123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569 |
- /*
- * jdsample-neon.c - upsampling (Arm Neon)
- *
- * Copyright (C) 2020, Arm Limited. All Rights Reserved.
- * Copyright (C) 2020, D. R. Commander. All Rights Reserved.
- *
- * This software is provided 'as-is', without any express or implied
- * warranty. In no event will the authors be held liable for any damages
- * arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose,
- * including commercial applications, and to alter it and redistribute it
- * freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not
- * claim that you wrote the original software. If you use this software
- * in a product, an acknowledgment in the product documentation would be
- * appreciated but is not required.
- * 2. Altered source versions must be plainly marked as such, and must not be
- * misrepresented as being the original software.
- * 3. This notice may not be removed or altered from any source distribution.
- */
- #define JPEG_INTERNALS
- #include "../../jinclude.h"
- #include "../../jpeglib.h"
- #include "../../jsimd.h"
- #include "../../jdct.h"
- #include "../../jsimddct.h"
- #include "../jsimd.h"
- #include <arm_neon.h>
- /* The diagram below shows a row of samples produced by h2v1 downsampling.
- *
- * s0 s1 s2
- * +---------+---------+---------+
- * | | | |
- * | p0 p1 | p2 p3 | p4 p5 |
- * | | | |
- * +---------+---------+---------+
- *
- * Samples s0-s2 were created by averaging the original pixel component values
- * centered at positions p0-p5 above. To approximate those original pixel
- * component values, we proportionally blend the adjacent samples in each row.
- *
- * An upsampled pixel component value is computed by blending the sample
- * containing the pixel center with the nearest neighboring sample, in the
- * ratio 3:1. For example:
- * p1(upsampled) = 3/4 * s0 + 1/4 * s1
- * p2(upsampled) = 3/4 * s1 + 1/4 * s0
- * When computing the first and last pixel component values in the row, there
- * is no adjacent sample to blend, so:
- * p0(upsampled) = s0
- * p5(upsampled) = s2
- */
- void jsimd_h2v1_fancy_upsample_neon(int max_v_samp_factor,
- JDIMENSION downsampled_width,
- JSAMPARRAY input_data,
- JSAMPARRAY *output_data_ptr)
- {
- JSAMPARRAY output_data = *output_data_ptr;
- JSAMPROW inptr, outptr;
- int inrow;
- unsigned colctr;
- /* Set up constants. */
- const uint16x8_t one_u16 = vdupq_n_u16(1);
- const uint8x8_t three_u8 = vdup_n_u8(3);
- for (inrow = 0; inrow < max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr = output_data[inrow];
- /* First pixel component value in this row of the original image */
- *outptr = (JSAMPLE)GETJSAMPLE(*inptr);
- /* 3/4 * containing sample + 1/4 * nearest neighboring sample
- * For p1: containing sample = s0, nearest neighboring sample = s1
- * For p2: containing sample = s1, nearest neighboring sample = s0
- */
- uint8x16_t s0 = vld1q_u8(inptr);
- uint8x16_t s1 = vld1q_u8(inptr + 1);
- /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
- * denote low half and high half respectively.
- */
- uint16x8_t s1_add_3s0_l =
- vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8);
- uint16x8_t s1_add_3s0_h =
- vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8);
- uint16x8_t s0_add_3s1_l =
- vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8);
- uint16x8_t s0_add_3s1_h =
- vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8);
- /* Add ordered dithering bias to odd pixel values. */
- s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16);
- s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16);
- /* The offset is initially 1, because the first pixel component has already
- * been stored. However, in subsequent iterations of the SIMD loop, this
- * offset is (2 * colctr - 1) to stay within the bounds of the sample
- * buffers without having to resort to a slow scalar tail case for the last
- * (downsampled_width % 16) samples. See "Creation of 2-D sample arrays"
- * in jmemmgr.c for more details.
- */
- unsigned outptr_offset = 1;
- uint8x16x2_t output_pixels;
- /* We use software pipelining to maximise performance. The code indented
- * an extra two spaces begins the next iteration of the loop.
- */
- for (colctr = 16; colctr < downsampled_width; colctr += 16) {
- s0 = vld1q_u8(inptr + colctr - 1);
- s1 = vld1q_u8(inptr + colctr);
- /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
- output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2),
- vrshrn_n_u16(s1_add_3s0_h, 2));
- output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2),
- vshrn_n_u16(s0_add_3s1_h, 2));
- /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
- * denote low half and high half respectively.
- */
- s1_add_3s0_l =
- vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8);
- s1_add_3s0_h =
- vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8);
- s0_add_3s1_l =
- vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8);
- s0_add_3s1_h =
- vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8);
- /* Add ordered dithering bias to odd pixel values. */
- s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16);
- s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16);
- /* Store pixel component values to memory. */
- vst2q_u8(outptr + outptr_offset, output_pixels);
- outptr_offset = 2 * colctr - 1;
- }
- /* Complete the last iteration of the loop. */
- /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
- output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2),
- vrshrn_n_u16(s1_add_3s0_h, 2));
- output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2),
- vshrn_n_u16(s0_add_3s1_h, 2));
- /* Store pixel component values to memory. */
- vst2q_u8(outptr + outptr_offset, output_pixels);
- /* Last pixel component value in this row of the original image */
- outptr[2 * downsampled_width - 1] =
- GETJSAMPLE(inptr[downsampled_width - 1]);
- }
- }
- /* The diagram below shows an array of samples produced by h2v2 downsampling.
- *
- * s0 s1 s2
- * +---------+---------+---------+
- * | p0 p1 | p2 p3 | p4 p5 |
- * sA | | | |
- * | p6 p7 | p8 p9 | p10 p11|
- * +---------+---------+---------+
- * | p12 p13| p14 p15| p16 p17|
- * sB | | | |
- * | p18 p19| p20 p21| p22 p23|
- * +---------+---------+---------+
- * | p24 p25| p26 p27| p28 p29|
- * sC | | | |
- * | p30 p31| p32 p33| p34 p35|
- * +---------+---------+---------+
- *
- * Samples s0A-s2C were created by averaging the original pixel component
- * values centered at positions p0-p35 above. To approximate one of those
- * original pixel component values, we proportionally blend the sample
- * containing the pixel center with the nearest neighboring samples in each
- * row, column, and diagonal.
- *
- * An upsampled pixel component value is computed by first blending the sample
- * containing the pixel center with the nearest neighboring samples in the
- * same column, in the ratio 3:1, and then blending each column sum with the
- * nearest neighboring column sum, in the ratio 3:1. For example:
- * p14(upsampled) = 3/4 * (3/4 * s1B + 1/4 * s1A) +
- * 1/4 * (3/4 * s0B + 1/4 * s0A)
- * = 9/16 * s1B + 3/16 * s1A + 3/16 * s0B + 1/16 * s0A
- * When computing the first and last pixel component values in the row, there
- * is no horizontally adjacent sample to blend, so:
- * p12(upsampled) = 3/4 * s0B + 1/4 * s0A
- * p23(upsampled) = 3/4 * s2B + 1/4 * s2C
- * When computing the first and last pixel component values in the column,
- * there is no vertically adjacent sample to blend, so:
- * p2(upsampled) = 3/4 * s1A + 1/4 * s0A
- * p33(upsampled) = 3/4 * s1C + 1/4 * s2C
- * When computing the corner pixel component values, there is no adjacent
- * sample to blend, so:
- * p0(upsampled) = s0A
- * p35(upsampled) = s2C
- */
- void jsimd_h2v2_fancy_upsample_neon(int max_v_samp_factor,
- JDIMENSION downsampled_width,
- JSAMPARRAY input_data,
- JSAMPARRAY *output_data_ptr)
- {
- JSAMPARRAY output_data = *output_data_ptr;
- JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1;
- int inrow, outrow;
- unsigned colctr;
- /* Set up constants. */
- const uint16x8_t seven_u16 = vdupq_n_u16(7);
- const uint8x8_t three_u8 = vdup_n_u8(3);
- const uint16x8_t three_u16 = vdupq_n_u16(3);
- inrow = outrow = 0;
- while (outrow < max_v_samp_factor) {
- inptr0 = input_data[inrow - 1];
- inptr1 = input_data[inrow];
- inptr2 = input_data[inrow + 1];
- /* Suffixes 0 and 1 denote the upper and lower rows of output pixels,
- * respectively.
- */
- outptr0 = output_data[outrow++];
- outptr1 = output_data[outrow++];
- /* First pixel component value in this row of the original image */
- int s0colsum0 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr0);
- *outptr0 = (JSAMPLE)((s0colsum0 * 4 + 8) >> 4);
- int s0colsum1 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr2);
- *outptr1 = (JSAMPLE)((s0colsum1 * 4 + 8) >> 4);
- /* Step 1: Blend samples vertically in columns s0 and s1.
- * Leave the divide by 4 until the end, when it can be done for both
- * dimensions at once, right-shifting by 4.
- */
- /* Load and compute s0colsum0 and s0colsum1. */
- uint8x16_t s0A = vld1q_u8(inptr0);
- uint8x16_t s0B = vld1q_u8(inptr1);
- uint8x16_t s0C = vld1q_u8(inptr2);
- /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
- * denote low half and high half respectively.
- */
- uint16x8_t s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)),
- vget_low_u8(s0B), three_u8);
- uint16x8_t s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)),
- vget_high_u8(s0B), three_u8);
- uint16x8_t s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)),
- vget_low_u8(s0B), three_u8);
- uint16x8_t s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)),
- vget_high_u8(s0B), three_u8);
- /* Load and compute s1colsum0 and s1colsum1. */
- uint8x16_t s1A = vld1q_u8(inptr0 + 1);
- uint8x16_t s1B = vld1q_u8(inptr1 + 1);
- uint8x16_t s1C = vld1q_u8(inptr2 + 1);
- uint16x8_t s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)),
- vget_low_u8(s1B), three_u8);
- uint16x8_t s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)),
- vget_high_u8(s1B), three_u8);
- uint16x8_t s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)),
- vget_low_u8(s1B), three_u8);
- uint16x8_t s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)),
- vget_high_u8(s1B), three_u8);
- /* Step 2: Blend the already-blended columns. */
- uint16x8_t output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16);
- uint16x8_t output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16);
- uint16x8_t output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16);
- uint16x8_t output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16);
- uint16x8_t output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16);
- uint16x8_t output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16);
- uint16x8_t output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16);
- uint16x8_t output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16);
- /* Add ordered dithering bias to odd pixel values. */
- output0_p1_l = vaddq_u16(output0_p1_l, seven_u16);
- output0_p1_h = vaddq_u16(output0_p1_h, seven_u16);
- output1_p1_l = vaddq_u16(output1_p1_l, seven_u16);
- output1_p1_h = vaddq_u16(output1_p1_h, seven_u16);
- /* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */
- uint8x16x2_t output_pixels0 = { {
- vcombine_u8(vshrn_n_u16(output0_p1_l, 4), vshrn_n_u16(output0_p1_h, 4)),
- vcombine_u8(vrshrn_n_u16(output0_p2_l, 4), vrshrn_n_u16(output0_p2_h, 4))
- } };
- uint8x16x2_t output_pixels1 = { {
- vcombine_u8(vshrn_n_u16(output1_p1_l, 4), vshrn_n_u16(output1_p1_h, 4)),
- vcombine_u8(vrshrn_n_u16(output1_p2_l, 4), vrshrn_n_u16(output1_p2_h, 4))
- } };
- /* Store pixel component values to memory.
- * The minimum size of the output buffer for each row is 64 bytes => no
- * need to worry about buffer overflow here. See "Creation of 2-D sample
- * arrays" in jmemmgr.c for more details.
- */
- vst2q_u8(outptr0 + 1, output_pixels0);
- vst2q_u8(outptr1 + 1, output_pixels1);
- /* The first pixel of the image shifted our loads and stores by one byte.
- * We have to re-align on a 32-byte boundary at some point before the end
- * of the row (we do it now on the 32/33 pixel boundary) to stay within the
- * bounds of the sample buffers without having to resort to a slow scalar
- * tail case for the last (downsampled_width % 16) samples. See "Creation
- * of 2-D sample arrays" in jmemmgr.c for more details.
- */
- for (colctr = 16; colctr < downsampled_width; colctr += 16) {
- /* Step 1: Blend samples vertically in columns s0 and s1. */
- /* Load and compute s0colsum0 and s0colsum1. */
- s0A = vld1q_u8(inptr0 + colctr - 1);
- s0B = vld1q_u8(inptr1 + colctr - 1);
- s0C = vld1q_u8(inptr2 + colctr - 1);
- s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)), vget_low_u8(s0B),
- three_u8);
- s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)), vget_high_u8(s0B),
- three_u8);
- s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)), vget_low_u8(s0B),
- three_u8);
- s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)), vget_high_u8(s0B),
- three_u8);
- /* Load and compute s1colsum0 and s1colsum1. */
- s1A = vld1q_u8(inptr0 + colctr);
- s1B = vld1q_u8(inptr1 + colctr);
- s1C = vld1q_u8(inptr2 + colctr);
- s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)), vget_low_u8(s1B),
- three_u8);
- s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)), vget_high_u8(s1B),
- three_u8);
- s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)), vget_low_u8(s1B),
- three_u8);
- s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)), vget_high_u8(s1B),
- three_u8);
- /* Step 2: Blend the already-blended columns. */
- output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16);
- output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16);
- output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16);
- output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16);
- output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16);
- output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16);
- output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16);
- output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16);
- /* Add ordered dithering bias to odd pixel values. */
- output0_p1_l = vaddq_u16(output0_p1_l, seven_u16);
- output0_p1_h = vaddq_u16(output0_p1_h, seven_u16);
- output1_p1_l = vaddq_u16(output1_p1_l, seven_u16);
- output1_p1_h = vaddq_u16(output1_p1_h, seven_u16);
- /* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */
- output_pixels0.val[0] = vcombine_u8(vshrn_n_u16(output0_p1_l, 4),
- vshrn_n_u16(output0_p1_h, 4));
- output_pixels0.val[1] = vcombine_u8(vrshrn_n_u16(output0_p2_l, 4),
- vrshrn_n_u16(output0_p2_h, 4));
- output_pixels1.val[0] = vcombine_u8(vshrn_n_u16(output1_p1_l, 4),
- vshrn_n_u16(output1_p1_h, 4));
- output_pixels1.val[1] = vcombine_u8(vrshrn_n_u16(output1_p2_l, 4),
- vrshrn_n_u16(output1_p2_h, 4));
- /* Store pixel component values to memory. */
- vst2q_u8(outptr0 + 2 * colctr - 1, output_pixels0);
- vst2q_u8(outptr1 + 2 * colctr - 1, output_pixels1);
- }
- /* Last pixel component value in this row of the original image */
- int s1colsum0 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 +
- GETJSAMPLE(inptr0[downsampled_width - 1]);
- outptr0[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum0 * 4 + 7) >> 4);
- int s1colsum1 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 +
- GETJSAMPLE(inptr2[downsampled_width - 1]);
- outptr1[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum1 * 4 + 7) >> 4);
- inrow++;
- }
- }
- /* The diagram below shows a column of samples produced by h1v2 downsampling
- * (or by losslessly rotating or transposing an h2v1-downsampled image.)
- *
- * +---------+
- * | p0 |
- * sA | |
- * | p1 |
- * +---------+
- * | p2 |
- * sB | |
- * | p3 |
- * +---------+
- * | p4 |
- * sC | |
- * | p5 |
- * +---------+
- *
- * Samples sA-sC were created by averaging the original pixel component values
- * centered at positions p0-p5 above. To approximate those original pixel
- * component values, we proportionally blend the adjacent samples in each
- * column.
- *
- * An upsampled pixel component value is computed by blending the sample
- * containing the pixel center with the nearest neighboring sample, in the
- * ratio 3:1. For example:
- * p1(upsampled) = 3/4 * sA + 1/4 * sB
- * p2(upsampled) = 3/4 * sB + 1/4 * sA
- * When computing the first and last pixel component values in the column,
- * there is no adjacent sample to blend, so:
- * p0(upsampled) = sA
- * p5(upsampled) = sC
- */
- void jsimd_h1v2_fancy_upsample_neon(int max_v_samp_factor,
- JDIMENSION downsampled_width,
- JSAMPARRAY input_data,
- JSAMPARRAY *output_data_ptr)
- {
- JSAMPARRAY output_data = *output_data_ptr;
- JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1;
- int inrow, outrow;
- unsigned colctr;
- /* Set up constants. */
- const uint16x8_t one_u16 = vdupq_n_u16(1);
- const uint8x8_t three_u8 = vdup_n_u8(3);
- inrow = outrow = 0;
- while (outrow < max_v_samp_factor) {
- inptr0 = input_data[inrow - 1];
- inptr1 = input_data[inrow];
- inptr2 = input_data[inrow + 1];
- /* Suffixes 0 and 1 denote the upper and lower rows of output pixels,
- * respectively.
- */
- outptr0 = output_data[outrow++];
- outptr1 = output_data[outrow++];
- inrow++;
- /* The size of the input and output buffers is always a multiple of 32
- * bytes => no need to worry about buffer overflow when reading/writing
- * memory. See "Creation of 2-D sample arrays" in jmemmgr.c for more
- * details.
- */
- for (colctr = 0; colctr < downsampled_width; colctr += 16) {
- /* Load samples. */
- uint8x16_t sA = vld1q_u8(inptr0 + colctr);
- uint8x16_t sB = vld1q_u8(inptr1 + colctr);
- uint8x16_t sC = vld1q_u8(inptr2 + colctr);
- /* Blend samples vertically. */
- uint16x8_t colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(sA)),
- vget_low_u8(sB), three_u8);
- uint16x8_t colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(sA)),
- vget_high_u8(sB), three_u8);
- uint16x8_t colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(sC)),
- vget_low_u8(sB), three_u8);
- uint16x8_t colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(sC)),
- vget_high_u8(sB), three_u8);
- /* Add ordered dithering bias to pixel values in even output rows. */
- colsum0_l = vaddq_u16(colsum0_l, one_u16);
- colsum0_h = vaddq_u16(colsum0_h, one_u16);
- /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
- uint8x16_t output_pixels0 = vcombine_u8(vshrn_n_u16(colsum0_l, 2),
- vshrn_n_u16(colsum0_h, 2));
- uint8x16_t output_pixels1 = vcombine_u8(vrshrn_n_u16(colsum1_l, 2),
- vrshrn_n_u16(colsum1_h, 2));
- /* Store pixel component values to memory. */
- vst1q_u8(outptr0 + colctr, output_pixels0);
- vst1q_u8(outptr1 + colctr, output_pixels1);
- }
- }
- }
- /* The diagram below shows a row of samples produced by h2v1 downsampling.
- *
- * s0 s1
- * +---------+---------+
- * | | |
- * | p0 p1 | p2 p3 |
- * | | |
- * +---------+---------+
- *
- * Samples s0 and s1 were created by averaging the original pixel component
- * values centered at positions p0-p3 above. To approximate those original
- * pixel component values, we duplicate the samples horizontally:
- * p0(upsampled) = p1(upsampled) = s0
- * p2(upsampled) = p3(upsampled) = s1
- */
- void jsimd_h2v1_upsample_neon(int max_v_samp_factor, JDIMENSION output_width,
- JSAMPARRAY input_data,
- JSAMPARRAY *output_data_ptr)
- {
- JSAMPARRAY output_data = *output_data_ptr;
- JSAMPROW inptr, outptr;
- int inrow;
- unsigned colctr;
- for (inrow = 0; inrow < max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr = output_data[inrow];
- for (colctr = 0; 2 * colctr < output_width; colctr += 16) {
- uint8x16_t samples = vld1q_u8(inptr + colctr);
- /* Duplicate the samples. The store operation below interleaves them so
- * that adjacent pixel component values take on the same sample value,
- * per above.
- */
- uint8x16x2_t output_pixels = { { samples, samples } };
- /* Store pixel component values to memory.
- * Due to the way sample buffers are allocated, we don't need to worry
- * about tail cases when output_width is not a multiple of 32. See
- * "Creation of 2-D sample arrays" in jmemmgr.c for details.
- */
- vst2q_u8(outptr + 2 * colctr, output_pixels);
- }
- }
- }
- /* The diagram below shows an array of samples produced by h2v2 downsampling.
- *
- * s0 s1
- * +---------+---------+
- * | p0 p1 | p2 p3 |
- * sA | | |
- * | p4 p5 | p6 p7 |
- * +---------+---------+
- * | p8 p9 | p10 p11|
- * sB | | |
- * | p12 p13| p14 p15|
- * +---------+---------+
- *
- * Samples s0A-s1B were created by averaging the original pixel component
- * values centered at positions p0-p15 above. To approximate those original
- * pixel component values, we duplicate the samples both horizontally and
- * vertically:
- * p0(upsampled) = p1(upsampled) = p4(upsampled) = p5(upsampled) = s0A
- * p2(upsampled) = p3(upsampled) = p6(upsampled) = p7(upsampled) = s1A
- * p8(upsampled) = p9(upsampled) = p12(upsampled) = p13(upsampled) = s0B
- * p10(upsampled) = p11(upsampled) = p14(upsampled) = p15(upsampled) = s1B
- */
- void jsimd_h2v2_upsample_neon(int max_v_samp_factor, JDIMENSION output_width,
- JSAMPARRAY input_data,
- JSAMPARRAY *output_data_ptr)
- {
- JSAMPARRAY output_data = *output_data_ptr;
- JSAMPROW inptr, outptr0, outptr1;
- int inrow, outrow;
- unsigned colctr;
- for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr0 = output_data[outrow++];
- outptr1 = output_data[outrow++];
- for (colctr = 0; 2 * colctr < output_width; colctr += 16) {
- uint8x16_t samples = vld1q_u8(inptr + colctr);
- /* Duplicate the samples. The store operation below interleaves them so
- * that adjacent pixel component values take on the same sample value,
- * per above.
- */
- uint8x16x2_t output_pixels = { { samples, samples } };
- /* Store pixel component values for both output rows to memory.
- * Due to the way sample buffers are allocated, we don't need to worry
- * about tail cases when output_width is not a multiple of 32. See
- * "Creation of 2-D sample arrays" in jmemmgr.c for details.
- */
- vst2q_u8(outptr0 + 2 * colctr, output_pixels);
- vst2q_u8(outptr1 + 2 * colctr, output_pixels);
- }
- }
- }
|