12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232 |
- //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass optimizes scalar/vector interactions using target cost models. The
- // transforms implemented here may not fit in traditional loop-based or SLP
- // vectorization passes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Vectorize/VectorCombine.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/VectorUtils.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Vectorize.h"
- #define DEBUG_TYPE "vector-combine"
- #include "llvm/Transforms/Utils/InstructionWorklist.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- STATISTIC(NumVecLoad, "Number of vector loads formed");
- STATISTIC(NumVecCmp, "Number of vector compares formed");
- STATISTIC(NumVecBO, "Number of vector binops formed");
- STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
- STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
- STATISTIC(NumScalarBO, "Number of scalar binops formed");
- STATISTIC(NumScalarCmp, "Number of scalar compares formed");
- static cl::opt<bool> DisableVectorCombine(
- "disable-vector-combine", cl::init(false), cl::Hidden,
- cl::desc("Disable all vector combine transforms"));
- static cl::opt<bool> DisableBinopExtractShuffle(
- "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
- cl::desc("Disable binop extract to shuffle transforms"));
- static cl::opt<unsigned> MaxInstrsToScan(
- "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
- cl::desc("Max number of instructions to scan for vector combining."));
- static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
- namespace {
- class VectorCombine {
- public:
- VectorCombine(Function &F, const TargetTransformInfo &TTI,
- const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
- bool ScalarizationOnly)
- : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
- ScalarizationOnly(ScalarizationOnly) {}
- bool run();
- private:
- Function &F;
- IRBuilder<> Builder;
- const TargetTransformInfo &TTI;
- const DominatorTree &DT;
- AAResults &AA;
- AssumptionCache &AC;
- /// If true only perform scalarization combines and do not introduce new
- /// vector operations.
- bool ScalarizationOnly;
- InstructionWorklist Worklist;
- bool vectorizeLoadInsert(Instruction &I);
- ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
- ExtractElementInst *Ext1,
- unsigned PreferredExtractIndex) const;
- bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
- const Instruction &I,
- ExtractElementInst *&ConvertToShuffle,
- unsigned PreferredExtractIndex);
- void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
- Instruction &I);
- void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
- Instruction &I);
- bool foldExtractExtract(Instruction &I);
- bool foldBitcastShuf(Instruction &I);
- bool scalarizeBinopOrCmp(Instruction &I);
- bool foldExtractedCmps(Instruction &I);
- bool foldSingleElementStore(Instruction &I);
- bool scalarizeLoadExtract(Instruction &I);
- bool foldShuffleOfBinops(Instruction &I);
- void replaceValue(Value &Old, Value &New) {
- Old.replaceAllUsesWith(&New);
- New.takeName(&Old);
- if (auto *NewI = dyn_cast<Instruction>(&New)) {
- Worklist.pushUsersToWorkList(*NewI);
- Worklist.pushValue(NewI);
- }
- Worklist.pushValue(&Old);
- }
- void eraseInstruction(Instruction &I) {
- for (Value *Op : I.operands())
- Worklist.pushValue(Op);
- Worklist.remove(&I);
- I.eraseFromParent();
- }
- };
- } // namespace
- bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
- // Match insert into fixed vector of scalar value.
- // TODO: Handle non-zero insert index.
- auto *Ty = dyn_cast<FixedVectorType>(I.getType());
- Value *Scalar;
- if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
- !Scalar->hasOneUse())
- return false;
- // Optionally match an extract from another vector.
- Value *X;
- bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
- if (!HasExtract)
- X = Scalar;
- // Match source value as load of scalar or vector.
- // Do not vectorize scalar load (widening) if atomic/volatile or under
- // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
- // or create data races non-existent in the source.
- auto *Load = dyn_cast<LoadInst>(X);
- if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
- Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
- mustSuppressSpeculation(*Load))
- return false;
- const DataLayout &DL = I.getModule()->getDataLayout();
- Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
- assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
- unsigned AS = Load->getPointerAddressSpace();
- // We are potentially transforming byte-sized (8-bit) memory accesses, so make
- // sure we have all of our type-based constraints in place for this target.
- Type *ScalarTy = Scalar->getType();
- uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
- unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
- if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
- ScalarSize % 8 != 0)
- return false;
- // Check safety of replacing the scalar load with a larger vector load.
- // We use minimal alignment (maximum flexibility) because we only care about
- // the dereferenceable region. When calculating cost and creating a new op,
- // we may use a larger value based on alignment attributes.
- unsigned MinVecNumElts = MinVectorSize / ScalarSize;
- auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
- unsigned OffsetEltIndex = 0;
- Align Alignment = Load->getAlign();
- if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
- // It is not safe to load directly from the pointer, but we can still peek
- // through gep offsets and check if it safe to load from a base address with
- // updated alignment. If it is, we can shuffle the element(s) into place
- // after loading.
- unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
- APInt Offset(OffsetBitWidth, 0);
- SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
- // We want to shuffle the result down from a high element of a vector, so
- // the offset must be positive.
- if (Offset.isNegative())
- return false;
- // The offset must be a multiple of the scalar element to shuffle cleanly
- // in the element's size.
- uint64_t ScalarSizeInBytes = ScalarSize / 8;
- if (Offset.urem(ScalarSizeInBytes) != 0)
- return false;
- // If we load MinVecNumElts, will our target element still be loaded?
- OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
- if (OffsetEltIndex >= MinVecNumElts)
- return false;
- if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
- return false;
- // Update alignment with offset value. Note that the offset could be negated
- // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
- // negation does not change the result of the alignment calculation.
- Alignment = commonAlignment(Alignment, Offset.getZExtValue());
- }
- // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
- // Use the greater of the alignment on the load or its source pointer.
- Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
- Type *LoadTy = Load->getType();
- InstructionCost OldCost =
- TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
- APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
- OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
- /* Insert */ true, HasExtract);
- // New pattern: load VecPtr
- InstructionCost NewCost =
- TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
- // Optionally, we are shuffling the loaded vector element(s) into place.
- // For the mask set everything but element 0 to undef to prevent poison from
- // propagating from the extra loaded memory. This will also optionally
- // shrink/grow the vector from the loaded size to the output size.
- // We assume this operation has no cost in codegen if there was no offset.
- // Note that we could use freeze to avoid poison problems, but then we might
- // still need a shuffle to change the vector size.
- unsigned OutputNumElts = Ty->getNumElements();
- SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
- assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
- Mask[0] = OffsetEltIndex;
- if (OffsetEltIndex)
- NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
- // We can aggressively convert to the vector form because the backend can
- // invert this transform if it does not result in a performance win.
- if (OldCost < NewCost || !NewCost.isValid())
- return false;
- // It is safe and potentially profitable to load a vector directly:
- // inselt undef, load Scalar, 0 --> load VecPtr
- IRBuilder<> Builder(Load);
- Value *CastedPtr = Builder.CreatePointerBitCastOrAddrSpaceCast(
- SrcPtr, MinVecTy->getPointerTo(AS));
- Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
- VecLd = Builder.CreateShuffleVector(VecLd, Mask);
- replaceValue(I, *VecLd);
- ++NumVecLoad;
- return true;
- }
- /// Determine which, if any, of the inputs should be replaced by a shuffle
- /// followed by extract from a different index.
- ExtractElementInst *VectorCombine::getShuffleExtract(
- ExtractElementInst *Ext0, ExtractElementInst *Ext1,
- unsigned PreferredExtractIndex = InvalidIndex) const {
- assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
- isa<ConstantInt>(Ext1->getIndexOperand()) &&
- "Expected constant extract indexes");
- unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
- unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
- // If the extract indexes are identical, no shuffle is needed.
- if (Index0 == Index1)
- return nullptr;
- Type *VecTy = Ext0->getVectorOperand()->getType();
- assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
- InstructionCost Cost0 =
- TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
- InstructionCost Cost1 =
- TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
- // If both costs are invalid no shuffle is needed
- if (!Cost0.isValid() && !Cost1.isValid())
- return nullptr;
- // We are extracting from 2 different indexes, so one operand must be shuffled
- // before performing a vector operation and/or extract. The more expensive
- // extract will be replaced by a shuffle.
- if (Cost0 > Cost1)
- return Ext0;
- if (Cost1 > Cost0)
- return Ext1;
- // If the costs are equal and there is a preferred extract index, shuffle the
- // opposite operand.
- if (PreferredExtractIndex == Index0)
- return Ext1;
- if (PreferredExtractIndex == Index1)
- return Ext0;
- // Otherwise, replace the extract with the higher index.
- return Index0 > Index1 ? Ext0 : Ext1;
- }
- /// Compare the relative costs of 2 extracts followed by scalar operation vs.
- /// vector operation(s) followed by extract. Return true if the existing
- /// instructions are cheaper than a vector alternative. Otherwise, return false
- /// and if one of the extracts should be transformed to a shufflevector, set
- /// \p ConvertToShuffle to that extract instruction.
- bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
- ExtractElementInst *Ext1,
- const Instruction &I,
- ExtractElementInst *&ConvertToShuffle,
- unsigned PreferredExtractIndex) {
- assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
- isa<ConstantInt>(Ext1->getOperand(1)) &&
- "Expected constant extract indexes");
- unsigned Opcode = I.getOpcode();
- Type *ScalarTy = Ext0->getType();
- auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
- InstructionCost ScalarOpCost, VectorOpCost;
- // Get cost estimates for scalar and vector versions of the operation.
- bool IsBinOp = Instruction::isBinaryOp(Opcode);
- if (IsBinOp) {
- ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
- VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
- } else {
- assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
- "Expected a compare");
- CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
- ScalarOpCost = TTI.getCmpSelInstrCost(
- Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
- VectorOpCost = TTI.getCmpSelInstrCost(
- Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
- }
- // Get cost estimates for the extract elements. These costs will factor into
- // both sequences.
- unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
- unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
- InstructionCost Extract0Cost =
- TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
- InstructionCost Extract1Cost =
- TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
- // A more expensive extract will always be replaced by a splat shuffle.
- // For example, if Ext0 is more expensive:
- // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
- // extelt (opcode (splat V0, Ext0), V1), Ext1
- // TODO: Evaluate whether that always results in lowest cost. Alternatively,
- // check the cost of creating a broadcast shuffle and shuffling both
- // operands to element 0.
- InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
- // Extra uses of the extracts mean that we include those costs in the
- // vector total because those instructions will not be eliminated.
- InstructionCost OldCost, NewCost;
- if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
- // Handle a special case. If the 2 extracts are identical, adjust the
- // formulas to account for that. The extra use charge allows for either the
- // CSE'd pattern or an unoptimized form with identical values:
- // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
- bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
- : !Ext0->hasOneUse() || !Ext1->hasOneUse();
- OldCost = CheapExtractCost + ScalarOpCost;
- NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
- } else {
- // Handle the general case. Each extract is actually a different value:
- // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
- OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
- NewCost = VectorOpCost + CheapExtractCost +
- !Ext0->hasOneUse() * Extract0Cost +
- !Ext1->hasOneUse() * Extract1Cost;
- }
- ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
- if (ConvertToShuffle) {
- if (IsBinOp && DisableBinopExtractShuffle)
- return true;
- // If we are extracting from 2 different indexes, then one operand must be
- // shuffled before performing the vector operation. The shuffle mask is
- // undefined except for 1 lane that is being translated to the remaining
- // extraction lane. Therefore, it is a splat shuffle. Ex:
- // ShufMask = { undef, undef, 0, undef }
- // TODO: The cost model has an option for a "broadcast" shuffle
- // (splat-from-element-0), but no option for a more general splat.
- NewCost +=
- TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
- }
- // Aggressively form a vector op if the cost is equal because the transform
- // may enable further optimization.
- // Codegen can reverse this transform (scalarize) if it was not profitable.
- return OldCost < NewCost;
- }
- /// Create a shuffle that translates (shifts) 1 element from the input vector
- /// to a new element location.
- static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
- unsigned NewIndex, IRBuilder<> &Builder) {
- // The shuffle mask is undefined except for 1 lane that is being translated
- // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
- // ShufMask = { 2, undef, undef, undef }
- auto *VecTy = cast<FixedVectorType>(Vec->getType());
- SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
- ShufMask[NewIndex] = OldIndex;
- return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
- }
- /// Given an extract element instruction with constant index operand, shuffle
- /// the source vector (shift the scalar element) to a NewIndex for extraction.
- /// Return null if the input can be constant folded, so that we are not creating
- /// unnecessary instructions.
- static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
- unsigned NewIndex,
- IRBuilder<> &Builder) {
- // If the extract can be constant-folded, this code is unsimplified. Defer
- // to other passes to handle that.
- Value *X = ExtElt->getVectorOperand();
- Value *C = ExtElt->getIndexOperand();
- assert(isa<ConstantInt>(C) && "Expected a constant index operand");
- if (isa<Constant>(X))
- return nullptr;
- Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
- NewIndex, Builder);
- return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
- }
- /// Try to reduce extract element costs by converting scalar compares to vector
- /// compares followed by extract.
- /// cmp (ext0 V0, C), (ext1 V1, C)
- void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
- ExtractElementInst *Ext1, Instruction &I) {
- assert(isa<CmpInst>(&I) && "Expected a compare");
- assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
- cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
- "Expected matching constant extract indexes");
- // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
- ++NumVecCmp;
- CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
- Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
- Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
- Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
- replaceValue(I, *NewExt);
- }
- /// Try to reduce extract element costs by converting scalar binops to vector
- /// binops followed by extract.
- /// bo (ext0 V0, C), (ext1 V1, C)
- void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
- ExtractElementInst *Ext1, Instruction &I) {
- assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
- assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
- cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
- "Expected matching constant extract indexes");
- // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
- ++NumVecBO;
- Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
- Value *VecBO =
- Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
- // All IR flags are safe to back-propagate because any potential poison
- // created in unused vector elements is discarded by the extract.
- if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
- VecBOInst->copyIRFlags(&I);
- Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
- replaceValue(I, *NewExt);
- }
- /// Match an instruction with extracted vector operands.
- bool VectorCombine::foldExtractExtract(Instruction &I) {
- // It is not safe to transform things like div, urem, etc. because we may
- // create undefined behavior when executing those on unknown vector elements.
- if (!isSafeToSpeculativelyExecute(&I))
- return false;
- Instruction *I0, *I1;
- CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
- if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
- !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
- return false;
- Value *V0, *V1;
- uint64_t C0, C1;
- if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
- !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
- V0->getType() != V1->getType())
- return false;
- // If the scalar value 'I' is going to be re-inserted into a vector, then try
- // to create an extract to that same element. The extract/insert can be
- // reduced to a "select shuffle".
- // TODO: If we add a larger pattern match that starts from an insert, this
- // probably becomes unnecessary.
- auto *Ext0 = cast<ExtractElementInst>(I0);
- auto *Ext1 = cast<ExtractElementInst>(I1);
- uint64_t InsertIndex = InvalidIndex;
- if (I.hasOneUse())
- match(I.user_back(),
- m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
- ExtractElementInst *ExtractToChange;
- if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
- return false;
- if (ExtractToChange) {
- unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
- ExtractElementInst *NewExtract =
- translateExtract(ExtractToChange, CheapExtractIdx, Builder);
- if (!NewExtract)
- return false;
- if (ExtractToChange == Ext0)
- Ext0 = NewExtract;
- else
- Ext1 = NewExtract;
- }
- if (Pred != CmpInst::BAD_ICMP_PREDICATE)
- foldExtExtCmp(Ext0, Ext1, I);
- else
- foldExtExtBinop(Ext0, Ext1, I);
- Worklist.push(Ext0);
- Worklist.push(Ext1);
- return true;
- }
- /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
- /// destination type followed by shuffle. This can enable further transforms by
- /// moving bitcasts or shuffles together.
- bool VectorCombine::foldBitcastShuf(Instruction &I) {
- Value *V;
- ArrayRef<int> Mask;
- if (!match(&I, m_BitCast(
- m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
- return false;
- // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
- // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
- // mask for scalable type is a splat or not.
- // 2) Disallow non-vector casts and length-changing shuffles.
- // TODO: We could allow any shuffle.
- auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
- auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
- if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
- return false;
- unsigned DestNumElts = DestTy->getNumElements();
- unsigned SrcNumElts = SrcTy->getNumElements();
- SmallVector<int, 16> NewMask;
- if (SrcNumElts <= DestNumElts) {
- // The bitcast is from wide to narrow/equal elements. The shuffle mask can
- // always be expanded to the equivalent form choosing narrower elements.
- assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
- unsigned ScaleFactor = DestNumElts / SrcNumElts;
- narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
- } else {
- // The bitcast is from narrow elements to wide elements. The shuffle mask
- // must choose consecutive elements to allow casting first.
- assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
- unsigned ScaleFactor = SrcNumElts / DestNumElts;
- if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
- return false;
- }
- // The new shuffle must not cost more than the old shuffle. The bitcast is
- // moved ahead of the shuffle, so assume that it has the same cost as before.
- InstructionCost DestCost = TTI.getShuffleCost(
- TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
- InstructionCost SrcCost =
- TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
- if (DestCost > SrcCost || !DestCost.isValid())
- return false;
- // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
- ++NumShufOfBitcast;
- Value *CastV = Builder.CreateBitCast(V, DestTy);
- Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
- replaceValue(I, *Shuf);
- return true;
- }
- /// Match a vector binop or compare instruction with at least one inserted
- /// scalar operand and convert to scalar binop/cmp followed by insertelement.
- bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
- CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
- Value *Ins0, *Ins1;
- if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
- !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
- return false;
- // Do not convert the vector condition of a vector select into a scalar
- // condition. That may cause problems for codegen because of differences in
- // boolean formats and register-file transfers.
- // TODO: Can we account for that in the cost model?
- bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
- if (IsCmp)
- for (User *U : I.users())
- if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
- return false;
- // Match against one or both scalar values being inserted into constant
- // vectors:
- // vec_op VecC0, (inselt VecC1, V1, Index)
- // vec_op (inselt VecC0, V0, Index), VecC1
- // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
- // TODO: Deal with mismatched index constants and variable indexes?
- Constant *VecC0 = nullptr, *VecC1 = nullptr;
- Value *V0 = nullptr, *V1 = nullptr;
- uint64_t Index0 = 0, Index1 = 0;
- if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
- m_ConstantInt(Index0))) &&
- !match(Ins0, m_Constant(VecC0)))
- return false;
- if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
- m_ConstantInt(Index1))) &&
- !match(Ins1, m_Constant(VecC1)))
- return false;
- bool IsConst0 = !V0;
- bool IsConst1 = !V1;
- if (IsConst0 && IsConst1)
- return false;
- if (!IsConst0 && !IsConst1 && Index0 != Index1)
- return false;
- // Bail for single insertion if it is a load.
- // TODO: Handle this once getVectorInstrCost can cost for load/stores.
- auto *I0 = dyn_cast_or_null<Instruction>(V0);
- auto *I1 = dyn_cast_or_null<Instruction>(V1);
- if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
- (IsConst1 && I0 && I0->mayReadFromMemory()))
- return false;
- uint64_t Index = IsConst0 ? Index1 : Index0;
- Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
- Type *VecTy = I.getType();
- assert(VecTy->isVectorTy() &&
- (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
- (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
- ScalarTy->isPointerTy()) &&
- "Unexpected types for insert element into binop or cmp");
- unsigned Opcode = I.getOpcode();
- InstructionCost ScalarOpCost, VectorOpCost;
- if (IsCmp) {
- CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
- ScalarOpCost = TTI.getCmpSelInstrCost(
- Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
- VectorOpCost = TTI.getCmpSelInstrCost(
- Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
- } else {
- ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
- VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
- }
- // Get cost estimate for the insert element. This cost will factor into
- // both sequences.
- InstructionCost InsertCost =
- TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
- InstructionCost OldCost =
- (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
- InstructionCost NewCost = ScalarOpCost + InsertCost +
- (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
- (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
- // We want to scalarize unless the vector variant actually has lower cost.
- if (OldCost < NewCost || !NewCost.isValid())
- return false;
- // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
- // inselt NewVecC, (scalar_op V0, V1), Index
- if (IsCmp)
- ++NumScalarCmp;
- else
- ++NumScalarBO;
- // For constant cases, extract the scalar element, this should constant fold.
- if (IsConst0)
- V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
- if (IsConst1)
- V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
- Value *Scalar =
- IsCmp ? Builder.CreateCmp(Pred, V0, V1)
- : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
- Scalar->setName(I.getName() + ".scalar");
- // All IR flags are safe to back-propagate. There is no potential for extra
- // poison to be created by the scalar instruction.
- if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
- ScalarInst->copyIRFlags(&I);
- // Fold the vector constants in the original vectors into a new base vector.
- Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
- : ConstantExpr::get(Opcode, VecC0, VecC1);
- Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
- replaceValue(I, *Insert);
- return true;
- }
- /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
- /// a vector into vector operations followed by extract. Note: The SLP pass
- /// may miss this pattern because of implementation problems.
- bool VectorCombine::foldExtractedCmps(Instruction &I) {
- // We are looking for a scalar binop of booleans.
- // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
- if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
- return false;
- // The compare predicates should match, and each compare should have a
- // constant operand.
- // TODO: Relax the one-use constraints.
- Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
- Instruction *I0, *I1;
- Constant *C0, *C1;
- CmpInst::Predicate P0, P1;
- if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
- !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
- P0 != P1)
- return false;
- // The compare operands must be extracts of the same vector with constant
- // extract indexes.
- // TODO: Relax the one-use constraints.
- Value *X;
- uint64_t Index0, Index1;
- if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
- !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
- return false;
- auto *Ext0 = cast<ExtractElementInst>(I0);
- auto *Ext1 = cast<ExtractElementInst>(I1);
- ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
- if (!ConvertToShuf)
- return false;
- // The original scalar pattern is:
- // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
- CmpInst::Predicate Pred = P0;
- unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
- : Instruction::ICmp;
- auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
- if (!VecTy)
- return false;
- InstructionCost OldCost =
- TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
- OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
- OldCost +=
- TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
- CmpInst::makeCmpResultType(I0->getType()), Pred) *
- 2;
- OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
- // The proposed vector pattern is:
- // vcmp = cmp Pred X, VecC
- // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
- int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
- int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
- auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
- InstructionCost NewCost = TTI.getCmpSelInstrCost(
- CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
- SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
- ShufMask[CheapIndex] = ExpensiveIndex;
- NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
- ShufMask);
- NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
- NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
- // Aggressively form vector ops if the cost is equal because the transform
- // may enable further optimization.
- // Codegen can reverse this transform (scalarize) if it was not profitable.
- if (OldCost < NewCost || !NewCost.isValid())
- return false;
- // Create a vector constant from the 2 scalar constants.
- SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
- UndefValue::get(VecTy->getElementType()));
- CmpC[Index0] = C0;
- CmpC[Index1] = C1;
- Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
- Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
- Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
- VCmp, Shuf);
- Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
- replaceValue(I, *NewExt);
- ++NumVecCmpBO;
- return true;
- }
- // Check if memory loc modified between two instrs in the same BB
- static bool isMemModifiedBetween(BasicBlock::iterator Begin,
- BasicBlock::iterator End,
- const MemoryLocation &Loc, AAResults &AA) {
- unsigned NumScanned = 0;
- return std::any_of(Begin, End, [&](const Instruction &Instr) {
- return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
- ++NumScanned > MaxInstrsToScan;
- });
- }
- /// Helper class to indicate whether a vector index can be safely scalarized and
- /// if a freeze needs to be inserted.
- class ScalarizationResult {
- enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
- StatusTy Status;
- Value *ToFreeze;
- ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
- : Status(Status), ToFreeze(ToFreeze) {}
- public:
- ScalarizationResult(const ScalarizationResult &Other) = default;
- ~ScalarizationResult() {
- assert(!ToFreeze && "freeze() not called with ToFreeze being set");
- }
- static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
- static ScalarizationResult safe() { return {StatusTy::Safe}; }
- static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
- return {StatusTy::SafeWithFreeze, ToFreeze};
- }
- /// Returns true if the index can be scalarize without requiring a freeze.
- bool isSafe() const { return Status == StatusTy::Safe; }
- /// Returns true if the index cannot be scalarized.
- bool isUnsafe() const { return Status == StatusTy::Unsafe; }
- /// Returns true if the index can be scalarize, but requires inserting a
- /// freeze.
- bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
- /// Reset the state of Unsafe and clear ToFreze if set.
- void discard() {
- ToFreeze = nullptr;
- Status = StatusTy::Unsafe;
- }
- /// Freeze the ToFreeze and update the use in \p User to use it.
- void freeze(IRBuilder<> &Builder, Instruction &UserI) {
- assert(isSafeWithFreeze() &&
- "should only be used when freezing is required");
- assert(is_contained(ToFreeze->users(), &UserI) &&
- "UserI must be a user of ToFreeze");
- IRBuilder<>::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(cast<Instruction>(&UserI));
- Value *Frozen =
- Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
- for (Use &U : make_early_inc_range((UserI.operands())))
- if (U.get() == ToFreeze)
- U.set(Frozen);
- ToFreeze = nullptr;
- }
- };
- /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
- /// Idx. \p Idx must access a valid vector element.
- static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
- Value *Idx, Instruction *CtxI,
- AssumptionCache &AC,
- const DominatorTree &DT) {
- if (auto *C = dyn_cast<ConstantInt>(Idx)) {
- if (C->getValue().ult(VecTy->getNumElements()))
- return ScalarizationResult::safe();
- return ScalarizationResult::unsafe();
- }
- unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
- APInt Zero(IntWidth, 0);
- APInt MaxElts(IntWidth, VecTy->getNumElements());
- ConstantRange ValidIndices(Zero, MaxElts);
- ConstantRange IdxRange(IntWidth, true);
- if (isGuaranteedNotToBePoison(Idx, &AC)) {
- if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
- true, &AC, CtxI, &DT)))
- return ScalarizationResult::safe();
- return ScalarizationResult::unsafe();
- }
- // If the index may be poison, check if we can insert a freeze before the
- // range of the index is restricted.
- Value *IdxBase;
- ConstantInt *CI;
- if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
- IdxRange = IdxRange.binaryAnd(CI->getValue());
- } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
- IdxRange = IdxRange.urem(CI->getValue());
- }
- if (ValidIndices.contains(IdxRange))
- return ScalarizationResult::safeWithFreeze(IdxBase);
- return ScalarizationResult::unsafe();
- }
- /// The memory operation on a vector of \p ScalarType had alignment of
- /// \p VectorAlignment. Compute the maximal, but conservatively correct,
- /// alignment that will be valid for the memory operation on a single scalar
- /// element of the same type with index \p Idx.
- static Align computeAlignmentAfterScalarization(Align VectorAlignment,
- Type *ScalarType, Value *Idx,
- const DataLayout &DL) {
- if (auto *C = dyn_cast<ConstantInt>(Idx))
- return commonAlignment(VectorAlignment,
- C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
- return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
- }
- // Combine patterns like:
- // %0 = load <4 x i32>, <4 x i32>* %a
- // %1 = insertelement <4 x i32> %0, i32 %b, i32 1
- // store <4 x i32> %1, <4 x i32>* %a
- // to:
- // %0 = bitcast <4 x i32>* %a to i32*
- // %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
- // store i32 %b, i32* %1
- bool VectorCombine::foldSingleElementStore(Instruction &I) {
- StoreInst *SI = dyn_cast<StoreInst>(&I);
- if (!SI || !SI->isSimple() ||
- !isa<FixedVectorType>(SI->getValueOperand()->getType()))
- return false;
- // TODO: Combine more complicated patterns (multiple insert) by referencing
- // TargetTransformInfo.
- Instruction *Source;
- Value *NewElement;
- Value *Idx;
- if (!match(SI->getValueOperand(),
- m_InsertElt(m_Instruction(Source), m_Value(NewElement),
- m_Value(Idx))))
- return false;
- if (auto *Load = dyn_cast<LoadInst>(Source)) {
- auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
- const DataLayout &DL = I.getModule()->getDataLayout();
- Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
- // Don't optimize for atomic/volatile load or store. Ensure memory is not
- // modified between, vector type matches store size, and index is inbounds.
- if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
- !DL.typeSizeEqualsStoreSize(Load->getType()) ||
- SrcAddr != SI->getPointerOperand()->stripPointerCasts())
- return false;
- auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
- if (ScalarizableIdx.isUnsafe() ||
- isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
- MemoryLocation::get(SI), AA))
- return false;
- if (ScalarizableIdx.isSafeWithFreeze())
- ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
- Value *GEP = Builder.CreateInBoundsGEP(
- SI->getValueOperand()->getType(), SI->getPointerOperand(),
- {ConstantInt::get(Idx->getType(), 0), Idx});
- StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
- NSI->copyMetadata(*SI);
- Align ScalarOpAlignment = computeAlignmentAfterScalarization(
- std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
- DL);
- NSI->setAlignment(ScalarOpAlignment);
- replaceValue(I, *NSI);
- eraseInstruction(I);
- return true;
- }
- return false;
- }
- /// Try to scalarize vector loads feeding extractelement instructions.
- bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
- Value *Ptr;
- if (!match(&I, m_Load(m_Value(Ptr))))
- return false;
- auto *LI = cast<LoadInst>(&I);
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
- return false;
- auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
- if (!FixedVT)
- return false;
- InstructionCost OriginalCost =
- TTI.getMemoryOpCost(Instruction::Load, LI->getType(), LI->getAlign(),
- LI->getPointerAddressSpace());
- InstructionCost ScalarizedCost = 0;
- Instruction *LastCheckedInst = LI;
- unsigned NumInstChecked = 0;
- // Check if all users of the load are extracts with no memory modifications
- // between the load and the extract. Compute the cost of both the original
- // code and the scalarized version.
- for (User *U : LI->users()) {
- auto *UI = dyn_cast<ExtractElementInst>(U);
- if (!UI || UI->getParent() != LI->getParent())
- return false;
- if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
- return false;
- // Check if any instruction between the load and the extract may modify
- // memory.
- if (LastCheckedInst->comesBefore(UI)) {
- for (Instruction &I :
- make_range(std::next(LI->getIterator()), UI->getIterator())) {
- // Bail out if we reached the check limit or the instruction may write
- // to memory.
- if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
- return false;
- NumInstChecked++;
- }
- }
- if (!LastCheckedInst)
- LastCheckedInst = UI;
- else if (LastCheckedInst->comesBefore(UI))
- LastCheckedInst = UI;
- auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
- if (!ScalarIdx.isSafe()) {
- // TODO: Freeze index if it is safe to do so.
- ScalarIdx.discard();
- return false;
- }
- auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
- OriginalCost +=
- TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
- Index ? Index->getZExtValue() : -1);
- ScalarizedCost +=
- TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
- Align(1), LI->getPointerAddressSpace());
- ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
- }
- if (ScalarizedCost >= OriginalCost)
- return false;
- // Replace extracts with narrow scalar loads.
- for (User *U : LI->users()) {
- auto *EI = cast<ExtractElementInst>(U);
- Builder.SetInsertPoint(EI);
- Value *Idx = EI->getOperand(1);
- Value *GEP =
- Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
- auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
- FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
- Align ScalarOpAlignment = computeAlignmentAfterScalarization(
- LI->getAlign(), FixedVT->getElementType(), Idx, DL);
- NewLoad->setAlignment(ScalarOpAlignment);
- replaceValue(*EI, *NewLoad);
- }
- return true;
- }
- /// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
- /// "binop (shuffle), (shuffle)".
- bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
- auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
- if (!VecTy)
- return false;
- BinaryOperator *B0, *B1;
- ArrayRef<int> Mask;
- if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
- m_Mask(Mask))) ||
- B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
- return false;
- // Try to replace a binop with a shuffle if the shuffle is not costly.
- // The new shuffle will choose from a single, common operand, so it may be
- // cheaper than the existing two-operand shuffle.
- SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
- Instruction::BinaryOps Opcode = B0->getOpcode();
- InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
- InstructionCost ShufCost = TTI.getShuffleCost(
- TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
- if (ShufCost > BinopCost)
- return false;
- // If we have something like "add X, Y" and "add Z, X", swap ops to match.
- Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
- Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
- if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
- std::swap(X, Y);
- Value *Shuf0, *Shuf1;
- if (X == Z) {
- // shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
- Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
- Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
- } else if (Y == W) {
- // shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
- Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
- Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
- } else {
- return false;
- }
- Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
- // Intersect flags from the old binops.
- if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
- NewInst->copyIRFlags(B0);
- NewInst->andIRFlags(B1);
- }
- replaceValue(I, *NewBO);
- return true;
- }
- /// This is the entry point for all transforms. Pass manager differences are
- /// handled in the callers of this function.
- bool VectorCombine::run() {
- if (DisableVectorCombine)
- return false;
- // Don't attempt vectorization if the target does not support vectors.
- if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
- return false;
- bool MadeChange = false;
- auto FoldInst = [this, &MadeChange](Instruction &I) {
- Builder.SetInsertPoint(&I);
- if (!ScalarizationOnly) {
- MadeChange |= vectorizeLoadInsert(I);
- MadeChange |= foldExtractExtract(I);
- MadeChange |= foldBitcastShuf(I);
- MadeChange |= foldExtractedCmps(I);
- MadeChange |= foldShuffleOfBinops(I);
- }
- MadeChange |= scalarizeBinopOrCmp(I);
- MadeChange |= scalarizeLoadExtract(I);
- MadeChange |= foldSingleElementStore(I);
- };
- for (BasicBlock &BB : F) {
- // Ignore unreachable basic blocks.
- if (!DT.isReachableFromEntry(&BB))
- continue;
- // Use early increment range so that we can erase instructions in loop.
- for (Instruction &I : make_early_inc_range(BB)) {
- if (I.isDebugOrPseudoInst())
- continue;
- FoldInst(I);
- }
- }
- while (!Worklist.isEmpty()) {
- Instruction *I = Worklist.removeOne();
- if (!I)
- continue;
- if (isInstructionTriviallyDead(I)) {
- eraseInstruction(*I);
- continue;
- }
- FoldInst(*I);
- }
- return MadeChange;
- }
- // Pass manager boilerplate below here.
- namespace {
- class VectorCombineLegacyPass : public FunctionPass {
- public:
- static char ID;
- VectorCombineLegacyPass() : FunctionPass(ID) {
- initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.setPreservesCFG();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<BasicAAWrapperPass>();
- FunctionPass::getAnalysisUsage(AU);
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- VectorCombine Combiner(F, TTI, DT, AA, AC, false);
- return Combiner.run();
- }
- };
- } // namespace
- char VectorCombineLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
- "Optimize scalar/vector ops", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
- "Optimize scalar/vector ops", false, false)
- Pass *llvm::createVectorCombinePass() {
- return new VectorCombineLegacyPass();
- }
- PreservedAnalyses VectorCombinePass::run(Function &F,
- FunctionAnalysisManager &FAM) {
- auto &AC = FAM.getResult<AssumptionAnalysis>(F);
- TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
- DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- AAResults &AA = FAM.getResult<AAManager>(F);
- VectorCombine Combiner(F, TTI, DT, AA, AC, ScalarizationOnly);
- if (!Combiner.run())
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
|