123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478 |
- //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visit functions for add, fadd, sub, and fsub.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/AlignOf.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include <cassert>
- #include <utility>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- namespace {
- /// Class representing coefficient of floating-point addend.
- /// This class needs to be highly efficient, which is especially true for
- /// the constructor. As of I write this comment, the cost of the default
- /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
- /// perform write-merging).
- ///
- class FAddendCoef {
- public:
- // The constructor has to initialize a APFloat, which is unnecessary for
- // most addends which have coefficient either 1 or -1. So, the constructor
- // is expensive. In order to avoid the cost of the constructor, we should
- // reuse some instances whenever possible. The pre-created instances
- // FAddCombine::Add[0-5] embodies this idea.
- FAddendCoef() = default;
- ~FAddendCoef();
- // If possible, don't define operator+/operator- etc because these
- // operators inevitably call FAddendCoef's constructor which is not cheap.
- void operator=(const FAddendCoef &A);
- void operator+=(const FAddendCoef &A);
- void operator*=(const FAddendCoef &S);
- void set(short C) {
- assert(!insaneIntVal(C) && "Insane coefficient");
- IsFp = false; IntVal = C;
- }
- void set(const APFloat& C);
- void negate();
- bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
- Value *getValue(Type *) const;
- bool isOne() const { return isInt() && IntVal == 1; }
- bool isTwo() const { return isInt() && IntVal == 2; }
- bool isMinusOne() const { return isInt() && IntVal == -1; }
- bool isMinusTwo() const { return isInt() && IntVal == -2; }
- private:
- bool insaneIntVal(int V) { return V > 4 || V < -4; }
- APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
- const APFloat *getFpValPtr() const {
- return reinterpret_cast<const APFloat *>(&FpValBuf);
- }
- const APFloat &getFpVal() const {
- assert(IsFp && BufHasFpVal && "Incorret state");
- return *getFpValPtr();
- }
- APFloat &getFpVal() {
- assert(IsFp && BufHasFpVal && "Incorret state");
- return *getFpValPtr();
- }
- bool isInt() const { return !IsFp; }
- // If the coefficient is represented by an integer, promote it to a
- // floating point.
- void convertToFpType(const fltSemantics &Sem);
- // Construct an APFloat from a signed integer.
- // TODO: We should get rid of this function when APFloat can be constructed
- // from an *SIGNED* integer.
- APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
- bool IsFp = false;
- // True iff FpValBuf contains an instance of APFloat.
- bool BufHasFpVal = false;
- // The integer coefficient of an individual addend is either 1 or -1,
- // and we try to simplify at most 4 addends from neighboring at most
- // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
- // is overkill of this end.
- short IntVal = 0;
- AlignedCharArrayUnion<APFloat> FpValBuf;
- };
- /// FAddend is used to represent floating-point addend. An addend is
- /// represented as <C, V>, where the V is a symbolic value, and C is a
- /// constant coefficient. A constant addend is represented as <C, 0>.
- class FAddend {
- public:
- FAddend() = default;
- void operator+=(const FAddend &T) {
- assert((Val == T.Val) && "Symbolic-values disagree");
- Coeff += T.Coeff;
- }
- Value *getSymVal() const { return Val; }
- const FAddendCoef &getCoef() const { return Coeff; }
- bool isConstant() const { return Val == nullptr; }
- bool isZero() const { return Coeff.isZero(); }
- void set(short Coefficient, Value *V) {
- Coeff.set(Coefficient);
- Val = V;
- }
- void set(const APFloat &Coefficient, Value *V) {
- Coeff.set(Coefficient);
- Val = V;
- }
- void set(const ConstantFP *Coefficient, Value *V) {
- Coeff.set(Coefficient->getValueAPF());
- Val = V;
- }
- void negate() { Coeff.negate(); }
- /// Drill down the U-D chain one step to find the definition of V, and
- /// try to break the definition into one or two addends.
- static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
- /// Similar to FAddend::drillDownOneStep() except that the value being
- /// splitted is the addend itself.
- unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
- private:
- void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
- // This addend has the value of "Coeff * Val".
- Value *Val = nullptr;
- FAddendCoef Coeff;
- };
- /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
- /// with its neighboring at most two instructions.
- ///
- class FAddCombine {
- public:
- FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
- Value *simplify(Instruction *FAdd);
- private:
- using AddendVect = SmallVector<const FAddend *, 4>;
- Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
- /// Convert given addend to a Value
- Value *createAddendVal(const FAddend &A, bool& NeedNeg);
- /// Return the number of instructions needed to emit the N-ary addition.
- unsigned calcInstrNumber(const AddendVect& Vect);
- Value *createFSub(Value *Opnd0, Value *Opnd1);
- Value *createFAdd(Value *Opnd0, Value *Opnd1);
- Value *createFMul(Value *Opnd0, Value *Opnd1);
- Value *createFNeg(Value *V);
- Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
- void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
- // Debugging stuff are clustered here.
- #ifndef NDEBUG
- unsigned CreateInstrNum;
- void initCreateInstNum() { CreateInstrNum = 0; }
- void incCreateInstNum() { CreateInstrNum++; }
- #else
- void initCreateInstNum() {}
- void incCreateInstNum() {}
- #endif
- InstCombiner::BuilderTy &Builder;
- Instruction *Instr = nullptr;
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- //
- // Implementation of
- // {FAddendCoef, FAddend, FAddition, FAddCombine}.
- //
- //===----------------------------------------------------------------------===//
- FAddendCoef::~FAddendCoef() {
- if (BufHasFpVal)
- getFpValPtr()->~APFloat();
- }
- void FAddendCoef::set(const APFloat& C) {
- APFloat *P = getFpValPtr();
- if (isInt()) {
- // As the buffer is meanless byte stream, we cannot call
- // APFloat::operator=().
- new(P) APFloat(C);
- } else
- *P = C;
- IsFp = BufHasFpVal = true;
- }
- void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
- if (!isInt())
- return;
- APFloat *P = getFpValPtr();
- if (IntVal > 0)
- new(P) APFloat(Sem, IntVal);
- else {
- new(P) APFloat(Sem, 0 - IntVal);
- P->changeSign();
- }
- IsFp = BufHasFpVal = true;
- }
- APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
- if (Val >= 0)
- return APFloat(Sem, Val);
- APFloat T(Sem, 0 - Val);
- T.changeSign();
- return T;
- }
- void FAddendCoef::operator=(const FAddendCoef &That) {
- if (That.isInt())
- set(That.IntVal);
- else
- set(That.getFpVal());
- }
- void FAddendCoef::operator+=(const FAddendCoef &That) {
- RoundingMode RndMode = RoundingMode::NearestTiesToEven;
- if (isInt() == That.isInt()) {
- if (isInt())
- IntVal += That.IntVal;
- else
- getFpVal().add(That.getFpVal(), RndMode);
- return;
- }
- if (isInt()) {
- const APFloat &T = That.getFpVal();
- convertToFpType(T.getSemantics());
- getFpVal().add(T, RndMode);
- return;
- }
- APFloat &T = getFpVal();
- T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
- }
- void FAddendCoef::operator*=(const FAddendCoef &That) {
- if (That.isOne())
- return;
- if (That.isMinusOne()) {
- negate();
- return;
- }
- if (isInt() && That.isInt()) {
- int Res = IntVal * (int)That.IntVal;
- assert(!insaneIntVal(Res) && "Insane int value");
- IntVal = Res;
- return;
- }
- const fltSemantics &Semantic =
- isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
- if (isInt())
- convertToFpType(Semantic);
- APFloat &F0 = getFpVal();
- if (That.isInt())
- F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
- APFloat::rmNearestTiesToEven);
- else
- F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
- }
- void FAddendCoef::negate() {
- if (isInt())
- IntVal = 0 - IntVal;
- else
- getFpVal().changeSign();
- }
- Value *FAddendCoef::getValue(Type *Ty) const {
- return isInt() ?
- ConstantFP::get(Ty, float(IntVal)) :
- ConstantFP::get(Ty->getContext(), getFpVal());
- }
- // The definition of <Val> Addends
- // =========================================
- // A + B <1, A>, <1,B>
- // A - B <1, A>, <1,B>
- // 0 - B <-1, B>
- // C * A, <C, A>
- // A + C <1, A> <C, NULL>
- // 0 +/- 0 <0, NULL> (corner case)
- //
- // Legend: A and B are not constant, C is constant
- unsigned FAddend::drillValueDownOneStep
- (Value *Val, FAddend &Addend0, FAddend &Addend1) {
- Instruction *I = nullptr;
- if (!Val || !(I = dyn_cast<Instruction>(Val)))
- return 0;
- unsigned Opcode = I->getOpcode();
- if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
- ConstantFP *C0, *C1;
- Value *Opnd0 = I->getOperand(0);
- Value *Opnd1 = I->getOperand(1);
- if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
- Opnd0 = nullptr;
- if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
- Opnd1 = nullptr;
- if (Opnd0) {
- if (!C0)
- Addend0.set(1, Opnd0);
- else
- Addend0.set(C0, nullptr);
- }
- if (Opnd1) {
- FAddend &Addend = Opnd0 ? Addend1 : Addend0;
- if (!C1)
- Addend.set(1, Opnd1);
- else
- Addend.set(C1, nullptr);
- if (Opcode == Instruction::FSub)
- Addend.negate();
- }
- if (Opnd0 || Opnd1)
- return Opnd0 && Opnd1 ? 2 : 1;
- // Both operands are zero. Weird!
- Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
- return 1;
- }
- if (I->getOpcode() == Instruction::FMul) {
- Value *V0 = I->getOperand(0);
- Value *V1 = I->getOperand(1);
- if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
- Addend0.set(C, V1);
- return 1;
- }
- if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
- Addend0.set(C, V0);
- return 1;
- }
- }
- return 0;
- }
- // Try to break *this* addend into two addends. e.g. Suppose this addend is
- // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
- // i.e. <2.3, X> and <2.3, Y>.
- unsigned FAddend::drillAddendDownOneStep
- (FAddend &Addend0, FAddend &Addend1) const {
- if (isConstant())
- return 0;
- unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
- if (!BreakNum || Coeff.isOne())
- return BreakNum;
- Addend0.Scale(Coeff);
- if (BreakNum == 2)
- Addend1.Scale(Coeff);
- return BreakNum;
- }
- Value *FAddCombine::simplify(Instruction *I) {
- assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
- "Expected 'reassoc'+'nsz' instruction");
- // Currently we are not able to handle vector type.
- if (I->getType()->isVectorTy())
- return nullptr;
- assert((I->getOpcode() == Instruction::FAdd ||
- I->getOpcode() == Instruction::FSub) && "Expect add/sub");
- // Save the instruction before calling other member-functions.
- Instr = I;
- FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
- unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
- // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
- unsigned Opnd0_ExpNum = 0;
- unsigned Opnd1_ExpNum = 0;
- if (!Opnd0.isConstant())
- Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
- // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
- if (OpndNum == 2 && !Opnd1.isConstant())
- Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
- // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
- if (Opnd0_ExpNum && Opnd1_ExpNum) {
- AddendVect AllOpnds;
- AllOpnds.push_back(&Opnd0_0);
- AllOpnds.push_back(&Opnd1_0);
- if (Opnd0_ExpNum == 2)
- AllOpnds.push_back(&Opnd0_1);
- if (Opnd1_ExpNum == 2)
- AllOpnds.push_back(&Opnd1_1);
- // Compute instruction quota. We should save at least one instruction.
- unsigned InstQuota = 0;
- Value *V0 = I->getOperand(0);
- Value *V1 = I->getOperand(1);
- InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
- (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
- if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
- return R;
- }
- if (OpndNum != 2) {
- // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
- // splitted into two addends, say "V = X - Y", the instruction would have
- // been optimized into "I = Y - X" in the previous steps.
- //
- const FAddendCoef &CE = Opnd0.getCoef();
- return CE.isOne() ? Opnd0.getSymVal() : nullptr;
- }
- // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
- if (Opnd1_ExpNum) {
- AddendVect AllOpnds;
- AllOpnds.push_back(&Opnd0);
- AllOpnds.push_back(&Opnd1_0);
- if (Opnd1_ExpNum == 2)
- AllOpnds.push_back(&Opnd1_1);
- if (Value *R = simplifyFAdd(AllOpnds, 1))
- return R;
- }
- // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
- if (Opnd0_ExpNum) {
- AddendVect AllOpnds;
- AllOpnds.push_back(&Opnd1);
- AllOpnds.push_back(&Opnd0_0);
- if (Opnd0_ExpNum == 2)
- AllOpnds.push_back(&Opnd0_1);
- if (Value *R = simplifyFAdd(AllOpnds, 1))
- return R;
- }
- return nullptr;
- }
- Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
- unsigned AddendNum = Addends.size();
- assert(AddendNum <= 4 && "Too many addends");
- // For saving intermediate results;
- unsigned NextTmpIdx = 0;
- FAddend TmpResult[3];
- // Simplified addends are placed <SimpVect>.
- AddendVect SimpVect;
- // The outer loop works on one symbolic-value at a time. Suppose the input
- // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
- // The symbolic-values will be processed in this order: x, y, z.
- for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
- const FAddend *ThisAddend = Addends[SymIdx];
- if (!ThisAddend) {
- // This addend was processed before.
- continue;
- }
- Value *Val = ThisAddend->getSymVal();
- // If the resulting expr has constant-addend, this constant-addend is
- // desirable to reside at the top of the resulting expression tree. Placing
- // constant close to super-expr(s) will potentially reveal some
- // optimization opportunities in super-expr(s). Here we do not implement
- // this logic intentionally and rely on SimplifyAssociativeOrCommutative
- // call later.
- unsigned StartIdx = SimpVect.size();
- SimpVect.push_back(ThisAddend);
- // The inner loop collects addends sharing same symbolic-value, and these
- // addends will be later on folded into a single addend. Following above
- // example, if the symbolic value "y" is being processed, the inner loop
- // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
- // be later on folded into "<b1+b2, y>".
- for (unsigned SameSymIdx = SymIdx + 1;
- SameSymIdx < AddendNum; SameSymIdx++) {
- const FAddend *T = Addends[SameSymIdx];
- if (T && T->getSymVal() == Val) {
- // Set null such that next iteration of the outer loop will not process
- // this addend again.
- Addends[SameSymIdx] = nullptr;
- SimpVect.push_back(T);
- }
- }
- // If multiple addends share same symbolic value, fold them together.
- if (StartIdx + 1 != SimpVect.size()) {
- FAddend &R = TmpResult[NextTmpIdx ++];
- R = *SimpVect[StartIdx];
- for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
- R += *SimpVect[Idx];
- // Pop all addends being folded and push the resulting folded addend.
- SimpVect.resize(StartIdx);
- if (!R.isZero()) {
- SimpVect.push_back(&R);
- }
- }
- }
- assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
- "out-of-bound access");
- Value *Result;
- if (!SimpVect.empty())
- Result = createNaryFAdd(SimpVect, InstrQuota);
- else {
- // The addition is folded to 0.0.
- Result = ConstantFP::get(Instr->getType(), 0.0);
- }
- return Result;
- }
- Value *FAddCombine::createNaryFAdd
- (const AddendVect &Opnds, unsigned InstrQuota) {
- assert(!Opnds.empty() && "Expect at least one addend");
- // Step 1: Check if the # of instructions needed exceeds the quota.
- unsigned InstrNeeded = calcInstrNumber(Opnds);
- if (InstrNeeded > InstrQuota)
- return nullptr;
- initCreateInstNum();
- // step 2: Emit the N-ary addition.
- // Note that at most three instructions are involved in Fadd-InstCombine: the
- // addition in question, and at most two neighboring instructions.
- // The resulting optimized addition should have at least one less instruction
- // than the original addition expression tree. This implies that the resulting
- // N-ary addition has at most two instructions, and we don't need to worry
- // about tree-height when constructing the N-ary addition.
- Value *LastVal = nullptr;
- bool LastValNeedNeg = false;
- // Iterate the addends, creating fadd/fsub using adjacent two addends.
- for (const FAddend *Opnd : Opnds) {
- bool NeedNeg;
- Value *V = createAddendVal(*Opnd, NeedNeg);
- if (!LastVal) {
- LastVal = V;
- LastValNeedNeg = NeedNeg;
- continue;
- }
- if (LastValNeedNeg == NeedNeg) {
- LastVal = createFAdd(LastVal, V);
- continue;
- }
- if (LastValNeedNeg)
- LastVal = createFSub(V, LastVal);
- else
- LastVal = createFSub(LastVal, V);
- LastValNeedNeg = false;
- }
- if (LastValNeedNeg) {
- LastVal = createFNeg(LastVal);
- }
- #ifndef NDEBUG
- assert(CreateInstrNum == InstrNeeded &&
- "Inconsistent in instruction numbers");
- #endif
- return LastVal;
- }
- Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder.CreateFSub(Opnd0, Opnd1);
- if (Instruction *I = dyn_cast<Instruction>(V))
- createInstPostProc(I);
- return V;
- }
- Value *FAddCombine::createFNeg(Value *V) {
- Value *NewV = Builder.CreateFNeg(V);
- if (Instruction *I = dyn_cast<Instruction>(NewV))
- createInstPostProc(I, true); // fneg's don't receive instruction numbers.
- return NewV;
- }
- Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
- if (Instruction *I = dyn_cast<Instruction>(V))
- createInstPostProc(I);
- return V;
- }
- Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
- Value *V = Builder.CreateFMul(Opnd0, Opnd1);
- if (Instruction *I = dyn_cast<Instruction>(V))
- createInstPostProc(I);
- return V;
- }
- void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
- NewInstr->setDebugLoc(Instr->getDebugLoc());
- // Keep track of the number of instruction created.
- if (!NoNumber)
- incCreateInstNum();
- // Propagate fast-math flags
- NewInstr->setFastMathFlags(Instr->getFastMathFlags());
- }
- // Return the number of instruction needed to emit the N-ary addition.
- // NOTE: Keep this function in sync with createAddendVal().
- unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
- unsigned OpndNum = Opnds.size();
- unsigned InstrNeeded = OpndNum - 1;
- // The number of addends in the form of "(-1)*x".
- unsigned NegOpndNum = 0;
- // Adjust the number of instructions needed to emit the N-ary add.
- for (const FAddend *Opnd : Opnds) {
- if (Opnd->isConstant())
- continue;
- // The constant check above is really for a few special constant
- // coefficients.
- if (isa<UndefValue>(Opnd->getSymVal()))
- continue;
- const FAddendCoef &CE = Opnd->getCoef();
- if (CE.isMinusOne() || CE.isMinusTwo())
- NegOpndNum++;
- // Let the addend be "c * x". If "c == +/-1", the value of the addend
- // is immediately available; otherwise, it needs exactly one instruction
- // to evaluate the value.
- if (!CE.isMinusOne() && !CE.isOne())
- InstrNeeded++;
- }
- return InstrNeeded;
- }
- // Input Addend Value NeedNeg(output)
- // ================================================================
- // Constant C C false
- // <+/-1, V> V coefficient is -1
- // <2/-2, V> "fadd V, V" coefficient is -2
- // <C, V> "fmul V, C" false
- //
- // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
- Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
- const FAddendCoef &Coeff = Opnd.getCoef();
- if (Opnd.isConstant()) {
- NeedNeg = false;
- return Coeff.getValue(Instr->getType());
- }
- Value *OpndVal = Opnd.getSymVal();
- if (Coeff.isMinusOne() || Coeff.isOne()) {
- NeedNeg = Coeff.isMinusOne();
- return OpndVal;
- }
- if (Coeff.isTwo() || Coeff.isMinusTwo()) {
- NeedNeg = Coeff.isMinusTwo();
- return createFAdd(OpndVal, OpndVal);
- }
- NeedNeg = false;
- return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
- }
- // Checks if any operand is negative and we can convert add to sub.
- // This function checks for following negative patterns
- // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
- // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
- // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
- static Value *checkForNegativeOperand(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- // This function creates 2 instructions to replace ADD, we need at least one
- // of LHS or RHS to have one use to ensure benefit in transform.
- if (!LHS->hasOneUse() && !RHS->hasOneUse())
- return nullptr;
- Value *X = nullptr, *Y = nullptr, *Z = nullptr;
- const APInt *C1 = nullptr, *C2 = nullptr;
- // if ONE is on other side, swap
- if (match(RHS, m_Add(m_Value(X), m_One())))
- std::swap(LHS, RHS);
- if (match(LHS, m_Add(m_Value(X), m_One()))) {
- // if XOR on other side, swap
- if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
- std::swap(X, RHS);
- if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
- // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
- // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
- if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
- Value *NewAnd = Builder.CreateAnd(Z, *C1);
- return Builder.CreateSub(RHS, NewAnd, "sub");
- } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
- // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
- // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
- Value *NewOr = Builder.CreateOr(Z, ~(*C1));
- return Builder.CreateSub(RHS, NewOr, "sub");
- }
- }
- }
- // Restore LHS and RHS
- LHS = I.getOperand(0);
- RHS = I.getOperand(1);
- // if XOR is on other side, swap
- if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
- std::swap(LHS, RHS);
- // C2 is ODD
- // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
- // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
- if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
- if (C1->countTrailingZeros() == 0)
- if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
- Value *NewOr = Builder.CreateOr(Z, ~(*C2));
- return Builder.CreateSub(RHS, NewOr, "sub");
- }
- return nullptr;
- }
- /// Wrapping flags may allow combining constants separated by an extend.
- static Instruction *foldNoWrapAdd(BinaryOperator &Add,
- InstCombiner::BuilderTy &Builder) {
- Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
- Type *Ty = Add.getType();
- Constant *Op1C;
- if (!match(Op1, m_Constant(Op1C)))
- return nullptr;
- // Try this match first because it results in an add in the narrow type.
- // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
- Value *X;
- const APInt *C1, *C2;
- if (match(Op1, m_APInt(C1)) &&
- match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
- C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
- Constant *NewC =
- ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
- return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
- }
- // More general combining of constants in the wide type.
- // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
- Constant *NarrowC;
- if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
- Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
- Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
- Value *WideX = Builder.CreateSExt(X, Ty);
- return BinaryOperator::CreateAdd(WideX, NewC);
- }
- // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
- if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
- Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
- Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
- Value *WideX = Builder.CreateZExt(X, Ty);
- return BinaryOperator::CreateAdd(WideX, NewC);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
- Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
- Constant *Op1C;
- if (!match(Op1, m_ImmConstant(Op1C)))
- return nullptr;
- if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
- return NV;
- Value *X;
- Constant *Op00C;
- // add (sub C1, X), C2 --> sub (add C1, C2), X
- if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
- return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
- Value *Y;
- // add (sub X, Y), -1 --> add (not Y), X
- if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
- match(Op1, m_AllOnes()))
- return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
- // zext(bool) + C -> bool ? C + 1 : C
- if (match(Op0, m_ZExt(m_Value(X))) &&
- X->getType()->getScalarSizeInBits() == 1)
- return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
- // sext(bool) + C -> bool ? C - 1 : C
- if (match(Op0, m_SExt(m_Value(X))) &&
- X->getType()->getScalarSizeInBits() == 1)
- return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
- // ~X + C --> (C-1) - X
- if (match(Op0, m_Not(m_Value(X))))
- return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X);
- const APInt *C;
- if (!match(Op1, m_APInt(C)))
- return nullptr;
- // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
- Constant *Op01C;
- if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) &&
- haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT))
- return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
- // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
- const APInt *C2;
- if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
- return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
- if (C->isSignMask()) {
- // If wrapping is not allowed, then the addition must set the sign bit:
- // X + (signmask) --> X | signmask
- if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
- return BinaryOperator::CreateOr(Op0, Op1);
- // If wrapping is allowed, then the addition flips the sign bit of LHS:
- // X + (signmask) --> X ^ signmask
- return BinaryOperator::CreateXor(Op0, Op1);
- }
- // Is this add the last step in a convoluted sext?
- // add(zext(xor i16 X, -32768), -32768) --> sext X
- Type *Ty = Add.getType();
- if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
- C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
- return CastInst::Create(Instruction::SExt, X, Ty);
- if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
- // (X ^ signmask) + C --> (X + (signmask ^ C))
- if (C2->isSignMask())
- return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
- // If X has no high-bits set above an xor mask:
- // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
- if (C2->isMask()) {
- KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
- if ((*C2 | LHSKnown.Zero).isAllOnes())
- return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
- }
- // Look for a math+logic pattern that corresponds to sext-in-register of a
- // value with cleared high bits. Convert that into a pair of shifts:
- // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
- // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
- if (Op0->hasOneUse() && *C2 == -(*C)) {
- unsigned BitWidth = Ty->getScalarSizeInBits();
- unsigned ShAmt = 0;
- if (C->isPowerOf2())
- ShAmt = BitWidth - C->logBase2() - 1;
- else if (C2->isPowerOf2())
- ShAmt = BitWidth - C2->logBase2() - 1;
- if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
- 0, &Add)) {
- Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
- Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
- return BinaryOperator::CreateAShr(NewShl, ShAmtC);
- }
- }
- }
- if (C->isOne() && Op0->hasOneUse()) {
- // add (sext i1 X), 1 --> zext (not X)
- // TODO: The smallest IR representation is (select X, 0, 1), and that would
- // not require the one-use check. But we need to remove a transform in
- // visitSelect and make sure that IR value tracking for select is equal or
- // better than for these ops.
- if (match(Op0, m_SExt(m_Value(X))) &&
- X->getType()->getScalarSizeInBits() == 1)
- return new ZExtInst(Builder.CreateNot(X), Ty);
- // Shifts and add used to flip and mask off the low bit:
- // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
- const APInt *C3;
- if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
- C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
- Value *NotX = Builder.CreateNot(X);
- return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
- }
- }
- // If all bits affected by the add are included in a high-bit-mask, do the
- // add before the mask op:
- // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00
- if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) &&
- C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) {
- Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C));
- return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2));
- }
- return nullptr;
- }
- // Matches multiplication expression Op * C where C is a constant. Returns the
- // constant value in C and the other operand in Op. Returns true if such a
- // match is found.
- static bool MatchMul(Value *E, Value *&Op, APInt &C) {
- const APInt *AI;
- if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
- C = APInt(AI->getBitWidth(), 1);
- C <<= *AI;
- return true;
- }
- return false;
- }
- // Matches remainder expression Op % C where C is a constant. Returns the
- // constant value in C and the other operand in Op. Returns the signedness of
- // the remainder operation in IsSigned. Returns true if such a match is
- // found.
- static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
- const APInt *AI;
- IsSigned = false;
- if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
- IsSigned = true;
- C = *AI;
- return true;
- }
- if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
- C = *AI + 1;
- return true;
- }
- return false;
- }
- // Matches division expression Op / C with the given signedness as indicated
- // by IsSigned, where C is a constant. Returns the constant value in C and the
- // other operand in Op. Returns true if such a match is found.
- static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
- const APInt *AI;
- if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (!IsSigned) {
- if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
- C = *AI;
- return true;
- }
- if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
- C = APInt(AI->getBitWidth(), 1);
- C <<= *AI;
- return true;
- }
- }
- return false;
- }
- // Returns whether C0 * C1 with the given signedness overflows.
- static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
- bool overflow;
- if (IsSigned)
- (void)C0.smul_ov(C1, overflow);
- else
- (void)C0.umul_ov(C1, overflow);
- return overflow;
- }
- // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
- // does not overflow.
- Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Value *X, *MulOpV;
- APInt C0, MulOpC;
- bool IsSigned;
- // Match I = X % C0 + MulOpV * C0
- if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
- (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
- C0 == MulOpC) {
- Value *RemOpV;
- APInt C1;
- bool Rem2IsSigned;
- // Match MulOpC = RemOpV % C1
- if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
- IsSigned == Rem2IsSigned) {
- Value *DivOpV;
- APInt DivOpC;
- // Match RemOpV = X / C0
- if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
- C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
- Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
- return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
- : Builder.CreateURem(X, NewDivisor, "urem");
- }
- }
- }
- return nullptr;
- }
- /// Fold
- /// (1 << NBits) - 1
- /// Into:
- /// ~(-(1 << NBits))
- /// Because a 'not' is better for bit-tracking analysis and other transforms
- /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
- static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *NBits;
- if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
- return nullptr;
- Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
- Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
- // Be wary of constant folding.
- if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
- // Always NSW. But NUW propagates from `add`.
- BOp->setHasNoSignedWrap();
- BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- }
- return BinaryOperator::CreateNot(NotMask, I.getName());
- }
- static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
- assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
- Type *Ty = I.getType();
- auto getUAddSat = [&]() {
- return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
- };
- // add (umin X, ~Y), Y --> uaddsat X, Y
- Value *X, *Y;
- if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
- m_Deferred(Y))))
- return CallInst::Create(getUAddSat(), { X, Y });
- // add (umin X, ~C), C --> uaddsat X, C
- const APInt *C, *NotC;
- if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
- *C == ~*NotC)
- return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
- return nullptr;
- }
- Instruction *InstCombinerImpl::
- canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
- BinaryOperator &I) {
- assert((I.getOpcode() == Instruction::Add ||
- I.getOpcode() == Instruction::Or ||
- I.getOpcode() == Instruction::Sub) &&
- "Expecting add/or/sub instruction");
- // We have a subtraction/addition between a (potentially truncated) *logical*
- // right-shift of X and a "select".
- Value *X, *Select;
- Instruction *LowBitsToSkip, *Extract;
- if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
- m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
- m_Instruction(Extract))),
- m_Value(Select))))
- return nullptr;
- // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
- if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
- return nullptr;
- Type *XTy = X->getType();
- bool HadTrunc = I.getType() != XTy;
- // If there was a truncation of extracted value, then we'll need to produce
- // one extra instruction, so we need to ensure one instruction will go away.
- if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
- return nullptr;
- // Extraction should extract high NBits bits, with shift amount calculated as:
- // low bits to skip = shift bitwidth - high bits to extract
- // The shift amount itself may be extended, and we need to look past zero-ext
- // when matching NBits, that will matter for matching later.
- Constant *C;
- Value *NBits;
- if (!match(
- LowBitsToSkip,
- m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
- !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
- APInt(C->getType()->getScalarSizeInBits(),
- X->getType()->getScalarSizeInBits()))))
- return nullptr;
- // Sign-extending value can be zero-extended if we `sub`tract it,
- // or sign-extended otherwise.
- auto SkipExtInMagic = [&I](Value *&V) {
- if (I.getOpcode() == Instruction::Sub)
- match(V, m_ZExtOrSelf(m_Value(V)));
- else
- match(V, m_SExtOrSelf(m_Value(V)));
- };
- // Now, finally validate the sign-extending magic.
- // `select` itself may be appropriately extended, look past that.
- SkipExtInMagic(Select);
- ICmpInst::Predicate Pred;
- const APInt *Thr;
- Value *SignExtendingValue, *Zero;
- bool ShouldSignext;
- // It must be a select between two values we will later establish to be a
- // sign-extending value and a zero constant. The condition guarding the
- // sign-extension must be based on a sign bit of the same X we had in `lshr`.
- if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
- m_Value(SignExtendingValue), m_Value(Zero))) ||
- !isSignBitCheck(Pred, *Thr, ShouldSignext))
- return nullptr;
- // icmp-select pair is commutative.
- if (!ShouldSignext)
- std::swap(SignExtendingValue, Zero);
- // If we should not perform sign-extension then we must add/or/subtract zero.
- if (!match(Zero, m_Zero()))
- return nullptr;
- // Otherwise, it should be some constant, left-shifted by the same NBits we
- // had in `lshr`. Said left-shift can also be appropriately extended.
- // Again, we must look past zero-ext when looking for NBits.
- SkipExtInMagic(SignExtendingValue);
- Constant *SignExtendingValueBaseConstant;
- if (!match(SignExtendingValue,
- m_Shl(m_Constant(SignExtendingValueBaseConstant),
- m_ZExtOrSelf(m_Specific(NBits)))))
- return nullptr;
- // If we `sub`, then the constant should be one, else it should be all-ones.
- if (I.getOpcode() == Instruction::Sub
- ? !match(SignExtendingValueBaseConstant, m_One())
- : !match(SignExtendingValueBaseConstant, m_AllOnes()))
- return nullptr;
- auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
- Extract->getName() + ".sext");
- NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
- if (!HadTrunc)
- return NewAShr;
- Builder.Insert(NewAShr);
- return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
- }
- /// This is a specialization of a more general transform from
- /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally
- /// for multi-use cases or propagating nsw/nuw, then we would not need this.
- static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- // TODO: Also handle mul by doubling the shift amount?
- assert((I.getOpcode() == Instruction::Add ||
- I.getOpcode() == Instruction::Sub) &&
- "Expected add/sub");
- auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
- auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
- if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
- return nullptr;
- Value *X, *Y, *ShAmt;
- if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
- !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
- return nullptr;
- // No-wrap propagates only when all ops have no-wrap.
- bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
- Op1->hasNoSignedWrap();
- bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
- Op1->hasNoUnsignedWrap();
- // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
- Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
- if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
- NewI->setHasNoSignedWrap(HasNSW);
- NewI->setHasNoUnsignedWrap(HasNUW);
- }
- auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
- NewShl->setHasNoSignedWrap(HasNSW);
- NewShl->setHasNoUnsignedWrap(HasNUW);
- return NewShl;
- }
- Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
- if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- // (A*B)+(A*C) -> A*(B+C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- if (Instruction *R = factorizeMathWithShlOps(I, Builder))
- return R;
- if (Instruction *X = foldAddWithConstant(I))
- return X;
- if (Instruction *X = foldNoWrapAdd(I, Builder))
- return X;
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- Type *Ty = I.getType();
- if (Ty->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateXor(LHS, RHS);
- // X + X --> X << 1
- if (LHS == RHS) {
- auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
- Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
- Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- return Shl;
- }
- Value *A, *B;
- if (match(LHS, m_Neg(m_Value(A)))) {
- // -A + -B --> -(A + B)
- if (match(RHS, m_Neg(m_Value(B))))
- return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
- // -A + B --> B - A
- return BinaryOperator::CreateSub(RHS, A);
- }
- // A + -B --> A - B
- if (match(RHS, m_Neg(m_Value(B))))
- return BinaryOperator::CreateSub(LHS, B);
- if (Value *V = checkForNegativeOperand(I, Builder))
- return replaceInstUsesWith(I, V);
- // (A + 1) + ~B --> A - B
- // ~B + (A + 1) --> A - B
- // (~B + A) + 1 --> A - B
- // (A + ~B) + 1 --> A - B
- if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
- match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
- return BinaryOperator::CreateSub(A, B);
- // (A + RHS) + RHS --> A + (RHS << 1)
- if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
- return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
- // LHS + (A + LHS) --> A + (LHS << 1)
- if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
- return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
- {
- // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
- Constant *C1, *C2;
- if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
- m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
- (LHS->hasOneUse() || RHS->hasOneUse())) {
- Value *Sub = Builder.CreateSub(A, B);
- return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
- }
- }
- // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
- if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
- // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
- const APInt *C1, *C2;
- if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
- APInt one(C2->getBitWidth(), 1);
- APInt minusC1 = -(*C1);
- if (minusC1 == (one << *C2)) {
- Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
- return BinaryOperator::CreateSRem(RHS, NewRHS);
- }
- }
- // A+B --> A|B iff A and B have no bits set in common.
- if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
- return BinaryOperator::CreateOr(LHS, RHS);
- // add (select X 0 (sub n A)) A --> select X A n
- {
- SelectInst *SI = dyn_cast<SelectInst>(LHS);
- Value *A = RHS;
- if (!SI) {
- SI = dyn_cast<SelectInst>(RHS);
- A = LHS;
- }
- if (SI && SI->hasOneUse()) {
- Value *TV = SI->getTrueValue();
- Value *FV = SI->getFalseValue();
- Value *N;
- // Can we fold the add into the argument of the select?
- // We check both true and false select arguments for a matching subtract.
- if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
- // Fold the add into the true select value.
- return SelectInst::Create(SI->getCondition(), N, A);
- if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
- // Fold the add into the false select value.
- return SelectInst::Create(SI->getCondition(), A, N);
- }
- }
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
- // (add (xor A, B) (and A, B)) --> (or A, B)
- // (add (and A, B) (xor A, B)) --> (or A, B)
- if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
- m_c_And(m_Deferred(A), m_Deferred(B)))))
- return BinaryOperator::CreateOr(A, B);
- // (add (or A, B) (and A, B)) --> (add A, B)
- // (add (and A, B) (or A, B)) --> (add A, B)
- if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
- m_c_And(m_Deferred(A), m_Deferred(B))))) {
- // Replacing operands in-place to preserve nuw/nsw flags.
- replaceOperand(I, 0, A);
- replaceOperand(I, 1, B);
- return &I;
- }
- // TODO(jingyue): Consider willNotOverflowSignedAdd and
- // willNotOverflowUnsignedAdd to reduce the number of invocations of
- // computeKnownBits.
- bool Changed = false;
- if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
- if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
- if (Instruction *V = canonicalizeLowbitMask(I, Builder))
- return V;
- if (Instruction *V =
- canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
- return V;
- if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
- return SatAdd;
- // usub.sat(A, B) + B => umax(A, B)
- if (match(&I, m_c_BinOp(
- m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
- m_Deferred(B)))) {
- return replaceInstUsesWith(I,
- Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
- }
- // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
- if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
- match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
- haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT))
- return replaceInstUsesWith(
- I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
- {Builder.CreateOr(A, B)}));
- return Changed ? &I : nullptr;
- }
- /// Eliminate an op from a linear interpolation (lerp) pattern.
- static Instruction *factorizeLerp(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *X, *Y, *Z;
- if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
- m_OneUse(m_FSub(m_FPOne(),
- m_Value(Z))))),
- m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
- return nullptr;
- // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
- Value *XY = Builder.CreateFSubFMF(X, Y, &I);
- Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
- return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
- }
- /// Factor a common operand out of fadd/fsub of fmul/fdiv.
- static Instruction *factorizeFAddFSub(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert((I.getOpcode() == Instruction::FAdd ||
- I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
- assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
- "FP factorization requires FMF");
- if (Instruction *Lerp = factorizeLerp(I, Builder))
- return Lerp;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (!Op0->hasOneUse() || !Op1->hasOneUse())
- return nullptr;
- Value *X, *Y, *Z;
- bool IsFMul;
- if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
- match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
- (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
- match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
- IsFMul = true;
- else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
- match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
- IsFMul = false;
- else
- return nullptr;
- // (X * Z) + (Y * Z) --> (X + Y) * Z
- // (X * Z) - (Y * Z) --> (X - Y) * Z
- // (X / Z) + (Y / Z) --> (X + Y) / Z
- // (X / Z) - (Y / Z) --> (X - Y) / Z
- bool IsFAdd = I.getOpcode() == Instruction::FAdd;
- Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
- : Builder.CreateFSubFMF(X, Y, &I);
- // Bail out if we just created a denormal constant.
- // TODO: This is copied from a previous implementation. Is it necessary?
- const APFloat *C;
- if (match(XY, m_APFloat(C)) && !C->isNormal())
- return nullptr;
- return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
- : BinaryOperator::CreateFDivFMF(XY, Z, &I);
- }
- Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
- if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
- return FoldedFAdd;
- // (-X) + Y --> Y - X
- Value *X, *Y;
- if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
- return BinaryOperator::CreateFSubFMF(Y, X, &I);
- // Similar to above, but look through fmul/fdiv for the negated term.
- // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
- Value *Z;
- if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
- m_Value(Z)))) {
- Value *XY = Builder.CreateFMulFMF(X, Y, &I);
- return BinaryOperator::CreateFSubFMF(Z, XY, &I);
- }
- // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
- // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
- if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
- m_Value(Z))) ||
- match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
- m_Value(Z)))) {
- Value *XY = Builder.CreateFDivFMF(X, Y, &I);
- return BinaryOperator::CreateFSubFMF(Z, XY, &I);
- }
- // Check for (fadd double (sitofp x), y), see if we can merge this into an
- // integer add followed by a promotion.
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
- Value *LHSIntVal = LHSConv->getOperand(0);
- Type *FPType = LHSConv->getType();
- // TODO: This check is overly conservative. In many cases known bits
- // analysis can tell us that the result of the addition has less significant
- // bits than the integer type can hold.
- auto IsValidPromotion = [](Type *FTy, Type *ITy) {
- Type *FScalarTy = FTy->getScalarType();
- Type *IScalarTy = ITy->getScalarType();
- // Do we have enough bits in the significand to represent the result of
- // the integer addition?
- unsigned MaxRepresentableBits =
- APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
- return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
- };
- // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
- // ... if the constant fits in the integer value. This is useful for things
- // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
- // requires a constant pool load, and generally allows the add to be better
- // instcombined.
- if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
- if (IsValidPromotion(FPType, LHSIntVal->getType())) {
- Constant *CI =
- ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
- if (LHSConv->hasOneUse() &&
- ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
- willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
- // Insert the new integer add.
- Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
- return new SIToFPInst(NewAdd, I.getType());
- }
- }
- // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
- if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
- Value *RHSIntVal = RHSConv->getOperand(0);
- // It's enough to check LHS types only because we require int types to
- // be the same for this transform.
- if (IsValidPromotion(FPType, LHSIntVal->getType())) {
- // Only do this if x/y have the same type, if at least one of them has a
- // single use (so we don't increase the number of int->fp conversions),
- // and if the integer add will not overflow.
- if (LHSIntVal->getType() == RHSIntVal->getType() &&
- (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
- willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
- // Insert the new integer add.
- Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
- return new SIToFPInst(NewAdd, I.getType());
- }
- }
- }
- }
- // Handle specials cases for FAdd with selects feeding the operation
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
- return replaceInstUsesWith(I, V);
- if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
- if (Instruction *F = factorizeFAddFSub(I, Builder))
- return F;
- // Try to fold fadd into start value of reduction intrinsic.
- if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
- m_AnyZeroFP(), m_Value(X))),
- m_Value(Y)))) {
- // fadd (rdx 0.0, X), Y --> rdx Y, X
- return replaceInstUsesWith(
- I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
- {X->getType()}, {Y, X}, &I));
- }
- const APFloat *StartC, *C;
- if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
- m_APFloat(StartC), m_Value(X)))) &&
- match(RHS, m_APFloat(C))) {
- // fadd (rdx StartC, X), C --> rdx (C + StartC), X
- Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
- return replaceInstUsesWith(
- I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
- {X->getType()}, {NewStartC, X}, &I));
- }
- // (X * MulC) + X --> X * (MulC + 1.0)
- Constant *MulC;
- if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
- m_Deferred(X)))) {
- MulC = ConstantExpr::getFAdd(MulC, ConstantFP::get(I.getType(), 1.0));
- return BinaryOperator::CreateFMulFMF(X, MulC, &I);
- }
- if (Value *V = FAddCombine(Builder).simplify(&I))
- return replaceInstUsesWith(I, V);
- }
- return nullptr;
- }
- /// Optimize pointer differences into the same array into a size. Consider:
- /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
- /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
- Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
- Type *Ty, bool IsNUW) {
- // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
- // this.
- bool Swapped = false;
- GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
- if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
- std::swap(LHS, RHS);
- Swapped = true;
- }
- // Require at least one GEP with a common base pointer on both sides.
- if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
- // (gep X, ...) - X
- if (LHSGEP->getOperand(0) == RHS) {
- GEP1 = LHSGEP;
- } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
- // (gep X, ...) - (gep X, ...)
- if (LHSGEP->getOperand(0)->stripPointerCasts() ==
- RHSGEP->getOperand(0)->stripPointerCasts()) {
- GEP1 = LHSGEP;
- GEP2 = RHSGEP;
- }
- }
- }
- if (!GEP1)
- return nullptr;
- if (GEP2) {
- // (gep X, ...) - (gep X, ...)
- //
- // Avoid duplicating the arithmetic if there are more than one non-constant
- // indices between the two GEPs and either GEP has a non-constant index and
- // multiple users. If zero non-constant index, the result is a constant and
- // there is no duplication. If one non-constant index, the result is an add
- // or sub with a constant, which is no larger than the original code, and
- // there's no duplicated arithmetic, even if either GEP has multiple
- // users. If more than one non-constant indices combined, as long as the GEP
- // with at least one non-constant index doesn't have multiple users, there
- // is no duplication.
- unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
- unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
- if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
- ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
- (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
- return nullptr;
- }
- }
- // Emit the offset of the GEP and an intptr_t.
- Value *Result = EmitGEPOffset(GEP1);
- // If this is a single inbounds GEP and the original sub was nuw,
- // then the final multiplication is also nuw.
- if (auto *I = dyn_cast<Instruction>(Result))
- if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() &&
- I->getOpcode() == Instruction::Mul)
- I->setHasNoUnsignedWrap();
- // If we have a 2nd GEP of the same base pointer, subtract the offsets.
- // If both GEPs are inbounds, then the subtract does not have signed overflow.
- if (GEP2) {
- Value *Offset = EmitGEPOffset(GEP2);
- Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
- GEP1->isInBounds() && GEP2->isInBounds());
- }
- // If we have p - gep(p, ...) then we have to negate the result.
- if (Swapped)
- Result = Builder.CreateNeg(Result, "diff.neg");
- return Builder.CreateIntCast(Result, Ty, true);
- }
- Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
- if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // If this is a 'B = x-(-A)', change to B = x+A.
- // We deal with this without involving Negator to preserve NSW flag.
- if (Value *V = dyn_castNegVal(Op1)) {
- BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
- if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
- assert(BO->getOpcode() == Instruction::Sub &&
- "Expected a subtraction operator!");
- if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
- Res->setHasNoSignedWrap(true);
- } else {
- if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
- Res->setHasNoSignedWrap(true);
- }
- return Res;
- }
- // Try this before Negator to preserve NSW flag.
- if (Instruction *R = factorizeMathWithShlOps(I, Builder))
- return R;
- Constant *C;
- if (match(Op0, m_ImmConstant(C))) {
- Value *X;
- Constant *C2;
- // C-(X+C2) --> (C-C2)-X
- if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2))))
- return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
- }
- auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
- bool Changed = false;
- if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
- if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
- return Changed ? &I : nullptr;
- };
- // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
- // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
- // a pure negation used by a select that looks like abs/nabs.
- bool IsNegation = match(Op0, m_ZeroInt());
- if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
- const Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI)
- return false;
- return match(UI,
- m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
- match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
- })) {
- if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this))
- return BinaryOperator::CreateAdd(NegOp1, Op0);
- }
- if (IsNegation)
- return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
- // (A*B)-(A*C) -> A*(B-C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- if (I.getType()->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateXor(Op0, Op1);
- // Replace (-1 - A) with (~A).
- if (match(Op0, m_AllOnes()))
- return BinaryOperator::CreateNot(Op1);
- // (X + -1) - Y --> ~Y + X
- Value *X, *Y;
- if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
- return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
- // Reassociate sub/add sequences to create more add instructions and
- // reduce dependency chains:
- // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
- Value *Z;
- if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
- m_Value(Z))))) {
- Value *XZ = Builder.CreateAdd(X, Z);
- Value *YW = Builder.CreateAdd(Y, Op1);
- return BinaryOperator::CreateSub(XZ, YW);
- }
- // ((X - Y) - Op1) --> X - (Y + Op1)
- if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
- Value *Add = Builder.CreateAdd(Y, Op1);
- return BinaryOperator::CreateSub(X, Add);
- }
- // (~X) - (~Y) --> Y - X
- // This is placed after the other reassociations and explicitly excludes a
- // sub-of-sub pattern to avoid infinite looping.
- if (isFreeToInvert(Op0, Op0->hasOneUse()) &&
- isFreeToInvert(Op1, Op1->hasOneUse()) &&
- !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) {
- Value *NotOp0 = Builder.CreateNot(Op0);
- Value *NotOp1 = Builder.CreateNot(Op1);
- return BinaryOperator::CreateSub(NotOp1, NotOp0);
- }
- auto m_AddRdx = [](Value *&Vec) {
- return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
- };
- Value *V0, *V1;
- if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
- V0->getType() == V1->getType()) {
- // Difference of sums is sum of differences:
- // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
- Value *Sub = Builder.CreateSub(V0, V1);
- Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
- {Sub->getType()}, {Sub});
- return replaceInstUsesWith(I, Rdx);
- }
- if (Constant *C = dyn_cast<Constant>(Op0)) {
- Value *X;
- if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- // C - (zext bool) --> bool ? C - 1 : C
- return SelectInst::Create(X, InstCombiner::SubOne(C), C);
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- // C - (sext bool) --> bool ? C + 1 : C
- return SelectInst::Create(X, InstCombiner::AddOne(C), C);
- // C - ~X == X + (1+C)
- if (match(Op1, m_Not(m_Value(X))))
- return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
- // Try to fold constant sub into select arguments.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- // Try to fold constant sub into PHI values.
- if (PHINode *PN = dyn_cast<PHINode>(Op1))
- if (Instruction *R = foldOpIntoPhi(I, PN))
- return R;
- Constant *C2;
- // C-(C2-X) --> X+(C-C2)
- if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
- return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
- }
- const APInt *Op0C;
- if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) {
- // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
- // zero.
- KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
- if ((*Op0C | RHSKnown.Zero).isAllOnes())
- return BinaryOperator::CreateXor(Op1, Op0);
- }
- {
- Value *Y;
- // X-(X+Y) == -Y X-(Y+X) == -Y
- if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
- return BinaryOperator::CreateNeg(Y);
- // (X-Y)-X == -Y
- if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNeg(Y);
- }
- // (sub (or A, B) (and A, B)) --> (xor A, B)
- {
- Value *A, *B;
- if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
- match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
- }
- // (sub (add A, B) (or A, B)) --> (and A, B)
- {
- Value *A, *B;
- if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
- match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- }
- // (sub (add A, B) (and A, B)) --> (or A, B)
- {
- Value *A, *B;
- if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
- match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateOr(A, B);
- }
- // (sub (and A, B) (or A, B)) --> neg (xor A, B)
- {
- Value *A, *B;
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
- (Op0->hasOneUse() || Op1->hasOneUse()))
- return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
- }
- // (sub (or A, B), (xor A, B)) --> (and A, B)
- {
- Value *A, *B;
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- }
- // (sub (xor A, B) (or A, B)) --> neg (and A, B)
- {
- Value *A, *B;
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
- (Op0->hasOneUse() || Op1->hasOneUse()))
- return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
- }
- {
- Value *Y;
- // ((X | Y) - X) --> (~X & Y)
- if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(
- Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
- }
- {
- // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
- Value *X;
- if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
- m_OneUse(m_Neg(m_Value(X))))))) {
- return BinaryOperator::CreateNeg(Builder.CreateAnd(
- Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
- }
- }
- {
- // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
- Constant *C;
- if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
- return BinaryOperator::CreateNeg(
- Builder.CreateAnd(Op1, Builder.CreateNot(C)));
- }
- }
- {
- // If we have a subtraction between some value and a select between
- // said value and something else, sink subtraction into select hands, i.e.:
- // sub (select %Cond, %TrueVal, %FalseVal), %Op1
- // ->
- // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
- // or
- // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
- // ->
- // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
- // This will result in select between new subtraction and 0.
- auto SinkSubIntoSelect =
- [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
- auto SubBuilder) -> Instruction * {
- Value *Cond, *TrueVal, *FalseVal;
- if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
- m_Value(FalseVal)))))
- return nullptr;
- if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
- return nullptr;
- // While it is really tempting to just create two subtractions and let
- // InstCombine fold one of those to 0, it isn't possible to do so
- // because of worklist visitation order. So ugly it is.
- bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
- Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
- Constant *Zero = Constant::getNullValue(Ty);
- SelectInst *NewSel =
- SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
- OtherHandOfSubIsTrueVal ? NewSub : Zero);
- // Preserve prof metadata if any.
- NewSel->copyMetadata(cast<Instruction>(*Select));
- return NewSel;
- };
- if (Instruction *NewSel = SinkSubIntoSelect(
- /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
- [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
- return Builder->CreateSub(OtherHandOfSelect,
- /*OtherHandOfSub=*/Op1);
- }))
- return NewSel;
- if (Instruction *NewSel = SinkSubIntoSelect(
- /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
- [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
- return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
- OtherHandOfSelect);
- }))
- return NewSel;
- }
- // (X - (X & Y)) --> (X & ~Y)
- if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
- (Op1->hasOneUse() || isa<Constant>(Y)))
- return BinaryOperator::CreateAnd(
- Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
- // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
- // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
- // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
- // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
- // As long as Y is freely invertible, this will be neutral or a win.
- // Note: We don't generate the inverse max/min, just create the 'not' of
- // it and let other folds do the rest.
- if (match(Op0, m_Not(m_Value(X))) &&
- match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
- !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
- Value *Not = Builder.CreateNot(Op1);
- return BinaryOperator::CreateSub(Not, X);
- }
- if (match(Op1, m_Not(m_Value(X))) &&
- match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
- !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
- Value *Not = Builder.CreateNot(Op0);
- return BinaryOperator::CreateSub(X, Not);
- }
- // TODO: This is the same logic as above but handles the cmp-select idioms
- // for min/max, so the use checks are increased to account for the
- // extra instructions. If we canonicalize to intrinsics, this block
- // can likely be removed.
- {
- Value *LHS, *RHS, *A;
- Value *NotA = Op0, *MinMax = Op1;
- SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
- if (!SelectPatternResult::isMinOrMax(SPF)) {
- NotA = Op1;
- MinMax = Op0;
- SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
- }
- if (SelectPatternResult::isMinOrMax(SPF) &&
- match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
- if (NotA == LHS)
- std::swap(LHS, RHS);
- // LHS is now Y above and expected to have at least 2 uses (the min/max)
- // NotA is expected to have 2 uses from the min/max and 1 from the sub.
- if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
- !NotA->hasNUsesOrMore(4)) {
- Value *Not = Builder.CreateNot(MinMax);
- if (NotA == Op0)
- return BinaryOperator::CreateSub(Not, A);
- else
- return BinaryOperator::CreateSub(A, Not);
- }
- }
- }
- // Optimize pointer differences into the same array into a size. Consider:
- // &A[10] - &A[0]: we should compile this to "10".
- Value *LHSOp, *RHSOp;
- if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
- match(Op1, m_PtrToInt(m_Value(RHSOp))))
- if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
- I.hasNoUnsignedWrap()))
- return replaceInstUsesWith(I, Res);
- // trunc(p)-trunc(q) -> trunc(p-q)
- if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
- match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
- if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
- /* IsNUW */ false))
- return replaceInstUsesWith(I, Res);
- // Canonicalize a shifty way to code absolute value to the common pattern.
- // There are 2 potential commuted variants.
- // We're relying on the fact that we only do this transform when the shift has
- // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
- // instructions).
- Value *A;
- const APInt *ShAmt;
- Type *Ty = I.getType();
- if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
- Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
- match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
- // B = ashr i32 A, 31 ; smear the sign bit
- // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
- // --> (A < 0) ? -A : A
- Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
- // Copy the nuw/nsw flags from the sub to the negate.
- Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
- I.hasNoSignedWrap());
- return SelectInst::Create(Cmp, Neg, A);
- }
- // If we are subtracting a low-bit masked subset of some value from an add
- // of that same value with no low bits changed, that is clearing some low bits
- // of the sum:
- // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
- const APInt *AddC, *AndC;
- if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
- match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
- unsigned BitWidth = Ty->getScalarSizeInBits();
- unsigned Cttz = AddC->countTrailingZeros();
- APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
- if ((HighMask & *AndC).isZero())
- return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
- }
- if (Instruction *V =
- canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
- return V;
- // X - usub.sat(X, Y) => umin(X, Y)
- if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
- m_Value(Y)))))
- return replaceInstUsesWith(
- I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
- // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
- // TODO: The one-use restriction is not strictly necessary, but it may
- // require improving other pattern matching and/or codegen.
- if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
- return replaceInstUsesWith(
- I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
- // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
- if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
- Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
- return BinaryOperator::CreateNeg(USub);
- }
- // C - ctpop(X) => ctpop(~X) if C is bitwidth
- if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) &&
- match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
- return replaceInstUsesWith(
- I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
- {Builder.CreateNot(X)}));
- return TryToNarrowDeduceFlags();
- }
- /// This eliminates floating-point negation in either 'fneg(X)' or
- /// 'fsub(-0.0, X)' form by combining into a constant operand.
- static Instruction *foldFNegIntoConstant(Instruction &I) {
- // This is limited with one-use because fneg is assumed better for
- // reassociation and cheaper in codegen than fmul/fdiv.
- // TODO: Should the m_OneUse restriction be removed?
- Instruction *FNegOp;
- if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
- return nullptr;
- Value *X;
- Constant *C;
- // Fold negation into constant operand.
- // -(X * C) --> X * (-C)
- if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
- return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
- // -(X / C) --> X / (-C)
- if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
- return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
- // -(C / X) --> (-C) / X
- if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) {
- Instruction *FDiv =
- BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
- // Intersect 'nsz' and 'ninf' because those special value exceptions may not
- // apply to the fdiv. Everything else propagates from the fneg.
- // TODO: We could propagate nsz/ninf from fdiv alone?
- FastMathFlags FMF = I.getFastMathFlags();
- FastMathFlags OpFMF = FNegOp->getFastMathFlags();
- FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
- FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
- return FDiv;
- }
- // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
- // -(X + C) --> -X + -C --> -C - X
- if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
- return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I);
- return nullptr;
- }
- static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
- InstCombiner::BuilderTy &Builder) {
- Value *FNeg;
- if (!match(&I, m_FNeg(m_Value(FNeg))))
- return nullptr;
- Value *X, *Y;
- if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
- return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
- if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
- return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
- Value *Op = I.getOperand(0);
- if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
- getSimplifyQuery().getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldFNegIntoConstant(I))
- return X;
- Value *X, *Y;
- // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
- if (I.hasNoSignedZeros() &&
- match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
- return BinaryOperator::CreateFSubFMF(Y, X, &I);
- if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
- return R;
- // Try to eliminate fneg if at least 1 arm of the select is negated.
- Value *Cond;
- if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) {
- // Unlike most transforms, this one is not safe to propagate nsz unless
- // it is present on the original select. (We are conservatively intersecting
- // the nsz flags from the select and root fneg instruction.)
- auto propagateSelectFMF = [&](SelectInst *S) {
- S->copyFastMathFlags(&I);
- if (auto *OldSel = dyn_cast<SelectInst>(Op))
- if (!OldSel->hasNoSignedZeros())
- S->setHasNoSignedZeros(false);
- };
- // -(Cond ? -P : Y) --> Cond ? P : -Y
- Value *P;
- if (match(X, m_FNeg(m_Value(P)))) {
- Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
- SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
- propagateSelectFMF(NewSel);
- return NewSel;
- }
- // -(Cond ? X : -P) --> Cond ? -X : P
- if (match(Y, m_FNeg(m_Value(P)))) {
- Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
- SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
- propagateSelectFMF(NewSel);
- return NewSel;
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
- if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- getSimplifyQuery().getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- // Subtraction from -0.0 is the canonical form of fneg.
- // fsub -0.0, X ==> fneg X
- // fsub nsz 0.0, X ==> fneg nsz X
- //
- // FIXME This matcher does not respect FTZ or DAZ yet:
- // fsub -0.0, Denorm ==> +-0
- // fneg Denorm ==> -Denorm
- Value *Op;
- if (match(&I, m_FNeg(m_Value(Op))))
- return UnaryOperator::CreateFNegFMF(Op, &I);
- if (Instruction *X = foldFNegIntoConstant(I))
- return X;
- if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
- return R;
- Value *X, *Y;
- Constant *C;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
- // Canonicalize to fadd to make analysis easier.
- // This can also help codegen because fadd is commutative.
- // Note that if this fsub was really an fneg, the fadd with -0.0 will get
- // killed later. We still limit that particular transform with 'hasOneUse'
- // because an fneg is assumed better/cheaper than a generic fsub.
- if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
- if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
- Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
- return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
- }
- }
- // (-X) - Op1 --> -(X + Op1)
- if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
- match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
- Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
- return UnaryOperator::CreateFNegFMF(FAdd, &I);
- }
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *NV = FoldOpIntoSelect(I, SI))
- return NV;
- // X - C --> X + (-C)
- // But don't transform constant expressions because there's an inverse fold
- // for X + (-Y) --> X - Y.
- if (match(Op1, m_ImmConstant(C)))
- return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
- // X - (-Y) --> X + Y
- if (match(Op1, m_FNeg(m_Value(Y))))
- return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
- // Similar to above, but look through a cast of the negated value:
- // X - (fptrunc(-Y)) --> X + fptrunc(Y)
- Type *Ty = I.getType();
- if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
- return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
- // X - (fpext(-Y)) --> X + fpext(Y)
- if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
- return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
- // Similar to above, but look through fmul/fdiv of the negated value:
- // Op0 - (-X * Y) --> Op0 + (X * Y)
- // Op0 - (Y * -X) --> Op0 + (X * Y)
- if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
- Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
- return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
- }
- // Op0 - (-X / Y) --> Op0 + (X / Y)
- // Op0 - (X / -Y) --> Op0 + (X / Y)
- if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
- match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
- Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
- return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
- }
- // Handle special cases for FSub with selects feeding the operation
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
- return replaceInstUsesWith(I, V);
- if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
- // (Y - X) - Y --> -X
- if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
- return UnaryOperator::CreateFNegFMF(X, &I);
- // Y - (X + Y) --> -X
- // Y - (Y + X) --> -X
- if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
- return UnaryOperator::CreateFNegFMF(X, &I);
- // (X * C) - X --> X * (C - 1.0)
- if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
- Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
- return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
- }
- // X - (X * C) --> X * (1.0 - C)
- if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
- Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
- return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
- }
- // Reassociate fsub/fadd sequences to create more fadd instructions and
- // reduce dependency chains:
- // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
- Value *Z;
- if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
- m_Value(Z))))) {
- Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
- Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
- return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
- }
- auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
- return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
- m_Value(Vec)));
- };
- Value *A0, *A1, *V0, *V1;
- if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
- V0->getType() == V1->getType()) {
- // Difference of sums is sum of differences:
- // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
- Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
- Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
- {Sub->getType()}, {A0, Sub}, &I);
- return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
- }
- if (Instruction *F = factorizeFAddFSub(I, Builder))
- return F;
- // TODO: This performs reassociative folds for FP ops. Some fraction of the
- // functionality has been subsumed by simple pattern matching here and in
- // InstSimplify. We should let a dedicated reassociation pass handle more
- // complex pattern matching and remove this from InstCombine.
- if (Value *V = FAddCombine(Builder).simplify(&I))
- return replaceInstUsesWith(I, V);
- // (X - Y) - Op1 --> X - (Y + Op1)
- if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
- Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
- return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
- }
- }
- return nullptr;
- }
|