123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749 |
- //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines the pass that performs some optimizations with LEA
- // instructions in order to improve performance and code size.
- // Currently, it does two things:
- // 1) If there are two LEA instructions calculating addresses which only differ
- // by displacement inside a basic block, one of them is removed.
- // 2) Address calculations in load and store instructions are replaced by
- // existing LEA def registers where possible.
- //
- //===----------------------------------------------------------------------===//
- #include "MCTargetDesc/X86BaseInfo.h"
- #include "X86.h"
- #include "X86InstrInfo.h"
- #include "X86Subtarget.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/MachineSizeOpts.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/Function.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- using namespace llvm;
- #define DEBUG_TYPE "x86-optimize-LEAs"
- static cl::opt<bool>
- DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
- cl::desc("X86: Disable LEA optimizations."),
- cl::init(false));
- STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
- STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
- /// Returns true if two machine operands are identical and they are not
- /// physical registers.
- static inline bool isIdenticalOp(const MachineOperand &MO1,
- const MachineOperand &MO2);
- /// Returns true if two address displacement operands are of the same
- /// type and use the same symbol/index/address regardless of the offset.
- static bool isSimilarDispOp(const MachineOperand &MO1,
- const MachineOperand &MO2);
- /// Returns true if the instruction is LEA.
- static inline bool isLEA(const MachineInstr &MI);
- namespace {
- /// A key based on instruction's memory operands.
- class MemOpKey {
- public:
- MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
- const MachineOperand *Index, const MachineOperand *Segment,
- const MachineOperand *Disp)
- : Disp(Disp) {
- Operands[0] = Base;
- Operands[1] = Scale;
- Operands[2] = Index;
- Operands[3] = Segment;
- }
- bool operator==(const MemOpKey &Other) const {
- // Addresses' bases, scales, indices and segments must be identical.
- for (int i = 0; i < 4; ++i)
- if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
- return false;
- // Addresses' displacements don't have to be exactly the same. It only
- // matters that they use the same symbol/index/address. Immediates' or
- // offsets' differences will be taken care of during instruction
- // substitution.
- return isSimilarDispOp(*Disp, *Other.Disp);
- }
- // Address' base, scale, index and segment operands.
- const MachineOperand *Operands[4];
- // Address' displacement operand.
- const MachineOperand *Disp;
- };
- } // end anonymous namespace
- namespace llvm {
- /// Provide DenseMapInfo for MemOpKey.
- template <> struct DenseMapInfo<MemOpKey> {
- using PtrInfo = DenseMapInfo<const MachineOperand *>;
- static inline MemOpKey getEmptyKey() {
- return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
- PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
- PtrInfo::getEmptyKey());
- }
- static inline MemOpKey getTombstoneKey() {
- return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
- PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
- PtrInfo::getTombstoneKey());
- }
- static unsigned getHashValue(const MemOpKey &Val) {
- // Checking any field of MemOpKey is enough to determine if the key is
- // empty or tombstone.
- assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
- assert(Val.Disp != PtrInfo::getTombstoneKey() &&
- "Cannot hash the tombstone key");
- hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
- *Val.Operands[2], *Val.Operands[3]);
- // If the address displacement is an immediate, it should not affect the
- // hash so that memory operands which differ only be immediate displacement
- // would have the same hash. If the address displacement is something else,
- // we should reflect symbol/index/address in the hash.
- switch (Val.Disp->getType()) {
- case MachineOperand::MO_Immediate:
- break;
- case MachineOperand::MO_ConstantPoolIndex:
- case MachineOperand::MO_JumpTableIndex:
- Hash = hash_combine(Hash, Val.Disp->getIndex());
- break;
- case MachineOperand::MO_ExternalSymbol:
- Hash = hash_combine(Hash, Val.Disp->getSymbolName());
- break;
- case MachineOperand::MO_GlobalAddress:
- Hash = hash_combine(Hash, Val.Disp->getGlobal());
- break;
- case MachineOperand::MO_BlockAddress:
- Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
- break;
- case MachineOperand::MO_MCSymbol:
- Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
- break;
- case MachineOperand::MO_MachineBasicBlock:
- Hash = hash_combine(Hash, Val.Disp->getMBB());
- break;
- default:
- llvm_unreachable("Invalid address displacement operand");
- }
- return (unsigned)Hash;
- }
- static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
- // Checking any field of MemOpKey is enough to determine if the key is
- // empty or tombstone.
- if (RHS.Disp == PtrInfo::getEmptyKey())
- return LHS.Disp == PtrInfo::getEmptyKey();
- if (RHS.Disp == PtrInfo::getTombstoneKey())
- return LHS.Disp == PtrInfo::getTombstoneKey();
- return LHS == RHS;
- }
- };
- } // end namespace llvm
- /// Returns a hash table key based on memory operands of \p MI. The
- /// number of the first memory operand of \p MI is specified through \p N.
- static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
- assert((isLEA(MI) || MI.mayLoadOrStore()) &&
- "The instruction must be a LEA, a load or a store");
- return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
- &MI.getOperand(N + X86::AddrScaleAmt),
- &MI.getOperand(N + X86::AddrIndexReg),
- &MI.getOperand(N + X86::AddrSegmentReg),
- &MI.getOperand(N + X86::AddrDisp));
- }
- static inline bool isIdenticalOp(const MachineOperand &MO1,
- const MachineOperand &MO2) {
- return MO1.isIdenticalTo(MO2) &&
- (!MO1.isReg() || !Register::isPhysicalRegister(MO1.getReg()));
- }
- #ifndef NDEBUG
- static bool isValidDispOp(const MachineOperand &MO) {
- return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
- MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
- }
- #endif
- static bool isSimilarDispOp(const MachineOperand &MO1,
- const MachineOperand &MO2) {
- assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
- "Address displacement operand is not valid");
- return (MO1.isImm() && MO2.isImm()) ||
- (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
- (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
- (MO1.isSymbol() && MO2.isSymbol() &&
- MO1.getSymbolName() == MO2.getSymbolName()) ||
- (MO1.isGlobal() && MO2.isGlobal() &&
- MO1.getGlobal() == MO2.getGlobal()) ||
- (MO1.isBlockAddress() && MO2.isBlockAddress() &&
- MO1.getBlockAddress() == MO2.getBlockAddress()) ||
- (MO1.isMCSymbol() && MO2.isMCSymbol() &&
- MO1.getMCSymbol() == MO2.getMCSymbol()) ||
- (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
- }
- static inline bool isLEA(const MachineInstr &MI) {
- unsigned Opcode = MI.getOpcode();
- return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
- Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
- }
- namespace {
- class X86OptimizeLEAPass : public MachineFunctionPass {
- public:
- X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
- StringRef getPassName() const override { return "X86 LEA Optimize"; }
- /// Loop over all of the basic blocks, replacing address
- /// calculations in load and store instructions, if it's already
- /// been calculated by LEA. Also, remove redundant LEAs.
- bool runOnMachineFunction(MachineFunction &MF) override;
- static char ID;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- private:
- using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
- /// Returns a distance between two instructions inside one basic block.
- /// Negative result means, that instructions occur in reverse order.
- int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
- /// Choose the best \p LEA instruction from the \p List to replace
- /// address calculation in \p MI instruction. Return the address displacement
- /// and the distance between \p MI and the chosen \p BestLEA in
- /// \p AddrDispShift and \p Dist.
- bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
- const MachineInstr &MI, MachineInstr *&BestLEA,
- int64_t &AddrDispShift, int &Dist);
- /// Returns the difference between addresses' displacements of \p MI1
- /// and \p MI2. The numbers of the first memory operands for the instructions
- /// are specified through \p N1 and \p N2.
- int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
- const MachineInstr &MI2, unsigned N2) const;
- /// Returns true if the \p Last LEA instruction can be replaced by the
- /// \p First. The difference between displacements of the addresses calculated
- /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
- /// replacement of the \p Last LEA's uses with the \p First's def register.
- bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
- int64_t &AddrDispShift) const;
- /// Find all LEA instructions in the basic block. Also, assign position
- /// numbers to all instructions in the basic block to speed up calculation of
- /// distance between them.
- void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
- /// Removes redundant address calculations.
- bool removeRedundantAddrCalc(MemOpMap &LEAs);
- /// Replace debug value MI with a new debug value instruction using register
- /// VReg with an appropriate offset and DIExpression to incorporate the
- /// address displacement AddrDispShift. Return new debug value instruction.
- MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned OldReg,
- unsigned NewReg, int64_t AddrDispShift);
- /// Removes LEAs which calculate similar addresses.
- bool removeRedundantLEAs(MemOpMap &LEAs);
- DenseMap<const MachineInstr *, unsigned> InstrPos;
- MachineRegisterInfo *MRI = nullptr;
- const X86InstrInfo *TII = nullptr;
- const X86RegisterInfo *TRI = nullptr;
- };
- } // end anonymous namespace
- char X86OptimizeLEAPass::ID = 0;
- FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
- INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
- false)
- int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
- const MachineInstr &Last) {
- // Both instructions must be in the same basic block and they must be
- // presented in InstrPos.
- assert(Last.getParent() == First.getParent() &&
- "Instructions are in different basic blocks");
- assert(InstrPos.find(&First) != InstrPos.end() &&
- InstrPos.find(&Last) != InstrPos.end() &&
- "Instructions' positions are undefined");
- return InstrPos[&Last] - InstrPos[&First];
- }
- // Find the best LEA instruction in the List to replace address recalculation in
- // MI. Such LEA must meet these requirements:
- // 1) The address calculated by the LEA differs only by the displacement from
- // the address used in MI.
- // 2) The register class of the definition of the LEA is compatible with the
- // register class of the address base register of MI.
- // 3) Displacement of the new memory operand should fit in 1 byte if possible.
- // 4) The LEA should be as close to MI as possible, and prior to it if
- // possible.
- bool X86OptimizeLEAPass::chooseBestLEA(
- const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
- MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
- const MachineFunction *MF = MI.getParent()->getParent();
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
- X86II::getOperandBias(Desc);
- BestLEA = nullptr;
- // Loop over all LEA instructions.
- for (auto DefMI : List) {
- // Get new address displacement.
- int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
- // Make sure address displacement fits 4 bytes.
- if (!isInt<32>(AddrDispShiftTemp))
- continue;
- // Check that LEA def register can be used as MI address base. Some
- // instructions can use a limited set of registers as address base, for
- // example MOV8mr_NOREX. We could constrain the register class of the LEA
- // def to suit MI, however since this case is very rare and hard to
- // reproduce in a test it's just more reliable to skip the LEA.
- if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
- MRI->getRegClass(DefMI->getOperand(0).getReg()))
- continue;
- // Choose the closest LEA instruction from the list, prior to MI if
- // possible. Note that we took into account resulting address displacement
- // as well. Also note that the list is sorted by the order in which the LEAs
- // occur, so the break condition is pretty simple.
- int DistTemp = calcInstrDist(*DefMI, MI);
- assert(DistTemp != 0 &&
- "The distance between two different instructions cannot be zero");
- if (DistTemp > 0 || BestLEA == nullptr) {
- // Do not update return LEA, if the current one provides a displacement
- // which fits in 1 byte, while the new candidate does not.
- if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
- isInt<8>(AddrDispShift))
- continue;
- BestLEA = DefMI;
- AddrDispShift = AddrDispShiftTemp;
- Dist = DistTemp;
- }
- // FIXME: Maybe we should not always stop at the first LEA after MI.
- if (DistTemp < 0)
- break;
- }
- return BestLEA != nullptr;
- }
- // Get the difference between the addresses' displacements of the two
- // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
- // passed through \p N1 and \p N2.
- int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
- unsigned N1,
- const MachineInstr &MI2,
- unsigned N2) const {
- const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
- const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
- assert(isSimilarDispOp(Op1, Op2) &&
- "Address displacement operands are not compatible");
- // After the assert above we can be sure that both operands are of the same
- // valid type and use the same symbol/index/address, thus displacement shift
- // calculation is rather simple.
- if (Op1.isJTI())
- return 0;
- return Op1.isImm() ? Op1.getImm() - Op2.getImm()
- : Op1.getOffset() - Op2.getOffset();
- }
- // Check that the Last LEA can be replaced by the First LEA. To be so,
- // these requirements must be met:
- // 1) Addresses calculated by LEAs differ only by displacement.
- // 2) Def registers of LEAs belong to the same class.
- // 3) All uses of the Last LEA def register are replaceable, thus the
- // register is used only as address base.
- bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
- const MachineInstr &Last,
- int64_t &AddrDispShift) const {
- assert(isLEA(First) && isLEA(Last) &&
- "The function works only with LEA instructions");
- // Make sure that LEA def registers belong to the same class. There may be
- // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
- // be used as their operands, so we must be sure that replacing one LEA
- // with another won't lead to putting a wrong register in the instruction.
- if (MRI->getRegClass(First.getOperand(0).getReg()) !=
- MRI->getRegClass(Last.getOperand(0).getReg()))
- return false;
- // Get new address displacement.
- AddrDispShift = getAddrDispShift(Last, 1, First, 1);
- // Loop over all uses of the Last LEA to check that its def register is
- // used only as address base for memory accesses. If so, it can be
- // replaced, otherwise - no.
- for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
- MachineInstr &MI = *MO.getParent();
- // Get the number of the first memory operand.
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
- // If the use instruction has no memory operand - the LEA is not
- // replaceable.
- if (MemOpNo < 0)
- return false;
- MemOpNo += X86II::getOperandBias(Desc);
- // If the address base of the use instruction is not the LEA def register -
- // the LEA is not replaceable.
- if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
- return false;
- // If the LEA def register is used as any other operand of the use
- // instruction - the LEA is not replaceable.
- for (unsigned i = 0; i < MI.getNumOperands(); i++)
- if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
- isIdenticalOp(MI.getOperand(i), MO))
- return false;
- // Check that the new address displacement will fit 4 bytes.
- if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
- !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
- AddrDispShift))
- return false;
- }
- return true;
- }
- void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
- MemOpMap &LEAs) {
- unsigned Pos = 0;
- for (auto &MI : MBB) {
- // Assign the position number to the instruction. Note that we are going to
- // move some instructions during the optimization however there will never
- // be a need to move two instructions before any selected instruction. So to
- // avoid multiple positions' updates during moves we just increase position
- // counter by two leaving a free space for instructions which will be moved.
- InstrPos[&MI] = Pos += 2;
- if (isLEA(MI))
- LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
- }
- }
- // Try to find load and store instructions which recalculate addresses already
- // calculated by some LEA and replace their memory operands with its def
- // register.
- bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
- bool Changed = false;
- assert(!LEAs.empty());
- MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
- // Process all instructions in basic block.
- for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
- // Instruction must be load or store.
- if (!MI.mayLoadOrStore())
- continue;
- // Get the number of the first memory operand.
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
- // If instruction has no memory operand - skip it.
- if (MemOpNo < 0)
- continue;
- MemOpNo += X86II::getOperandBias(Desc);
- // Do not call chooseBestLEA if there was no matching LEA
- auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
- if (Insns == LEAs.end())
- continue;
- // Get the best LEA instruction to replace address calculation.
- MachineInstr *DefMI;
- int64_t AddrDispShift;
- int Dist;
- if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
- continue;
- // If LEA occurs before current instruction, we can freely replace
- // the instruction. If LEA occurs after, we can lift LEA above the
- // instruction and this way to be able to replace it. Since LEA and the
- // instruction have similar memory operands (thus, the same def
- // instructions for these operands), we can always do that, without
- // worries of using registers before their defs.
- if (Dist < 0) {
- DefMI->removeFromParent();
- MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
- InstrPos[DefMI] = InstrPos[&MI] - 1;
- // Make sure the instructions' position numbers are sane.
- assert(((InstrPos[DefMI] == 1 &&
- MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
- InstrPos[DefMI] >
- InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
- "Instruction positioning is broken");
- }
- // Since we can possibly extend register lifetime, clear kill flags.
- MRI->clearKillFlags(DefMI->getOperand(0).getReg());
- ++NumSubstLEAs;
- LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
- // Change instruction operands.
- MI.getOperand(MemOpNo + X86::AddrBaseReg)
- .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
- MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
- MI.getOperand(MemOpNo + X86::AddrIndexReg)
- .ChangeToRegister(X86::NoRegister, false);
- MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
- MI.getOperand(MemOpNo + X86::AddrSegmentReg)
- .ChangeToRegister(X86::NoRegister, false);
- LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
- Changed = true;
- }
- return Changed;
- }
- MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
- unsigned OldReg,
- unsigned NewReg,
- int64_t AddrDispShift) {
- const DIExpression *Expr = MI.getDebugExpression();
- if (AddrDispShift != 0) {
- if (MI.isNonListDebugValue()) {
- Expr =
- DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
- } else {
- // Update the Expression, appending an offset of `AddrDispShift` to the
- // Op corresponding to `OldReg`.
- SmallVector<uint64_t, 3> Ops;
- DIExpression::appendOffset(Ops, AddrDispShift);
- for (MachineOperand &Op : MI.getDebugOperandsForReg(OldReg)) {
- unsigned OpIdx = MI.getDebugOperandIndex(&Op);
- Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
- }
- }
- }
- // Replace DBG_VALUE instruction with modified version.
- MachineBasicBlock *MBB = MI.getParent();
- DebugLoc DL = MI.getDebugLoc();
- bool IsIndirect = MI.isIndirectDebugValue();
- const MDNode *Var = MI.getDebugVariable();
- unsigned Opcode = MI.isNonListDebugValue() ? TargetOpcode::DBG_VALUE
- : TargetOpcode::DBG_VALUE_LIST;
- if (IsIndirect)
- assert(MI.getDebugOffset().getImm() == 0 &&
- "DBG_VALUE with nonzero offset");
- SmallVector<MachineOperand, 4> NewOps;
- // If we encounter an operand using the old register, replace it with an
- // operand that uses the new register; otherwise keep the old operand.
- auto replaceOldReg = [OldReg, NewReg](const MachineOperand &Op) {
- if (Op.isReg() && Op.getReg() == OldReg)
- return MachineOperand::CreateReg(NewReg, false, false, false, false,
- false, false, false, false, false,
- /*IsRenamable*/ true);
- return Op;
- };
- for (const MachineOperand &Op : MI.debug_operands())
- NewOps.push_back(replaceOldReg(Op));
- return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(Opcode), IsIndirect,
- NewOps, Var, Expr);
- }
- // Try to find similar LEAs in the list and replace one with another.
- bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
- bool Changed = false;
- // Loop over all entries in the table.
- for (auto &E : LEAs) {
- auto &List = E.second;
- // Loop over all LEA pairs.
- auto I1 = List.begin();
- while (I1 != List.end()) {
- MachineInstr &First = **I1;
- auto I2 = std::next(I1);
- while (I2 != List.end()) {
- MachineInstr &Last = **I2;
- int64_t AddrDispShift;
- // LEAs should be in occurrence order in the list, so we can freely
- // replace later LEAs with earlier ones.
- assert(calcInstrDist(First, Last) > 0 &&
- "LEAs must be in occurrence order in the list");
- // Check that the Last LEA instruction can be replaced by the First.
- if (!isReplaceable(First, Last, AddrDispShift)) {
- ++I2;
- continue;
- }
- // Loop over all uses of the Last LEA and update their operands. Note
- // that the correctness of this has already been checked in the
- // isReplaceable function.
- Register FirstVReg = First.getOperand(0).getReg();
- Register LastVReg = Last.getOperand(0).getReg();
- for (MachineOperand &MO :
- llvm::make_early_inc_range(MRI->use_operands(LastVReg))) {
- MachineInstr &MI = *MO.getParent();
- if (MI.isDebugValue()) {
- // Replace DBG_VALUE instruction with modified version using the
- // register from the replacing LEA and the address displacement
- // between the LEA instructions.
- replaceDebugValue(MI, LastVReg, FirstVReg, AddrDispShift);
- continue;
- }
- // Get the number of the first memory operand.
- const MCInstrDesc &Desc = MI.getDesc();
- int MemOpNo =
- X86II::getMemoryOperandNo(Desc.TSFlags) +
- X86II::getOperandBias(Desc);
- // Update address base.
- MO.setReg(FirstVReg);
- // Update address disp.
- MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
- if (Op.isImm())
- Op.setImm(Op.getImm() + AddrDispShift);
- else if (!Op.isJTI())
- Op.setOffset(Op.getOffset() + AddrDispShift);
- }
- // Since we can possibly extend register lifetime, clear kill flags.
- MRI->clearKillFlags(FirstVReg);
- ++NumRedundantLEAs;
- LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
- Last.dump(););
- // By this moment, all of the Last LEA's uses must be replaced. So we
- // can freely remove it.
- assert(MRI->use_empty(LastVReg) &&
- "The LEA's def register must have no uses");
- Last.eraseFromParent();
- // Erase removed LEA from the list.
- I2 = List.erase(I2);
- Changed = true;
- }
- ++I1;
- }
- }
- return Changed;
- }
- bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
- bool Changed = false;
- if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
- return false;
- MRI = &MF.getRegInfo();
- TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
- TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
- auto *PSI =
- &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
- auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
- &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
- nullptr;
- // Process all basic blocks.
- for (auto &MBB : MF) {
- MemOpMap LEAs;
- InstrPos.clear();
- // Find all LEA instructions in basic block.
- findLEAs(MBB, LEAs);
- // If current basic block has no LEAs, move on to the next one.
- if (LEAs.empty())
- continue;
- // Remove redundant LEA instructions.
- Changed |= removeRedundantLEAs(LEAs);
- // Remove redundant address calculations. Do it only for -Os/-Oz since only
- // a code size gain is expected from this part of the pass.
- bool OptForSize = MF.getFunction().hasOptSize() ||
- llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
- if (OptForSize)
- Changed |= removeRedundantAddrCalc(LEAs);
- }
- return Changed;
- }
|