jchuff-neon.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. /*
  2. * jchuff-neon.c - Huffman entropy encoding (32-bit Arm Neon)
  3. *
  4. * Copyright (C) 2020, Arm Limited. All Rights Reserved.
  5. *
  6. * This software is provided 'as-is', without any express or implied
  7. * warranty. In no event will the authors be held liable for any damages
  8. * arising from the use of this software.
  9. *
  10. * Permission is granted to anyone to use this software for any purpose,
  11. * including commercial applications, and to alter it and redistribute it
  12. * freely, subject to the following restrictions:
  13. *
  14. * 1. The origin of this software must not be misrepresented; you must not
  15. * claim that you wrote the original software. If you use this software
  16. * in a product, an acknowledgment in the product documentation would be
  17. * appreciated but is not required.
  18. * 2. Altered source versions must be plainly marked as such, and must not be
  19. * misrepresented as being the original software.
  20. * 3. This notice may not be removed or altered from any source distribution.
  21. *
  22. * NOTE: All referenced figures are from
  23. * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
  24. */
  25. #define JPEG_INTERNALS
  26. #include "../../../jinclude.h"
  27. #include "../../../jpeglib.h"
  28. #include "../../../jsimd.h"
  29. #include "../../../jdct.h"
  30. #include "../../../jsimddct.h"
  31. #include "../../jsimd.h"
  32. #include "../jchuff.h"
  33. #include "neon-compat.h"
  34. #include <limits.h>
  35. #include <arm_neon.h>
  36. JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer,
  37. JCOEFPTR block, int last_dc_val,
  38. c_derived_tbl *dctbl,
  39. c_derived_tbl *actbl)
  40. {
  41. uint8_t block_nbits[DCTSIZE2];
  42. uint16_t block_diff[DCTSIZE2];
  43. /* Load rows of coefficients from DCT block in zig-zag order. */
  44. /* Compute DC coefficient difference value. (F.1.1.5.1) */
  45. int16x8_t row0 = vdupq_n_s16(block[0] - last_dc_val);
  46. row0 = vld1q_lane_s16(block + 1, row0, 1);
  47. row0 = vld1q_lane_s16(block + 8, row0, 2);
  48. row0 = vld1q_lane_s16(block + 16, row0, 3);
  49. row0 = vld1q_lane_s16(block + 9, row0, 4);
  50. row0 = vld1q_lane_s16(block + 2, row0, 5);
  51. row0 = vld1q_lane_s16(block + 3, row0, 6);
  52. row0 = vld1q_lane_s16(block + 10, row0, 7);
  53. int16x8_t row1 = vld1q_dup_s16(block + 17);
  54. row1 = vld1q_lane_s16(block + 24, row1, 1);
  55. row1 = vld1q_lane_s16(block + 32, row1, 2);
  56. row1 = vld1q_lane_s16(block + 25, row1, 3);
  57. row1 = vld1q_lane_s16(block + 18, row1, 4);
  58. row1 = vld1q_lane_s16(block + 11, row1, 5);
  59. row1 = vld1q_lane_s16(block + 4, row1, 6);
  60. row1 = vld1q_lane_s16(block + 5, row1, 7);
  61. int16x8_t row2 = vld1q_dup_s16(block + 12);
  62. row2 = vld1q_lane_s16(block + 19, row2, 1);
  63. row2 = vld1q_lane_s16(block + 26, row2, 2);
  64. row2 = vld1q_lane_s16(block + 33, row2, 3);
  65. row2 = vld1q_lane_s16(block + 40, row2, 4);
  66. row2 = vld1q_lane_s16(block + 48, row2, 5);
  67. row2 = vld1q_lane_s16(block + 41, row2, 6);
  68. row2 = vld1q_lane_s16(block + 34, row2, 7);
  69. int16x8_t row3 = vld1q_dup_s16(block + 27);
  70. row3 = vld1q_lane_s16(block + 20, row3, 1);
  71. row3 = vld1q_lane_s16(block + 13, row3, 2);
  72. row3 = vld1q_lane_s16(block + 6, row3, 3);
  73. row3 = vld1q_lane_s16(block + 7, row3, 4);
  74. row3 = vld1q_lane_s16(block + 14, row3, 5);
  75. row3 = vld1q_lane_s16(block + 21, row3, 6);
  76. row3 = vld1q_lane_s16(block + 28, row3, 7);
  77. int16x8_t abs_row0 = vabsq_s16(row0);
  78. int16x8_t abs_row1 = vabsq_s16(row1);
  79. int16x8_t abs_row2 = vabsq_s16(row2);
  80. int16x8_t abs_row3 = vabsq_s16(row3);
  81. int16x8_t row0_lz = vclzq_s16(abs_row0);
  82. int16x8_t row1_lz = vclzq_s16(abs_row1);
  83. int16x8_t row2_lz = vclzq_s16(abs_row2);
  84. int16x8_t row3_lz = vclzq_s16(abs_row3);
  85. /* Compute number of bits required to represent each coefficient. */
  86. uint8x8_t row0_nbits = vsub_u8(vdup_n_u8(16),
  87. vmovn_u16(vreinterpretq_u16_s16(row0_lz)));
  88. uint8x8_t row1_nbits = vsub_u8(vdup_n_u8(16),
  89. vmovn_u16(vreinterpretq_u16_s16(row1_lz)));
  90. uint8x8_t row2_nbits = vsub_u8(vdup_n_u8(16),
  91. vmovn_u16(vreinterpretq_u16_s16(row2_lz)));
  92. uint8x8_t row3_nbits = vsub_u8(vdup_n_u8(16),
  93. vmovn_u16(vreinterpretq_u16_s16(row3_lz)));
  94. vst1_u8(block_nbits + 0 * DCTSIZE, row0_nbits);
  95. vst1_u8(block_nbits + 1 * DCTSIZE, row1_nbits);
  96. vst1_u8(block_nbits + 2 * DCTSIZE, row2_nbits);
  97. vst1_u8(block_nbits + 3 * DCTSIZE, row3_nbits);
  98. uint16x8_t row0_mask =
  99. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row0, 15)),
  100. vnegq_s16(row0_lz));
  101. uint16x8_t row1_mask =
  102. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row1, 15)),
  103. vnegq_s16(row1_lz));
  104. uint16x8_t row2_mask =
  105. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row2, 15)),
  106. vnegq_s16(row2_lz));
  107. uint16x8_t row3_mask =
  108. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row3, 15)),
  109. vnegq_s16(row3_lz));
  110. uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask);
  111. uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask);
  112. uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask);
  113. uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask);
  114. /* Store diff values for rows 0, 1, 2, and 3. */
  115. vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
  116. vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
  117. vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
  118. vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
  119. /* Load last four rows of coefficients from DCT block in zig-zag order. */
  120. int16x8_t row4 = vld1q_dup_s16(block + 35);
  121. row4 = vld1q_lane_s16(block + 42, row4, 1);
  122. row4 = vld1q_lane_s16(block + 49, row4, 2);
  123. row4 = vld1q_lane_s16(block + 56, row4, 3);
  124. row4 = vld1q_lane_s16(block + 57, row4, 4);
  125. row4 = vld1q_lane_s16(block + 50, row4, 5);
  126. row4 = vld1q_lane_s16(block + 43, row4, 6);
  127. row4 = vld1q_lane_s16(block + 36, row4, 7);
  128. int16x8_t row5 = vld1q_dup_s16(block + 29);
  129. row5 = vld1q_lane_s16(block + 22, row5, 1);
  130. row5 = vld1q_lane_s16(block + 15, row5, 2);
  131. row5 = vld1q_lane_s16(block + 23, row5, 3);
  132. row5 = vld1q_lane_s16(block + 30, row5, 4);
  133. row5 = vld1q_lane_s16(block + 37, row5, 5);
  134. row5 = vld1q_lane_s16(block + 44, row5, 6);
  135. row5 = vld1q_lane_s16(block + 51, row5, 7);
  136. int16x8_t row6 = vld1q_dup_s16(block + 58);
  137. row6 = vld1q_lane_s16(block + 59, row6, 1);
  138. row6 = vld1q_lane_s16(block + 52, row6, 2);
  139. row6 = vld1q_lane_s16(block + 45, row6, 3);
  140. row6 = vld1q_lane_s16(block + 38, row6, 4);
  141. row6 = vld1q_lane_s16(block + 31, row6, 5);
  142. row6 = vld1q_lane_s16(block + 39, row6, 6);
  143. row6 = vld1q_lane_s16(block + 46, row6, 7);
  144. int16x8_t row7 = vld1q_dup_s16(block + 53);
  145. row7 = vld1q_lane_s16(block + 60, row7, 1);
  146. row7 = vld1q_lane_s16(block + 61, row7, 2);
  147. row7 = vld1q_lane_s16(block + 54, row7, 3);
  148. row7 = vld1q_lane_s16(block + 47, row7, 4);
  149. row7 = vld1q_lane_s16(block + 55, row7, 5);
  150. row7 = vld1q_lane_s16(block + 62, row7, 6);
  151. row7 = vld1q_lane_s16(block + 63, row7, 7);
  152. int16x8_t abs_row4 = vabsq_s16(row4);
  153. int16x8_t abs_row5 = vabsq_s16(row5);
  154. int16x8_t abs_row6 = vabsq_s16(row6);
  155. int16x8_t abs_row7 = vabsq_s16(row7);
  156. int16x8_t row4_lz = vclzq_s16(abs_row4);
  157. int16x8_t row5_lz = vclzq_s16(abs_row5);
  158. int16x8_t row6_lz = vclzq_s16(abs_row6);
  159. int16x8_t row7_lz = vclzq_s16(abs_row7);
  160. /* Compute number of bits required to represent each coefficient. */
  161. uint8x8_t row4_nbits = vsub_u8(vdup_n_u8(16),
  162. vmovn_u16(vreinterpretq_u16_s16(row4_lz)));
  163. uint8x8_t row5_nbits = vsub_u8(vdup_n_u8(16),
  164. vmovn_u16(vreinterpretq_u16_s16(row5_lz)));
  165. uint8x8_t row6_nbits = vsub_u8(vdup_n_u8(16),
  166. vmovn_u16(vreinterpretq_u16_s16(row6_lz)));
  167. uint8x8_t row7_nbits = vsub_u8(vdup_n_u8(16),
  168. vmovn_u16(vreinterpretq_u16_s16(row7_lz)));
  169. vst1_u8(block_nbits + 4 * DCTSIZE, row4_nbits);
  170. vst1_u8(block_nbits + 5 * DCTSIZE, row5_nbits);
  171. vst1_u8(block_nbits + 6 * DCTSIZE, row6_nbits);
  172. vst1_u8(block_nbits + 7 * DCTSIZE, row7_nbits);
  173. uint16x8_t row4_mask =
  174. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row4, 15)),
  175. vnegq_s16(row4_lz));
  176. uint16x8_t row5_mask =
  177. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row5, 15)),
  178. vnegq_s16(row5_lz));
  179. uint16x8_t row6_mask =
  180. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row6, 15)),
  181. vnegq_s16(row6_lz));
  182. uint16x8_t row7_mask =
  183. vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row7, 15)),
  184. vnegq_s16(row7_lz));
  185. uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask);
  186. uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask);
  187. uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask);
  188. uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask);
  189. /* Store diff values for rows 4, 5, 6, and 7. */
  190. vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
  191. vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
  192. vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
  193. vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
  194. /* Construct bitmap to accelerate encoding of AC coefficients. A set bit
  195. * means that the corresponding coefficient != 0.
  196. */
  197. uint8x8_t row0_nbits_gt0 = vcgt_u8(row0_nbits, vdup_n_u8(0));
  198. uint8x8_t row1_nbits_gt0 = vcgt_u8(row1_nbits, vdup_n_u8(0));
  199. uint8x8_t row2_nbits_gt0 = vcgt_u8(row2_nbits, vdup_n_u8(0));
  200. uint8x8_t row3_nbits_gt0 = vcgt_u8(row3_nbits, vdup_n_u8(0));
  201. uint8x8_t row4_nbits_gt0 = vcgt_u8(row4_nbits, vdup_n_u8(0));
  202. uint8x8_t row5_nbits_gt0 = vcgt_u8(row5_nbits, vdup_n_u8(0));
  203. uint8x8_t row6_nbits_gt0 = vcgt_u8(row6_nbits, vdup_n_u8(0));
  204. uint8x8_t row7_nbits_gt0 = vcgt_u8(row7_nbits, vdup_n_u8(0));
  205. /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */
  206. const uint8x8_t bitmap_mask =
  207. vreinterpret_u8_u64(vmov_n_u64(0x0102040810204080));
  208. row0_nbits_gt0 = vand_u8(row0_nbits_gt0, bitmap_mask);
  209. row1_nbits_gt0 = vand_u8(row1_nbits_gt0, bitmap_mask);
  210. row2_nbits_gt0 = vand_u8(row2_nbits_gt0, bitmap_mask);
  211. row3_nbits_gt0 = vand_u8(row3_nbits_gt0, bitmap_mask);
  212. row4_nbits_gt0 = vand_u8(row4_nbits_gt0, bitmap_mask);
  213. row5_nbits_gt0 = vand_u8(row5_nbits_gt0, bitmap_mask);
  214. row6_nbits_gt0 = vand_u8(row6_nbits_gt0, bitmap_mask);
  215. row7_nbits_gt0 = vand_u8(row7_nbits_gt0, bitmap_mask);
  216. uint8x8_t bitmap_rows_10 = vpadd_u8(row1_nbits_gt0, row0_nbits_gt0);
  217. uint8x8_t bitmap_rows_32 = vpadd_u8(row3_nbits_gt0, row2_nbits_gt0);
  218. uint8x8_t bitmap_rows_54 = vpadd_u8(row5_nbits_gt0, row4_nbits_gt0);
  219. uint8x8_t bitmap_rows_76 = vpadd_u8(row7_nbits_gt0, row6_nbits_gt0);
  220. uint8x8_t bitmap_rows_3210 = vpadd_u8(bitmap_rows_32, bitmap_rows_10);
  221. uint8x8_t bitmap_rows_7654 = vpadd_u8(bitmap_rows_76, bitmap_rows_54);
  222. uint8x8_t bitmap = vpadd_u8(bitmap_rows_7654, bitmap_rows_3210);
  223. /* Shift left to remove DC bit. */
  224. bitmap = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap), 1));
  225. /* Move bitmap to 32-bit scalar registers. */
  226. uint32_t bitmap_1_32 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 1);
  227. uint32_t bitmap_33_63 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 0);
  228. /* Set up state and bit buffer for output bitstream. */
  229. working_state *state_ptr = (working_state *)state;
  230. int free_bits = state_ptr->cur.free_bits;
  231. size_t put_buffer = state_ptr->cur.put_buffer;
  232. /* Encode DC coefficient. */
  233. unsigned int nbits = block_nbits[0];
  234. /* Emit Huffman-coded symbol and additional diff bits. */
  235. unsigned int diff = block_diff[0];
  236. PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff)
  237. /* Encode AC coefficients. */
  238. unsigned int r = 0; /* r = run length of zeros */
  239. unsigned int i = 1; /* i = number of coefficients encoded */
  240. /* Code and size information for a run length of 16 zero coefficients */
  241. const unsigned int code_0xf0 = actbl->ehufco[0xf0];
  242. const unsigned int size_0xf0 = actbl->ehufsi[0xf0];
  243. while (bitmap_1_32 != 0) {
  244. r = BUILTIN_CLZ(bitmap_1_32);
  245. i += r;
  246. bitmap_1_32 <<= r;
  247. nbits = block_nbits[i];
  248. diff = block_diff[i];
  249. while (r > 15) {
  250. /* If run length > 15, emit special run-length-16 codes. */
  251. PUT_BITS(code_0xf0, size_0xf0)
  252. r -= 16;
  253. }
  254. /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
  255. unsigned int rs = (r << 4) + nbits;
  256. PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
  257. i++;
  258. bitmap_1_32 <<= 1;
  259. }
  260. r = 33 - i;
  261. i = 33;
  262. while (bitmap_33_63 != 0) {
  263. unsigned int leading_zeros = BUILTIN_CLZ(bitmap_33_63);
  264. r += leading_zeros;
  265. i += leading_zeros;
  266. bitmap_33_63 <<= leading_zeros;
  267. nbits = block_nbits[i];
  268. diff = block_diff[i];
  269. while (r > 15) {
  270. /* If run length > 15, emit special run-length-16 codes. */
  271. PUT_BITS(code_0xf0, size_0xf0)
  272. r -= 16;
  273. }
  274. /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
  275. unsigned int rs = (r << 4) + nbits;
  276. PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
  277. r = 0;
  278. i++;
  279. bitmap_33_63 <<= 1;
  280. }
  281. /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code.
  282. * The value of RS for the EOB code is 0.
  283. */
  284. if (i != 64) {
  285. PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
  286. }
  287. state_ptr->cur.put_buffer = put_buffer;
  288. state_ptr->cur.free_bits = free_bits;
  289. return buffer;
  290. }