- }
- static inline ArrayRef<T> getTombstoneKey() {
- return ArrayRef<T>(
- reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0));
- }
- static unsigned getHashValue(ArrayRef<T> Val) {
- assert(Val.data() != getEmptyKey().data() &&
- "Cannot hash the empty key!");
- assert(Val.data() != getTombstoneKey().data() &&
- "Cannot hash the tombstone key!");
- return (unsigned)(hash_value(Val));
- }
- static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) {
- if (RHS.data() == getEmptyKey().data())
- return LHS.data() == getEmptyKey().data();
- if (RHS.data() == getTombstoneKey().data())
- return LHS.data() == getTombstoneKey().data();
- return LHS == RHS;
- }
- };
- } // end namespace llvm
- #endif // LLVM_ADT_ARRAYREF_H
- #ifdef __GNUC__
- #pragma GCC diagnostic pop
- #endif
|