123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592 |
- //===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- // fuzzer::InputCorpus
- //===----------------------------------------------------------------------===//
- #ifndef LLVM_FUZZER_CORPUS
- #define LLVM_FUZZER_CORPUS
- #include "FuzzerDataFlowTrace.h"
- #include "FuzzerDefs.h"
- #include "FuzzerIO.h"
- #include "FuzzerRandom.h"
- #include "FuzzerSHA1.h"
- #include "FuzzerTracePC.h"
- #include <algorithm>
- #include <bitset>
- #include <chrono>
- #include <numeric>
- #include <random>
- #include <unordered_set>
- namespace fuzzer {
- struct InputInfo {
- Unit U; // The actual input data.
- std::chrono::microseconds TimeOfUnit;
- uint8_t Sha1[kSHA1NumBytes]; // Checksum.
- // Number of features that this input has and no smaller input has.
- size_t NumFeatures = 0;
- size_t Tmp = 0; // Used by ValidateFeatureSet.
- // Stats.
- size_t NumExecutedMutations = 0;
- size_t NumSuccessfullMutations = 0;
- bool NeverReduce = false;
- bool MayDeleteFile = false;
- bool Reduced = false;
- bool HasFocusFunction = false;
- std::vector<uint32_t> UniqFeatureSet;
- std::vector<uint8_t> DataFlowTraceForFocusFunction;
- // Power schedule.
- bool NeedsEnergyUpdate = false;
- double Energy = 0.0;
- double SumIncidence = 0.0;
- std::vector<std::pair<uint32_t, uint16_t>> FeatureFreqs;
- // Delete feature Idx and its frequency from FeatureFreqs.
- bool DeleteFeatureFreq(uint32_t Idx) {
- if (FeatureFreqs.empty())
- return false;
- // Binary search over local feature frequencies sorted by index.
- auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
- std::pair<uint32_t, uint16_t>(Idx, 0));
- if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
- FeatureFreqs.erase(Lower);
- return true;
- }
- return false;
- }
- // Assign more energy to a high-entropy seed, i.e., that reveals more
- // information about the globally rare features in the neighborhood of the
- // seed. Since we do not know the entropy of a seed that has never been
- // executed we assign fresh seeds maximum entropy and let II->Energy approach
- // the true entropy from above. If ScalePerExecTime is true, the computed
- // entropy is scaled based on how fast this input executes compared to the
- // average execution time of inputs. The faster an input executes, the more
- // energy gets assigned to the input.
- void UpdateEnergy(size_t GlobalNumberOfFeatures, bool ScalePerExecTime,
- std::chrono::microseconds AverageUnitExecutionTime) {
- Energy = 0.0;
- SumIncidence = 0.0;
- // Apply add-one smoothing to locally discovered features.
- for (const auto &F : FeatureFreqs) {
- double LocalIncidence = F.second + 1;
- Energy -= LocalIncidence * log(LocalIncidence);
- SumIncidence += LocalIncidence;
- }
- // Apply add-one smoothing to locally undiscovered features.
- // PreciseEnergy -= 0; // since log(1.0) == 0)
- SumIncidence +=
- static_cast<double>(GlobalNumberOfFeatures - FeatureFreqs.size());
- // Add a single locally abundant feature apply add-one smoothing.
- double AbdIncidence = static_cast<double>(NumExecutedMutations + 1);
- Energy -= AbdIncidence * log(AbdIncidence);
- SumIncidence += AbdIncidence;
- // Normalize.
- if (SumIncidence != 0)
- Energy = Energy / SumIncidence + log(SumIncidence);
- if (ScalePerExecTime) {
- // Scaling to favor inputs with lower execution time.
- uint32_t PerfScore = 100;
- if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 10)
- PerfScore = 10;
- else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 4)
- PerfScore = 25;
- else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 2)
- PerfScore = 50;
- else if (TimeOfUnit.count() * 3 > AverageUnitExecutionTime.count() * 4)
- PerfScore = 75;
- else if (TimeOfUnit.count() * 4 < AverageUnitExecutionTime.count())
- PerfScore = 300;
- else if (TimeOfUnit.count() * 3 < AverageUnitExecutionTime.count())
- PerfScore = 200;
- else if (TimeOfUnit.count() * 2 < AverageUnitExecutionTime.count())
- PerfScore = 150;
- Energy *= PerfScore;
- }
- }
- // Increment the frequency of the feature Idx.
- void UpdateFeatureFrequency(uint32_t Idx) {
- NeedsEnergyUpdate = true;
- // The local feature frequencies is an ordered vector of pairs.
- // If there are no local feature frequencies, push_back preserves order.
- // Set the feature frequency for feature Idx32 to 1.
- if (FeatureFreqs.empty()) {
- FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(Idx, 1));
- return;
- }
- // Binary search over local feature frequencies sorted by index.
- auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
- std::pair<uint32_t, uint16_t>(Idx, 0));
- // If feature Idx32 already exists, increment its frequency.
- // Otherwise, insert a new pair right after the next lower index.
- if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
- Lower->second++;
- } else {
- FeatureFreqs.insert(Lower, std::pair<uint32_t, uint16_t>(Idx, 1));
- }
- }
- };
- struct EntropicOptions {
- bool Enabled;
- size_t NumberOfRarestFeatures;
- size_t FeatureFrequencyThreshold;
- bool ScalePerExecTime;
- };
- class InputCorpus {
- static const uint32_t kFeatureSetSize = 1 << 21;
- static const uint8_t kMaxMutationFactor = 20;
- static const size_t kSparseEnergyUpdates = 100;
- size_t NumExecutedMutations = 0;
- EntropicOptions Entropic;
- public:
- InputCorpus(const std::string &OutputCorpus, EntropicOptions Entropic)
- : Entropic(Entropic), OutputCorpus(OutputCorpus) {
- memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature));
- memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature));
- }
- ~InputCorpus() {
- for (auto II : Inputs)
- delete II;
- }
- size_t size() const { return Inputs.size(); }
- size_t SizeInBytes() const {
- size_t Res = 0;
- for (auto II : Inputs)
- Res += II->U.size();
- return Res;
- }
- size_t NumActiveUnits() const {
- size_t Res = 0;
- for (auto II : Inputs)
- Res += !II->U.empty();
- return Res;
- }
- size_t MaxInputSize() const {
- size_t Res = 0;
- for (auto II : Inputs)
- Res = std::max(Res, II->U.size());
- return Res;
- }
- void IncrementNumExecutedMutations() { NumExecutedMutations++; }
- size_t NumInputsThatTouchFocusFunction() {
- return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
- return II->HasFocusFunction;
- });
- }
- size_t NumInputsWithDataFlowTrace() {
- return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
- return !II->DataFlowTraceForFocusFunction.empty();
- });
- }
- bool empty() const { return Inputs.empty(); }
- const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; }
- InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile,
- bool HasFocusFunction, bool NeverReduce,
- std::chrono::microseconds TimeOfUnit,
- const std::vector<uint32_t> &FeatureSet,
- const DataFlowTrace &DFT, const InputInfo *BaseII) {
- assert(!U.empty());
- if (FeatureDebug)
- Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures);
- // Inputs.size() is cast to uint32_t below.
- assert(Inputs.size() < std::numeric_limits<uint32_t>::max());
- Inputs.push_back(new InputInfo());
- InputInfo &II = *Inputs.back();
- II.U = U;
- II.NumFeatures = NumFeatures;
- II.NeverReduce = NeverReduce;
- II.TimeOfUnit = TimeOfUnit;
- II.MayDeleteFile = MayDeleteFile;
- II.UniqFeatureSet = FeatureSet;
- II.HasFocusFunction = HasFocusFunction;
- // Assign maximal energy to the new seed.
- II.Energy = RareFeatures.empty() ? 1.0 : log(RareFeatures.size());
- II.SumIncidence = static_cast<double>(RareFeatures.size());
- II.NeedsEnergyUpdate = false;
- std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end());
- ComputeSHA1(U.data(), U.size(), II.Sha1);
- auto Sha1Str = Sha1ToString(II.Sha1);
- Hashes.insert(Sha1Str);
- if (HasFocusFunction)
- if (auto V = DFT.Get(Sha1Str))
- II.DataFlowTraceForFocusFunction = *V;
- // This is a gross heuristic.
- // Ideally, when we add an element to a corpus we need to know its DFT.
- // But if we don't, we'll use the DFT of its base input.
- if (II.DataFlowTraceForFocusFunction.empty() && BaseII)
- II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction;
- DistributionNeedsUpdate = true;
- PrintCorpus();
- // ValidateFeatureSet();
- return &II;
- }
- // Debug-only
- void PrintUnit(const Unit &U) {
- if (!FeatureDebug) return;
- for (uint8_t C : U) {
- if (C != 'F' && C != 'U' && C != 'Z')
- C = '.';
- Printf("%c", C);
- }
- }
- // Debug-only
- void PrintFeatureSet(const std::vector<uint32_t> &FeatureSet) {
- if (!FeatureDebug) return;
- Printf("{");
- for (uint32_t Feature: FeatureSet)
- Printf("%u,", Feature);
- Printf("}");
- }
- // Debug-only
- void PrintCorpus() {
- if (!FeatureDebug) return;
- Printf("======= CORPUS:\n");
- int i = 0;
- for (auto II : Inputs) {
- if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) {
- Printf("[%2d] ", i);
- Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size());
- PrintUnit(II->U);
- Printf(" ");
- PrintFeatureSet(II->UniqFeatureSet);
- Printf("\n");
- }
- i++;
- }
- }
- void Replace(InputInfo *II, const Unit &U,
- std::chrono::microseconds TimeOfUnit) {
- assert(II->U.size() > U.size());
- Hashes.erase(Sha1ToString(II->Sha1));
- DeleteFile(*II);
- ComputeSHA1(U.data(), U.size(), II->Sha1);
- Hashes.insert(Sha1ToString(II->Sha1));
- II->U = U;
- II->Reduced = true;
- II->TimeOfUnit = TimeOfUnit;
- DistributionNeedsUpdate = true;
- }
- bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); }
- bool HasUnit(const std::string &H) { return Hashes.count(H); }
- InputInfo &ChooseUnitToMutate(Random &Rand) {
- InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)];
- assert(!II.U.empty());
- return II;
- }
- InputInfo &ChooseUnitToCrossOverWith(Random &Rand, bool UniformDist) {
- if (!UniformDist) {
- return ChooseUnitToMutate(Rand);
- }
- InputInfo &II = *Inputs[Rand(Inputs.size())];
- assert(!II.U.empty());
- return II;
- }
- // Returns an index of random unit from the corpus to mutate.
- size_t ChooseUnitIdxToMutate(Random &Rand) {
- UpdateCorpusDistribution(Rand);
- size_t Idx = static_cast<size_t>(CorpusDistribution(Rand));
- assert(Idx < Inputs.size());
- return Idx;
- }
- void PrintStats() {
- for (size_t i = 0; i < Inputs.size(); i++) {
- const auto &II = *Inputs[i];
- Printf(" [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i,
- Sha1ToString(II.Sha1).c_str(), II.U.size(),
- II.NumExecutedMutations, II.NumSuccessfullMutations,
- II.HasFocusFunction);
- }
- }
- void PrintFeatureSet() {
- for (size_t i = 0; i < kFeatureSetSize; i++) {
- if(size_t Sz = GetFeature(i))
- Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz);
- }
- Printf("\n\t");
- for (size_t i = 0; i < Inputs.size(); i++)
- if (size_t N = Inputs[i]->NumFeatures)
- Printf(" %zd=>%zd ", i, N);
- Printf("\n");
- }
- void DeleteFile(const InputInfo &II) {
- if (!OutputCorpus.empty() && II.MayDeleteFile)
- RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1)));
- }
- void DeleteInput(size_t Idx) {
- InputInfo &II = *Inputs[Idx];
- DeleteFile(II);
- Unit().swap(II.U);
- II.Energy = 0.0;
- II.NeedsEnergyUpdate = false;
- DistributionNeedsUpdate = true;
- if (FeatureDebug)
- Printf("EVICTED %zd\n", Idx);
- }
- void AddRareFeature(uint32_t Idx) {
- // Maintain *at least* TopXRarestFeatures many rare features
- // and all features with a frequency below ConsideredRare.
- // Remove all other features.
- while (RareFeatures.size() > Entropic.NumberOfRarestFeatures &&
- FreqOfMostAbundantRareFeature > Entropic.FeatureFrequencyThreshold) {
- // Find most and second most abbundant feature.
- uint32_t MostAbundantRareFeatureIndices[2] = {RareFeatures[0],
- RareFeatures[0]};
- size_t Delete = 0;
- for (size_t i = 0; i < RareFeatures.size(); i++) {
- uint32_t Idx2 = RareFeatures[i];
- if (GlobalFeatureFreqs[Idx2] >=
- GlobalFeatureFreqs[MostAbundantRareFeatureIndices[0]]) {
- MostAbundantRareFeatureIndices[1] = MostAbundantRareFeatureIndices[0];
- MostAbundantRareFeatureIndices[0] = Idx2;
- Delete = i;
- }
- }
- // Remove most abundant rare feature.
- IsRareFeature[Delete] = false;
- RareFeatures[Delete] = RareFeatures.back();
- RareFeatures.pop_back();
- for (auto II : Inputs) {
- if (II->DeleteFeatureFreq(MostAbundantRareFeatureIndices[0]))
- II->NeedsEnergyUpdate = true;
- }
- // Set 2nd most abundant as the new most abundant feature count.
- FreqOfMostAbundantRareFeature =
- GlobalFeatureFreqs[MostAbundantRareFeatureIndices[1]];
- }
- // Add rare feature, handle collisions, and update energy.
- RareFeatures.push_back(Idx);
- IsRareFeature[Idx] = true;
- GlobalFeatureFreqs[Idx] = 0;
- for (auto II : Inputs) {
- II->DeleteFeatureFreq(Idx);
- // Apply add-one smoothing to this locally undiscovered feature.
- // Zero energy seeds will never be fuzzed and remain zero energy.
- if (II->Energy > 0.0) {
- II->SumIncidence += 1;
- II->Energy += log(II->SumIncidence) / II->SumIncidence;
- }
- }
- DistributionNeedsUpdate = true;
- }
- bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) {
- assert(NewSize);
- Idx = Idx % kFeatureSetSize;
- uint32_t OldSize = GetFeature(Idx);
- if (OldSize == 0 || (Shrink && OldSize > NewSize)) {
- if (OldSize > 0) {
- size_t OldIdx = SmallestElementPerFeature[Idx];
- InputInfo &II = *Inputs[OldIdx];
- assert(II.NumFeatures > 0);
- II.NumFeatures--;
- if (II.NumFeatures == 0)
- DeleteInput(OldIdx);
- } else {
- NumAddedFeatures++;
- if (Entropic.Enabled)
- AddRareFeature((uint32_t)Idx);
- }
- NumUpdatedFeatures++;
- if (FeatureDebug)
- Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize);
- // Inputs.size() is guaranteed to be less than UINT32_MAX by AddToCorpus.
- SmallestElementPerFeature[Idx] = static_cast<uint32_t>(Inputs.size());
- InputSizesPerFeature[Idx] = NewSize;
- return true;
- }
- return false;
- }
- // Increment frequency of feature Idx globally and locally.
- void UpdateFeatureFrequency(InputInfo *II, size_t Idx) {
- uint32_t Idx32 = Idx % kFeatureSetSize;
- // Saturated increment.
- if (GlobalFeatureFreqs[Idx32] == 0xFFFF)
- return;
- uint16_t Freq = GlobalFeatureFreqs[Idx32]++;
- // Skip if abundant.
- if (Freq > FreqOfMostAbundantRareFeature || !IsRareFeature[Idx32])
- return;
- // Update global frequencies.
- if (Freq == FreqOfMostAbundantRareFeature)
- FreqOfMostAbundantRareFeature++;
- // Update local frequencies.
- if (II)
- II->UpdateFeatureFrequency(Idx32);
- }
- size_t NumFeatures() const { return NumAddedFeatures; }
- size_t NumFeatureUpdates() const { return NumUpdatedFeatures; }
- private:
- static const bool FeatureDebug = false;
- uint32_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; }
- void ValidateFeatureSet() {
- if (FeatureDebug)
- PrintFeatureSet();
- for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++)
- if (GetFeature(Idx))
- Inputs[SmallestElementPerFeature[Idx]]->Tmp++;
- for (auto II: Inputs) {
- if (II->Tmp != II->NumFeatures)
- Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures);
- assert(II->Tmp == II->NumFeatures);
- II->Tmp = 0;
- }
- }
- // Updates the probability distribution for the units in the corpus.
- // Must be called whenever the corpus or unit weights are changed.
- //
- // Hypothesis: inputs that maximize information about globally rare features
- // are interesting.
- void UpdateCorpusDistribution(Random &Rand) {
- // Skip update if no seeds or rare features were added/deleted.
- // Sparse updates for local change of feature frequencies,
- // i.e., randomly do not skip.
- if (!DistributionNeedsUpdate &&
- (!Entropic.Enabled || Rand(kSparseEnergyUpdates)))
- return;
- DistributionNeedsUpdate = false;
- size_t N = Inputs.size();
- assert(N);
- Intervals.resize(N + 1);
- Weights.resize(N);
- std::iota(Intervals.begin(), Intervals.end(), 0);
- std::chrono::microseconds AverageUnitExecutionTime(0);
- for (auto II : Inputs) {
- AverageUnitExecutionTime += II->TimeOfUnit;
- }
- AverageUnitExecutionTime /= N;
- bool VanillaSchedule = true;
- if (Entropic.Enabled) {
- for (auto II : Inputs) {
- if (II->NeedsEnergyUpdate && II->Energy != 0.0) {
- II->NeedsEnergyUpdate = false;
- II->UpdateEnergy(RareFeatures.size(), Entropic.ScalePerExecTime,
- AverageUnitExecutionTime);
- }
- }
- for (size_t i = 0; i < N; i++) {
- if (Inputs[i]->NumFeatures == 0) {
- // If the seed doesn't represent any features, assign zero energy.
- Weights[i] = 0.;
- } else if (Inputs[i]->NumExecutedMutations / kMaxMutationFactor >
- NumExecutedMutations / Inputs.size()) {
- // If the seed was fuzzed a lot more than average, assign zero energy.
- Weights[i] = 0.;
- } else {
- // Otherwise, simply assign the computed energy.
- Weights[i] = Inputs[i]->Energy;
- }
- // If energy for all seeds is zero, fall back to vanilla schedule.
- if (Weights[i] > 0.0)
- VanillaSchedule = false;
- }
- }
- if (VanillaSchedule) {
- for (size_t i = 0; i < N; i++)
- Weights[i] =
- Inputs[i]->NumFeatures
- ? static_cast<double>((i + 1) *
- (Inputs[i]->HasFocusFunction ? 1000 : 1))
- : 0.;
- }
- if (FeatureDebug) {
- for (size_t i = 0; i < N; i++)
- Printf("%zd ", Inputs[i]->NumFeatures);
- Printf("SCORE\n");
- for (size_t i = 0; i < N; i++)
- Printf("%f ", Weights[i]);
- Printf("Weights\n");
- }
- CorpusDistribution = std::piecewise_constant_distribution<double>(
- Intervals.begin(), Intervals.end(), Weights.begin());
- }
- std::piecewise_constant_distribution<double> CorpusDistribution;
- std::vector<double> Intervals;
- std::vector<double> Weights;
- std::unordered_set<std::string> Hashes;
- std::vector<InputInfo *> Inputs;
- size_t NumAddedFeatures = 0;
- size_t NumUpdatedFeatures = 0;
- uint32_t InputSizesPerFeature[kFeatureSetSize];
- uint32_t SmallestElementPerFeature[kFeatureSetSize];
- bool DistributionNeedsUpdate = true;
- uint16_t FreqOfMostAbundantRareFeature = 0;
- uint16_t GlobalFeatureFreqs[kFeatureSetSize] = {};
- std::vector<uint32_t> RareFeatures;
- std::bitset<kFeatureSetSize> IsRareFeature;
- std::string OutputCorpus;
- };
- } // namespace fuzzer
- #endif // LLVM_FUZZER_CORPUS
|