1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330 |
- //===- InstCombineShifts.cpp ----------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitShl, visitLShr, and visitAShr functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
- Value *ShAmt1) {
- // We have two shift amounts from two different shifts. The types of those
- // shift amounts may not match. If that's the case let's bailout now..
- if (ShAmt0->getType() != ShAmt1->getType())
- return false;
- // As input, we have the following pattern:
- // Sh0 (Sh1 X, Q), K
- // We want to rewrite that as:
- // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
- // While we know that originally (Q+K) would not overflow
- // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
- // shift amounts. so it may now overflow in smaller bitwidth.
- // To ensure that does not happen, we need to ensure that the total maximal
- // shift amount is still representable in that smaller bit width.
- unsigned MaximalPossibleTotalShiftAmount =
- (Sh0->getType()->getScalarSizeInBits() - 1) +
- (Sh1->getType()->getScalarSizeInBits() - 1);
- APInt MaximalRepresentableShiftAmount =
- APInt::getAllOnesValue(ShAmt0->getType()->getScalarSizeInBits());
- return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
- }
- // Given pattern:
- // (x shiftopcode Q) shiftopcode K
- // we should rewrite it as
- // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
- //
- // This is valid for any shift, but they must be identical, and we must be
- // careful in case we have (zext(Q)+zext(K)) and look past extensions,
- // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
- //
- // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
- // pattern has any 2 right-shifts that sum to 1 less than original bit width.
- Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
- BinaryOperator *Sh0, const SimplifyQuery &SQ,
- bool AnalyzeForSignBitExtraction) {
- // Look for a shift of some instruction, ignore zext of shift amount if any.
- Instruction *Sh0Op0;
- Value *ShAmt0;
- if (!match(Sh0,
- m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
- return nullptr;
- // If there is a truncation between the two shifts, we must make note of it
- // and look through it. The truncation imposes additional constraints on the
- // transform.
- Instruction *Sh1;
- Value *Trunc = nullptr;
- match(Sh0Op0,
- m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
- m_Instruction(Sh1)));
- // Inner shift: (x shiftopcode ShAmt1)
- // Like with other shift, ignore zext of shift amount if any.
- Value *X, *ShAmt1;
- if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
- return nullptr;
- // Verify that it would be safe to try to add those two shift amounts.
- if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
- return nullptr;
- // We are only looking for signbit extraction if we have two right shifts.
- bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
- match(Sh1, m_Shr(m_Value(), m_Value()));
- // ... and if it's not two right-shifts, we know the answer already.
- if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
- return nullptr;
- // The shift opcodes must be identical, unless we are just checking whether
- // this pattern can be interpreted as a sign-bit-extraction.
- Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
- bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
- if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
- return nullptr;
- // If we saw truncation, we'll need to produce extra instruction,
- // and for that one of the operands of the shift must be one-use,
- // unless of course we don't actually plan to produce any instructions here.
- if (Trunc && !AnalyzeForSignBitExtraction &&
- !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
- return nullptr;
- // Can we fold (ShAmt0+ShAmt1) ?
- auto *NewShAmt = dyn_cast_or_null<Constant>(
- SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
- SQ.getWithInstruction(Sh0)));
- if (!NewShAmt)
- return nullptr; // Did not simplify.
- unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
- unsigned XBitWidth = X->getType()->getScalarSizeInBits();
- // Is the new shift amount smaller than the bit width of inner/new shift?
- if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
- APInt(NewShAmtBitWidth, XBitWidth))))
- return nullptr; // FIXME: could perform constant-folding.
- // If there was a truncation, and we have a right-shift, we can only fold if
- // we are left with the original sign bit. Likewise, if we were just checking
- // that this is a sighbit extraction, this is the place to check it.
- // FIXME: zero shift amount is also legal here, but we can't *easily* check
- // more than one predicate so it's not really worth it.
- if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
- // If it's not a sign bit extraction, then we're done.
- if (!match(NewShAmt,
- m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
- APInt(NewShAmtBitWidth, XBitWidth - 1))))
- return nullptr;
- // If it is, and that was the question, return the base value.
- if (AnalyzeForSignBitExtraction)
- return X;
- }
- assert(IdenticalShOpcodes && "Should not get here with different shifts.");
- // All good, we can do this fold.
- NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
- BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
- // The flags can only be propagated if there wasn't a trunc.
- if (!Trunc) {
- // If the pattern did not involve trunc, and both of the original shifts
- // had the same flag set, preserve the flag.
- if (ShiftOpcode == Instruction::BinaryOps::Shl) {
- NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
- Sh1->hasNoUnsignedWrap());
- NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
- Sh1->hasNoSignedWrap());
- } else {
- NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
- }
- }
- Instruction *Ret = NewShift;
- if (Trunc) {
- Builder.Insert(NewShift);
- Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
- }
- return Ret;
- }
- // If we have some pattern that leaves only some low bits set, and then performs
- // left-shift of those bits, if none of the bits that are left after the final
- // shift are modified by the mask, we can omit the mask.
- //
- // There are many variants to this pattern:
- // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
- // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
- // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
- // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
- // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
- // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
- // All these patterns can be simplified to just:
- // x << ShiftShAmt
- // iff:
- // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
- // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
- static Instruction *
- dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
- const SimplifyQuery &Q,
- InstCombiner::BuilderTy &Builder) {
- assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
- "The input must be 'shl'!");
- Value *Masked, *ShiftShAmt;
- match(OuterShift,
- m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
- // *If* there is a truncation between an outer shift and a possibly-mask,
- // then said truncation *must* be one-use, else we can't perform the fold.
- Value *Trunc;
- if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
- !Trunc->hasOneUse())
- return nullptr;
- Type *NarrowestTy = OuterShift->getType();
- Type *WidestTy = Masked->getType();
- bool HadTrunc = WidestTy != NarrowestTy;
- // The mask must be computed in a type twice as wide to ensure
- // that no bits are lost if the sum-of-shifts is wider than the base type.
- Type *ExtendedTy = WidestTy->getExtendedType();
- Value *MaskShAmt;
- // ((1 << MaskShAmt) - 1)
- auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
- // (~(-1 << maskNbits))
- auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
- // (-1 >> MaskShAmt)
- auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
- // ((-1 << MaskShAmt) >> MaskShAmt)
- auto MaskD =
- m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
- Value *X;
- Constant *NewMask;
- if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
- // Peek through an optional zext of the shift amount.
- match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
- // Verify that it would be safe to try to add those two shift amounts.
- if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
- MaskShAmt))
- return nullptr;
- // Can we simplify (MaskShAmt+ShiftShAmt) ?
- auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
- MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
- if (!SumOfShAmts)
- return nullptr; // Did not simplify.
- // In this pattern SumOfShAmts correlates with the number of low bits
- // that shall remain in the root value (OuterShift).
- // An extend of an undef value becomes zero because the high bits are never
- // completely unknown. Replace the the `undef` shift amounts with final
- // shift bitwidth to ensure that the value remains undef when creating the
- // subsequent shift op.
- SumOfShAmts = Constant::replaceUndefsWith(
- SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
- ExtendedTy->getScalarSizeInBits()));
- auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
- // And compute the mask as usual: ~(-1 << (SumOfShAmts))
- auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
- auto *ExtendedInvertedMask =
- ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
- NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
- } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
- match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
- m_Deferred(MaskShAmt)))) {
- // Peek through an optional zext of the shift amount.
- match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
- // Verify that it would be safe to try to add those two shift amounts.
- if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
- MaskShAmt))
- return nullptr;
- // Can we simplify (ShiftShAmt-MaskShAmt) ?
- auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
- ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
- if (!ShAmtsDiff)
- return nullptr; // Did not simplify.
- // In this pattern ShAmtsDiff correlates with the number of high bits that
- // shall be unset in the root value (OuterShift).
- // An extend of an undef value becomes zero because the high bits are never
- // completely unknown. Replace the the `undef` shift amounts with negated
- // bitwidth of innermost shift to ensure that the value remains undef when
- // creating the subsequent shift op.
- unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
- ShAmtsDiff = Constant::replaceUndefsWith(
- ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
- -WidestTyBitWidth));
- auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
- ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
- WidestTyBitWidth,
- /*isSigned=*/false),
- ShAmtsDiff),
- ExtendedTy);
- // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
- auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
- NewMask =
- ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
- } else
- return nullptr; // Don't know anything about this pattern.
- NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
- // Does this mask has any unset bits? If not then we can just not apply it.
- bool NeedMask = !match(NewMask, m_AllOnes());
- // If we need to apply a mask, there are several more restrictions we have.
- if (NeedMask) {
- // The old masking instruction must go away.
- if (!Masked->hasOneUse())
- return nullptr;
- // The original "masking" instruction must not have been`ashr`.
- if (match(Masked, m_AShr(m_Value(), m_Value())))
- return nullptr;
- }
- // If we need to apply truncation, let's do it first, since we can.
- // We have already ensured that the old truncation will go away.
- if (HadTrunc)
- X = Builder.CreateTrunc(X, NarrowestTy);
- // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
- // We didn't change the Type of this outermost shift, so we can just do it.
- auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
- OuterShift->getOperand(1));
- if (!NeedMask)
- return NewShift;
- Builder.Insert(NewShift);
- return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
- }
- /// If we have a shift-by-constant of a bitwise logic op that itself has a
- /// shift-by-constant operand with identical opcode, we may be able to convert
- /// that into 2 independent shifts followed by the logic op. This eliminates a
- /// a use of an intermediate value (reduces dependency chain).
- static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert(I.isShift() && "Expected a shift as input");
- auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
- if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
- return nullptr;
- Constant *C0, *C1;
- if (!match(I.getOperand(1), m_Constant(C1)))
- return nullptr;
- Instruction::BinaryOps ShiftOpcode = I.getOpcode();
- Type *Ty = I.getType();
- // Find a matching one-use shift by constant. The fold is not valid if the sum
- // of the shift values equals or exceeds bitwidth.
- // TODO: Remove the one-use check if the other logic operand (Y) is constant.
- Value *X, *Y;
- auto matchFirstShift = [&](Value *V) {
- BinaryOperator *BO;
- APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
- return match(V, m_BinOp(BO)) && BO->getOpcode() == ShiftOpcode &&
- match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
- match(ConstantExpr::getAdd(C0, C1),
- m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
- };
- // Logic ops are commutative, so check each operand for a match.
- if (matchFirstShift(LogicInst->getOperand(0)))
- Y = LogicInst->getOperand(1);
- else if (matchFirstShift(LogicInst->getOperand(1)))
- Y = LogicInst->getOperand(0);
- else
- return nullptr;
- // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
- Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
- Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
- Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
- return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
- }
- Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- assert(Op0->getType() == Op1->getType());
- // If the shift amount is a one-use `sext`, we can demote it to `zext`.
- Value *Y;
- if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
- Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
- return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
- }
- // See if we can fold away this shift.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // Try to fold constant and into select arguments.
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (Constant *CUI = dyn_cast<Constant>(Op1))
- if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
- return Res;
- if (auto *NewShift = cast_or_null<Instruction>(
- reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
- return NewShift;
- // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
- // iff A and C2 are both positive.
- Value *A;
- Constant *C;
- if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
- if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
- isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
- return BinaryOperator::Create(
- I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
- // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
- // Because shifts by negative values (which could occur if A were negative)
- // are undefined.
- if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
- match(C, m_Power2())) {
- // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
- // demand the sign bit (and many others) here??
- Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1));
- Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
- return replaceOperand(I, 1, Rem);
- }
- if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
- return Logic;
- return nullptr;
- }
- /// Return true if we can simplify two logical (either left or right) shifts
- /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
- static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
- Instruction *InnerShift,
- InstCombinerImpl &IC, Instruction *CxtI) {
- assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
- // We need constant scalar or constant splat shifts.
- const APInt *InnerShiftConst;
- if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
- return false;
- // Two logical shifts in the same direction:
- // shl (shl X, C1), C2 --> shl X, C1 + C2
- // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
- bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
- if (IsInnerShl == IsOuterShl)
- return true;
- // Equal shift amounts in opposite directions become bitwise 'and':
- // lshr (shl X, C), C --> and X, C'
- // shl (lshr X, C), C --> and X, C'
- if (*InnerShiftConst == OuterShAmt)
- return true;
- // If the 2nd shift is bigger than the 1st, we can fold:
- // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
- // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
- // but it isn't profitable unless we know the and'd out bits are already zero.
- // Also, check that the inner shift is valid (less than the type width) or
- // we'll crash trying to produce the bit mask for the 'and'.
- unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
- if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
- unsigned InnerShAmt = InnerShiftConst->getZExtValue();
- unsigned MaskShift =
- IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
- APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
- if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
- return true;
- }
- return false;
- }
- /// See if we can compute the specified value, but shifted logically to the left
- /// or right by some number of bits. This should return true if the expression
- /// can be computed for the same cost as the current expression tree. This is
- /// used to eliminate extraneous shifting from things like:
- /// %C = shl i128 %A, 64
- /// %D = shl i128 %B, 96
- /// %E = or i128 %C, %D
- /// %F = lshr i128 %E, 64
- /// where the client will ask if E can be computed shifted right by 64-bits. If
- /// this succeeds, getShiftedValue() will be called to produce the value.
- static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
- InstCombinerImpl &IC, Instruction *CxtI) {
- // We can always evaluate constants shifted.
- if (isa<Constant>(V))
- return true;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return false;
- // We can't mutate something that has multiple uses: doing so would
- // require duplicating the instruction in general, which isn't profitable.
- if (!I->hasOneUse()) return false;
- switch (I->getOpcode()) {
- default: return false;
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
- canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
- case Instruction::Shl:
- case Instruction::LShr:
- return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
- canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
- }
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (Value *IncValue : PN->incoming_values())
- if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
- return false;
- return true;
- }
- }
- }
- /// Fold OuterShift (InnerShift X, C1), C2.
- /// See canEvaluateShiftedShift() for the constraints on these instructions.
- static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
- bool IsOuterShl,
- InstCombiner::BuilderTy &Builder) {
- bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
- Type *ShType = InnerShift->getType();
- unsigned TypeWidth = ShType->getScalarSizeInBits();
- // We only accept shifts-by-a-constant in canEvaluateShifted().
- const APInt *C1;
- match(InnerShift->getOperand(1), m_APInt(C1));
- unsigned InnerShAmt = C1->getZExtValue();
- // Change the shift amount and clear the appropriate IR flags.
- auto NewInnerShift = [&](unsigned ShAmt) {
- InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
- if (IsInnerShl) {
- InnerShift->setHasNoUnsignedWrap(false);
- InnerShift->setHasNoSignedWrap(false);
- } else {
- InnerShift->setIsExact(false);
- }
- return InnerShift;
- };
- // Two logical shifts in the same direction:
- // shl (shl X, C1), C2 --> shl X, C1 + C2
- // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
- if (IsInnerShl == IsOuterShl) {
- // If this is an oversized composite shift, then unsigned shifts get 0.
- if (InnerShAmt + OuterShAmt >= TypeWidth)
- return Constant::getNullValue(ShType);
- return NewInnerShift(InnerShAmt + OuterShAmt);
- }
- // Equal shift amounts in opposite directions become bitwise 'and':
- // lshr (shl X, C), C --> and X, C'
- // shl (lshr X, C), C --> and X, C'
- if (InnerShAmt == OuterShAmt) {
- APInt Mask = IsInnerShl
- ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
- : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
- Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
- ConstantInt::get(ShType, Mask));
- if (auto *AndI = dyn_cast<Instruction>(And)) {
- AndI->moveBefore(InnerShift);
- AndI->takeName(InnerShift);
- }
- return And;
- }
- assert(InnerShAmt > OuterShAmt &&
- "Unexpected opposite direction logical shift pair");
- // In general, we would need an 'and' for this transform, but
- // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
- // lshr (shl X, C1), C2 --> shl X, C1 - C2
- // shl (lshr X, C1), C2 --> lshr X, C1 - C2
- return NewInnerShift(InnerShAmt - OuterShAmt);
- }
- /// When canEvaluateShifted() returns true for an expression, this function
- /// inserts the new computation that produces the shifted value.
- static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
- InstCombinerImpl &IC, const DataLayout &DL) {
- // We can always evaluate constants shifted.
- if (Constant *C = dyn_cast<Constant>(V)) {
- if (isLeftShift)
- return IC.Builder.CreateShl(C, NumBits);
- else
- return IC.Builder.CreateLShr(C, NumBits);
- }
- Instruction *I = cast<Instruction>(V);
- IC.addToWorklist(I);
- switch (I->getOpcode()) {
- default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
- I->setOperand(
- 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::Shl:
- case Instruction::LShr:
- return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
- IC.Builder);
- case Instruction::Select:
- I->setOperand(
- 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
- I->setOperand(
- 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
- return I;
- case Instruction::PHI: {
- // We can change a phi if we can change all operands. Note that we never
- // get into trouble with cyclic PHIs here because we only consider
- // instructions with a single use.
- PHINode *PN = cast<PHINode>(I);
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
- isLeftShift, IC, DL));
- return PN;
- }
- }
- }
- // If this is a bitwise operator or add with a constant RHS we might be able
- // to pull it through a shift.
- static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
- BinaryOperator *BO) {
- switch (BO->getOpcode()) {
- default:
- return false; // Do not perform transform!
- case Instruction::Add:
- return Shift.getOpcode() == Instruction::Shl;
- case Instruction::Or:
- case Instruction::And:
- return true;
- case Instruction::Xor:
- // Do not change a 'not' of logical shift because that would create a normal
- // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
- return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
- }
- }
- Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1,
- BinaryOperator &I) {
- bool isLeftShift = I.getOpcode() == Instruction::Shl;
- const APInt *Op1C;
- if (!match(Op1, m_APInt(Op1C)))
- return nullptr;
- // See if we can propagate this shift into the input, this covers the trivial
- // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
- if (I.getOpcode() != Instruction::AShr &&
- canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
- LLVM_DEBUG(
- dbgs() << "ICE: GetShiftedValue propagating shift through expression"
- " to eliminate shift:\n IN: "
- << *Op0 << "\n SH: " << I << "\n");
- return replaceInstUsesWith(
- I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
- }
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- Type *Ty = I.getType();
- unsigned TypeBits = Ty->getScalarSizeInBits();
- assert(!Op1C->uge(TypeBits) &&
- "Shift over the type width should have been removed already");
- if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
- return FoldedShift;
- // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
- if (auto *TI = dyn_cast<TruncInst>(Op0)) {
- // If 'shift2' is an ashr, we would have to get the sign bit into a funny
- // place. Don't try to do this transformation in this case. Also, we
- // require that the input operand is a shift-by-constant so that we have
- // confidence that the shifts will get folded together. We could do this
- // xform in more cases, but it is unlikely to be profitable.
- const APInt *TrShiftAmt;
- if (I.isLogicalShift() &&
- match(TI->getOperand(0), m_Shift(m_Value(), m_APInt(TrShiftAmt)))) {
- auto *TrOp = cast<Instruction>(TI->getOperand(0));
- Type *SrcTy = TrOp->getType();
- // Okay, we'll do this xform. Make the shift of shift.
- Constant *ShAmt = ConstantExpr::getZExt(Op1, SrcTy);
- // (shift2 (shift1 & 0x00FF), c2)
- Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
- // For logical shifts, the truncation has the effect of making the high
- // part of the register be zeros. Emulate this by inserting an AND to
- // clear the top bits as needed. This 'and' will usually be zapped by
- // other xforms later if dead.
- unsigned SrcSize = SrcTy->getScalarSizeInBits();
- Constant *MaskV =
- ConstantInt::get(SrcTy, APInt::getLowBitsSet(SrcSize, TypeBits));
- // The mask we constructed says what the trunc would do if occurring
- // between the shifts. We want to know the effect *after* the second
- // shift. We know that it is a logical shift by a constant, so adjust the
- // mask as appropriate.
- MaskV = ConstantExpr::get(I.getOpcode(), MaskV, ShAmt);
- // shift1 & 0x00FF
- Value *And = Builder.CreateAnd(NSh, MaskV, TI->getName());
- // Return the value truncated to the interesting size.
- return new TruncInst(And, Ty);
- }
- }
- if (Op0->hasOneUse()) {
- if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- Value *V1;
- const APInt *CC;
- switch (Op0BO->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // These operators commute.
- // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
- match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
- Op0BO->getOperand(1)->getName());
- unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
- APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
- Constant *Mask = ConstantInt::get(Ty, Bits);
- return BinaryOperator::CreateAnd(X, Mask);
- }
- // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
- Value *Op0BOOp1 = Op0BO->getOperand(1);
- if (isLeftShift && Op0BOOp1->hasOneUse() &&
- match(Op0BOOp1, m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
- m_APInt(CC)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder.CreateAnd(
- V1, ConstantExpr::getShl(ConstantInt::get(Ty, *CC), Op1),
- V1->getName() + ".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
- }
- LLVM_FALLTHROUGH;
- }
- case Instruction::Sub: {
- // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
- m_Specific(Op1)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // (X + (Y << C))
- Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
- Op0BO->getOperand(0)->getName());
- unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
- APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
- Constant *Mask = ConstantInt::get(Ty, Bits);
- return BinaryOperator::CreateAnd(X, Mask);
- }
- // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
- if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
- match(Op0BO->getOperand(0),
- m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
- m_APInt(CC)))) {
- Value *YS = // (Y << C)
- Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
- // X & (CC << C)
- Value *XM = Builder.CreateAnd(
- V1, ConstantExpr::getShl(ConstantInt::get(Ty, *CC), Op1),
- V1->getName() + ".mask");
- return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
- }
- break;
- }
- }
- // If the operand is a bitwise operator with a constant RHS, and the
- // shift is the only use, we can pull it out of the shift.
- const APInt *Op0C;
- if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
- if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(Op0BO->getOperand(1)), Op1);
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
- NewShift->takeName(Op0BO);
- return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
- NewRHS);
- }
- }
- // If the operand is a subtract with a constant LHS, and the shift
- // is the only use, we can pull it out of the shift.
- // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
- if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
- match(Op0BO->getOperand(0), m_APInt(Op0C))) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(Op0BO->getOperand(0)), Op1);
- Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
- NewShift->takeName(Op0BO);
- return BinaryOperator::CreateSub(NewRHS, NewShift);
- }
- }
- // If we have a select that conditionally executes some binary operator,
- // see if we can pull it the select and operator through the shift.
- //
- // For example, turning:
- // shl (select C, (add X, C1), X), C2
- // Into:
- // Y = shl X, C2
- // select C, (add Y, C1 << C2), Y
- Value *Cond;
- BinaryOperator *TBO;
- Value *FalseVal;
- if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
- m_Value(FalseVal)))) {
- const APInt *C;
- if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
- match(TBO->getOperand(1), m_APInt(C)) &&
- canShiftBinOpWithConstantRHS(I, TBO)) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(TBO->getOperand(1)), Op1);
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
- Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
- NewRHS);
- return SelectInst::Create(Cond, NewOp, NewShift);
- }
- }
- BinaryOperator *FBO;
- Value *TrueVal;
- if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
- m_OneUse(m_BinOp(FBO))))) {
- const APInt *C;
- if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
- match(FBO->getOperand(1), m_APInt(C)) &&
- canShiftBinOpWithConstantRHS(I, FBO)) {
- Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(FBO->getOperand(1)), Op1);
- Value *NewShift =
- Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
- Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
- NewRHS);
- return SelectInst::Create(Cond, NewShift, NewOp);
- }
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
- const SimplifyQuery Q = SQ.getWithInstruction(&I);
- if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
- I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *V = commonShiftTransforms(I))
- return V;
- if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
- return V;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt))) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
- // shl (zext X), ShAmt --> zext (shl X, ShAmt)
- // This is only valid if X would have zeros shifted out.
- Value *X;
- if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
- unsigned SrcWidth = X->getType()->getScalarSizeInBits();
- if (ShAmt < SrcWidth &&
- MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
- return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
- }
- // (X >> C) << C --> X & (-1 << C)
- if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
- }
- const APInt *ShOp1;
- if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1)))) &&
- ShOp1->ult(BitWidth)) {
- unsigned ShrAmt = ShOp1->getZExtValue();
- if (ShrAmt < ShAmt) {
- // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
- return NewShl;
- }
- if (ShrAmt > ShAmt) {
- // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
- auto *NewShr = BinaryOperator::Create(
- cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
- NewShr->setIsExact(true);
- return NewShr;
- }
- }
- if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(ShOp1)))) &&
- ShOp1->ult(BitWidth)) {
- unsigned ShrAmt = ShOp1->getZExtValue();
- if (ShrAmt < ShAmt) {
- // If C1 < C2: (X >>? C1) << C2 --> X << (C2 - C1) & (-1 << C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
- NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
- Builder.Insert(NewShl);
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
- }
- if (ShrAmt > ShAmt) {
- // If C1 > C2: (X >>? C1) << C2 --> X >>? (C1 - C2) & (-1 << C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
- auto *OldShr = cast<BinaryOperator>(Op0);
- auto *NewShr =
- BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
- NewShr->setIsExact(OldShr->isExact());
- Builder.Insert(NewShr);
- APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
- }
- }
- if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized shifts are simplified to zero in InstSimplify.
- if (AmtSum < BitWidth)
- // (X << C1) << C2 --> X << (C1 + C2)
- return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
- }
- // If the shifted-out value is known-zero, then this is a NUW shift.
- if (!I.hasNoUnsignedWrap() &&
- MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setHasNoUnsignedWrap();
- return &I;
- }
- // If the shifted-out value is all signbits, then this is a NSW shift.
- if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
- I.setHasNoSignedWrap();
- return &I;
- }
- }
- // Transform (x >> y) << y to x & (-1 << y)
- // Valid for any type of right-shift.
- Value *X;
- if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
- Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
- Value *Mask = Builder.CreateShl(AllOnes, Op1);
- return BinaryOperator::CreateAnd(Mask, X);
- }
- Constant *C1;
- if (match(Op1, m_Constant(C1))) {
- Constant *C2;
- Value *X;
- // (C2 << X) << C1 --> (C2 << C1) << X
- if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
- return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
- // (X * C2) << C1 --> X * (C2 << C1)
- if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
- return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
- // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
- if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
- return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
- }
- }
- // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
- if (match(Op0, m_One()) &&
- match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
- return BinaryOperator::CreateLShr(
- ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
- if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *R = commonShiftTransforms(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt))) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- auto *II = dyn_cast<IntrinsicInst>(Op0);
- if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
- (II->getIntrinsicID() == Intrinsic::ctlz ||
- II->getIntrinsicID() == Intrinsic::cttz ||
- II->getIntrinsicID() == Intrinsic::ctpop)) {
- // ctlz.i32(x)>>5 --> zext(x == 0)
- // cttz.i32(x)>>5 --> zext(x == 0)
- // ctpop.i32(x)>>5 --> zext(x == -1)
- bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
- Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
- Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
- return new ZExtInst(Cmp, Ty);
- }
- Value *X;
- const APInt *ShOp1;
- if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
- if (ShOp1->ult(ShAmt)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
- if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
- auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
- NewLShr->setIsExact(I.isExact());
- return NewLShr;
- }
- // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
- Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
- }
- if (ShOp1->ugt(ShAmt)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
- if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
- // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
- auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
- NewShl->setHasNoUnsignedWrap(true);
- return NewShl;
- }
- // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
- Value *NewShl = Builder.CreateShl(X, ShiftDiff);
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
- }
- assert(*ShOp1 == ShAmt);
- // (X << C) >>u C --> X & (-1 >>u C)
- APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
- return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
- }
- if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
- (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
- assert(ShAmt < X->getType()->getScalarSizeInBits() &&
- "Big shift not simplified to zero?");
- // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
- Value *NewLShr = Builder.CreateLShr(X, ShAmt);
- return new ZExtInst(NewLShr, Ty);
- }
- if (match(Op0, m_SExt(m_Value(X))) &&
- (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
- // Are we moving the sign bit to the low bit and widening with high zeros?
- unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
- if (ShAmt == BitWidth - 1) {
- // lshr (sext i1 X to iN), N-1 --> zext X to iN
- if (SrcTyBitWidth == 1)
- return new ZExtInst(X, Ty);
- // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
- if (Op0->hasOneUse()) {
- Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
- return new ZExtInst(NewLShr, Ty);
- }
- }
- // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
- if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
- // The new shift amount can't be more than the narrow source type.
- unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
- Value *AShr = Builder.CreateAShr(X, NewShAmt);
- return new ZExtInst(AShr, Ty);
- }
- }
- // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
- Value *Y;
- if (ShAmt == BitWidth - 1 &&
- match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
- return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
- if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized shifts are simplified to zero in InstSimplify.
- if (AmtSum < BitWidth)
- // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
- return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
- }
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setIsExact();
- return &I;
- }
- }
- // Transform (x << y) >> y to x & (-1 >> y)
- Value *X;
- if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
- Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
- Value *Mask = Builder.CreateLShr(AllOnes, Op1);
- return BinaryOperator::CreateAnd(Mask, X);
- }
- return nullptr;
- }
- Instruction *
- InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
- BinaryOperator &OldAShr) {
- assert(OldAShr.getOpcode() == Instruction::AShr &&
- "Must be called with arithmetic right-shift instruction only.");
- // Check that constant C is a splat of the element-wise bitwidth of V.
- auto BitWidthSplat = [](Constant *C, Value *V) {
- return match(
- C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
- APInt(C->getType()->getScalarSizeInBits(),
- V->getType()->getScalarSizeInBits())));
- };
- // It should look like variable-length sign-extension on the outside:
- // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
- Value *NBits;
- Instruction *MaybeTrunc;
- Constant *C1, *C2;
- if (!match(&OldAShr,
- m_AShr(m_Shl(m_Instruction(MaybeTrunc),
- m_ZExtOrSelf(m_Sub(m_Constant(C1),
- m_ZExtOrSelf(m_Value(NBits))))),
- m_ZExtOrSelf(m_Sub(m_Constant(C2),
- m_ZExtOrSelf(m_Deferred(NBits)))))) ||
- !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
- return nullptr;
- // There may or may not be a truncation after outer two shifts.
- Instruction *HighBitExtract;
- match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
- bool HadTrunc = MaybeTrunc != HighBitExtract;
- // And finally, the innermost part of the pattern must be a right-shift.
- Value *X, *NumLowBitsToSkip;
- if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
- return nullptr;
- // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
- Constant *C0;
- if (!match(NumLowBitsToSkip,
- m_ZExtOrSelf(
- m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
- !BitWidthSplat(C0, HighBitExtract))
- return nullptr;
- // Since the NBits is identical for all shifts, if the outermost and
- // innermost shifts are identical, then outermost shifts are redundant.
- // If we had truncation, do keep it though.
- if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
- return replaceInstUsesWith(OldAShr, MaybeTrunc);
- // Else, if there was a truncation, then we need to ensure that one
- // instruction will go away.
- if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
- return nullptr;
- // Finally, bypass two innermost shifts, and perform the outermost shift on
- // the operands of the innermost shift.
- Instruction *NewAShr =
- BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
- NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
- if (!HadTrunc)
- return NewAShr;
- Builder.Insert(NewAShr);
- return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
- }
- Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
- if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *R = commonShiftTransforms(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- unsigned BitWidth = Ty->getScalarSizeInBits();
- const APInt *ShAmtAPInt;
- if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
- unsigned ShAmt = ShAmtAPInt->getZExtValue();
- // If the shift amount equals the difference in width of the destination
- // and source scalar types:
- // ashr (shl (zext X), C), C --> sext X
- Value *X;
- if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
- ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
- return new SExtInst(X, Ty);
- // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
- // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
- const APInt *ShOp1;
- if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
- ShOp1->ult(BitWidth)) {
- unsigned ShlAmt = ShOp1->getZExtValue();
- if (ShlAmt < ShAmt) {
- // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
- auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
- NewAShr->setIsExact(I.isExact());
- return NewAShr;
- }
- if (ShlAmt > ShAmt) {
- // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
- Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
- auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
- NewShl->setHasNoSignedWrap(true);
- return NewShl;
- }
- }
- if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
- ShOp1->ult(BitWidth)) {
- unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
- // Oversized arithmetic shifts replicate the sign bit.
- AmtSum = std::min(AmtSum, BitWidth - 1);
- // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
- return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
- }
- if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
- (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
- // ashr (sext X), C --> sext (ashr X, C')
- Type *SrcTy = X->getType();
- ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
- Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
- return new SExtInst(NewSh, Ty);
- }
- // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
- Value *Y;
- if (ShAmt == BitWidth - 1 &&
- match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
- return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
- // If the shifted-out value is known-zero, then this is an exact shift.
- if (!I.isExact() &&
- MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
- I.setIsExact();
- return &I;
- }
- }
- if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
- return R;
- // See if we can turn a signed shr into an unsigned shr.
- if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
- return BinaryOperator::CreateLShr(Op0, Op1);
- return nullptr;
- }
|