PPCInstrAltivec.td 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634
  1. //===-- PPCInstrAltivec.td - The PowerPC Altivec Extension -*- tablegen -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file describes the Altivec extension to the PowerPC instruction set.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. // *********************************** NOTE ***********************************
  13. // ** For POWER8 Little Endian, the VSX swap optimization relies on knowing **
  14. // ** which VMX and VSX instructions are lane-sensitive and which are not. **
  15. // ** A lane-sensitive instruction relies, implicitly or explicitly, on **
  16. // ** whether lanes are numbered from left to right. An instruction like **
  17. // ** VADDFP is not lane-sensitive, because each lane of the result vector **
  18. // ** relies only on the corresponding lane of the source vectors. However, **
  19. // ** an instruction like VMULESB is lane-sensitive, because "even" and **
  20. // ** "odd" lanes are different for big-endian and little-endian numbering. **
  21. // ** **
  22. // ** When adding new VMX and VSX instructions, please consider whether they **
  23. // ** are lane-sensitive. If so, they must be added to a switch statement **
  24. // ** in PPCVSXSwapRemoval::gatherVectorInstructions(). **
  25. // ****************************************************************************
  26. //===----------------------------------------------------------------------===//
  27. // Altivec transformation functions and pattern fragments.
  28. //
  29. // Since we canonicalize buildvectors to v16i8, all vnots "-1" operands will be
  30. // of that type.
  31. def vnot_ppc : PatFrag<(ops node:$in),
  32. (xor node:$in, (bitconvert (v16i8 immAllOnesV)))>;
  33. def vpkuhum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  34. (vector_shuffle node:$lhs, node:$rhs), [{
  35. return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
  36. }]>;
  37. def vpkuwum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  38. (vector_shuffle node:$lhs, node:$rhs), [{
  39. return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
  40. }]>;
  41. def vpkudum_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  42. (vector_shuffle node:$lhs, node:$rhs), [{
  43. return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG);
  44. }]>;
  45. def vpkuhum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  46. (vector_shuffle node:$lhs, node:$rhs), [{
  47. return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
  48. }]>;
  49. def vpkuwum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  50. (vector_shuffle node:$lhs, node:$rhs), [{
  51. return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
  52. }]>;
  53. def vpkudum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  54. (vector_shuffle node:$lhs, node:$rhs), [{
  55. return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG);
  56. }]>;
  57. // These fragments are provided for little-endian, where the inputs must be
  58. // swapped for correct semantics.
  59. def vpkuhum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  60. (vector_shuffle node:$lhs, node:$rhs), [{
  61. return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
  62. }]>;
  63. def vpkuwum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  64. (vector_shuffle node:$lhs, node:$rhs), [{
  65. return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
  66. }]>;
  67. def vpkudum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  68. (vector_shuffle node:$lhs, node:$rhs), [{
  69. return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG);
  70. }]>;
  71. def vmrglb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  72. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  73. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG);
  74. }]>;
  75. def vmrglh_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  76. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  77. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG);
  78. }]>;
  79. def vmrglw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  80. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  81. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG);
  82. }]>;
  83. def vmrghb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  84. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  85. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 0, *CurDAG);
  86. }]>;
  87. def vmrghh_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  88. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  89. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 0, *CurDAG);
  90. }]>;
  91. def vmrghw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  92. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  93. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 0, *CurDAG);
  94. }]>;
  95. def vmrglb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  96. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  97. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG);
  98. }]>;
  99. def vmrglh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  100. (vector_shuffle node:$lhs, node:$rhs), [{
  101. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG);
  102. }]>;
  103. def vmrglw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  104. (vector_shuffle node:$lhs, node:$rhs), [{
  105. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG);
  106. }]>;
  107. def vmrghb_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  108. (vector_shuffle node:$lhs, node:$rhs), [{
  109. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 1, *CurDAG);
  110. }]>;
  111. def vmrghh_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  112. (vector_shuffle node:$lhs, node:$rhs), [{
  113. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 1, *CurDAG);
  114. }]>;
  115. def vmrghw_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  116. (vector_shuffle node:$lhs, node:$rhs), [{
  117. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 1, *CurDAG);
  118. }]>;
  119. // These fragments are provided for little-endian, where the inputs must be
  120. // swapped for correct semantics.
  121. def vmrglb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  122. (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{
  123. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG);
  124. }]>;
  125. def vmrglh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  126. (vector_shuffle node:$lhs, node:$rhs), [{
  127. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG);
  128. }]>;
  129. def vmrglw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  130. (vector_shuffle node:$lhs, node:$rhs), [{
  131. return PPC::isVMRGLShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG);
  132. }]>;
  133. def vmrghb_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  134. (vector_shuffle node:$lhs, node:$rhs), [{
  135. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 1, 2, *CurDAG);
  136. }]>;
  137. def vmrghh_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  138. (vector_shuffle node:$lhs, node:$rhs), [{
  139. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 2, 2, *CurDAG);
  140. }]>;
  141. def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  142. (vector_shuffle node:$lhs, node:$rhs), [{
  143. return PPC::isVMRGHShuffleMask(cast<ShuffleVectorSDNode>(N), 4, 2, *CurDAG);
  144. }]>;
  145. def vmrgew_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  146. (vector_shuffle node:$lhs, node:$rhs), [{
  147. return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 0, *CurDAG);
  148. }]>;
  149. def vmrgow_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  150. (vector_shuffle node:$lhs, node:$rhs), [{
  151. return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 0, *CurDAG);
  152. }]>;
  153. def vmrgew_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  154. (vector_shuffle node:$lhs, node:$rhs), [{
  155. return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 1, *CurDAG);
  156. }]>;
  157. def vmrgow_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  158. (vector_shuffle node:$lhs, node:$rhs), [{
  159. return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 1, *CurDAG);
  160. }]>;
  161. def vmrgew_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  162. (vector_shuffle node:$lhs, node:$rhs), [{
  163. return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 2, *CurDAG);
  164. }]>;
  165. def vmrgow_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  166. (vector_shuffle node:$lhs, node:$rhs), [{
  167. return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 2, *CurDAG);
  168. }]>;
  169. def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{
  170. return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N));
  171. }]>;
  172. def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  173. (vector_shuffle node:$lhs, node:$rhs), [{
  174. return PPC::isVSLDOIShuffleMask(N, 0, *CurDAG) != -1;
  175. }], VSLDOI_get_imm>;
  176. /// VSLDOI_unary* - These are used to match vsldoi(X,X), which is turned into
  177. /// vector_shuffle(X,undef,mask) by the dag combiner.
  178. def VSLDOI_unary_get_imm : SDNodeXForm<vector_shuffle, [{
  179. return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG), SDLoc(N));
  180. }]>;
  181. def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  182. (vector_shuffle node:$lhs, node:$rhs), [{
  183. return PPC::isVSLDOIShuffleMask(N, 1, *CurDAG) != -1;
  184. }], VSLDOI_unary_get_imm>;
  185. /// VSLDOI_swapped* - These fragments are provided for little-endian, where
  186. /// the inputs must be swapped for correct semantics.
  187. def VSLDOI_swapped_get_imm : SDNodeXForm<vector_shuffle, [{
  188. return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG), SDLoc(N));
  189. }]>;
  190. def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  191. (vector_shuffle node:$lhs, node:$rhs), [{
  192. return PPC::isVSLDOIShuffleMask(N, 2, *CurDAG) != -1;
  193. }], VSLDOI_get_imm>;
  194. // VSPLT*_get_imm xform function: convert vector_shuffle mask to VSPLT* imm.
  195. def VSPLTB_get_imm : SDNodeXForm<vector_shuffle, [{
  196. return getI32Imm(PPC::getSplatIdxForPPCMnemonics(N, 1, *CurDAG), SDLoc(N));
  197. }]>;
  198. def vspltb_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  199. (vector_shuffle node:$lhs, node:$rhs), [{
  200. return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 1);
  201. }], VSPLTB_get_imm>;
  202. def VSPLTH_get_imm : SDNodeXForm<vector_shuffle, [{
  203. return getI32Imm(PPC::getSplatIdxForPPCMnemonics(N, 2, *CurDAG), SDLoc(N));
  204. }]>;
  205. def vsplth_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  206. (vector_shuffle node:$lhs, node:$rhs), [{
  207. return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 2);
  208. }], VSPLTH_get_imm>;
  209. def VSPLTW_get_imm : SDNodeXForm<vector_shuffle, [{
  210. return getI32Imm(PPC::getSplatIdxForPPCMnemonics(N, 4, *CurDAG), SDLoc(N));
  211. }]>;
  212. def vspltw_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
  213. (vector_shuffle node:$lhs, node:$rhs), [{
  214. return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 4);
  215. }], VSPLTW_get_imm>;
  216. // VSPLTISB_get_imm xform function: convert build_vector to VSPLTISB imm.
  217. def VSPLTISB_get_imm : SDNodeXForm<build_vector, [{
  218. return PPC::get_VSPLTI_elt(N, 1, *CurDAG);
  219. }]>;
  220. def vecspltisb : PatLeaf<(build_vector), [{
  221. return PPC::get_VSPLTI_elt(N, 1, *CurDAG).getNode() != nullptr;
  222. }], VSPLTISB_get_imm>;
  223. // VSPLTISH_get_imm xform function: convert build_vector to VSPLTISH imm.
  224. def VSPLTISH_get_imm : SDNodeXForm<build_vector, [{
  225. return PPC::get_VSPLTI_elt(N, 2, *CurDAG);
  226. }]>;
  227. def vecspltish : PatLeaf<(build_vector), [{
  228. return PPC::get_VSPLTI_elt(N, 2, *CurDAG).getNode() != nullptr;
  229. }], VSPLTISH_get_imm>;
  230. // VSPLTISW_get_imm xform function: convert build_vector to VSPLTISW imm.
  231. def VSPLTISW_get_imm : SDNodeXForm<build_vector, [{
  232. return PPC::get_VSPLTI_elt(N, 4, *CurDAG);
  233. }]>;
  234. def vecspltisw : PatLeaf<(build_vector), [{
  235. return PPC::get_VSPLTI_elt(N, 4, *CurDAG).getNode() != nullptr;
  236. }], VSPLTISW_get_imm>;
  237. def immEQOneV : PatLeaf<(build_vector), [{
  238. if (ConstantSDNode *C = cast<BuildVectorSDNode>(N)->getConstantSplatNode())
  239. return C->isOne();
  240. return false;
  241. }]>;
  242. //===----------------------------------------------------------------------===//
  243. // Helpers for defining instructions that directly correspond to intrinsics.
  244. // VA1a_Int_Ty - A VAForm_1a intrinsic definition of specific type.
  245. class VA1a_Int_Ty<bits<6> xo, string opc, Intrinsic IntID, ValueType Ty>
  246. : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
  247. !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
  248. [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB, Ty:$vC))]>;
  249. // VA1a_Int_Ty2 - A VAForm_1a intrinsic definition where the type of the
  250. // inputs doesn't match the type of the output.
  251. class VA1a_Int_Ty2<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy,
  252. ValueType InTy>
  253. : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
  254. !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
  255. [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB, InTy:$vC))]>;
  256. // VA1a_Int_Ty3 - A VAForm_1a intrinsic definition where there are two
  257. // input types and an output type.
  258. class VA1a_Int_Ty3<bits<6> xo, string opc, Intrinsic IntID, ValueType OutTy,
  259. ValueType In1Ty, ValueType In2Ty>
  260. : VAForm_1a<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
  261. !strconcat(opc, " $vD, $vA, $vB, $vC"), IIC_VecFP,
  262. [(set OutTy:$vD,
  263. (IntID In1Ty:$vA, In1Ty:$vB, In2Ty:$vC))]>;
  264. // VX1_Int_Ty - A VXForm_1 intrinsic definition of specific type.
  265. class VX1_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
  266. : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  267. !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
  268. [(set Ty:$vD, (IntID Ty:$vA, Ty:$vB))]>;
  269. // VX1_Int_Ty2 - A VXForm_1 intrinsic definition where the type of the
  270. // inputs doesn't match the type of the output.
  271. class VX1_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
  272. ValueType InTy>
  273. : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  274. !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
  275. [(set OutTy:$vD, (IntID InTy:$vA, InTy:$vB))]>;
  276. // VX1_Int_Ty3 - A VXForm_1 intrinsic definition where there are two
  277. // input types and an output type.
  278. class VX1_Int_Ty3<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
  279. ValueType In1Ty, ValueType In2Ty>
  280. : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  281. !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP,
  282. [(set OutTy:$vD, (IntID In1Ty:$vA, In2Ty:$vB))]>;
  283. // VX2_Int_SP - A VXForm_2 intrinsic definition of vector single-precision type.
  284. class VX2_Int_SP<bits<11> xo, string opc, Intrinsic IntID>
  285. : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB),
  286. !strconcat(opc, " $vD, $vB"), IIC_VecFP,
  287. [(set v4f32:$vD, (IntID v4f32:$vB))]>;
  288. // VX2_Int_Ty2 - A VXForm_2 intrinsic definition where the type of the
  289. // inputs doesn't match the type of the output.
  290. class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy,
  291. ValueType InTy>
  292. : VXForm_2<xo, (outs vrrc:$vD), (ins vrrc:$vB),
  293. !strconcat(opc, " $vD, $vB"), IIC_VecFP,
  294. [(set OutTy:$vD, (IntID InTy:$vB))]>;
  295. class VXBX_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
  296. : VXForm_BX<xo, (outs vrrc:$vD), (ins vrrc:$vA),
  297. !strconcat(opc, " $vD, $vA"), IIC_VecFP,
  298. [(set Ty:$vD, (IntID Ty:$vA))]>;
  299. class VXCR_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty>
  300. : VXForm_CR<xo, (outs vrrc:$vD), (ins vrrc:$vA, u1imm:$ST, u4imm:$SIX),
  301. !strconcat(opc, " $vD, $vA, $ST, $SIX"), IIC_VecFP,
  302. [(set Ty:$vD, (IntID Ty:$vA, timm:$ST, timm:$SIX))]>;
  303. //===----------------------------------------------------------------------===//
  304. // Instruction Definitions.
  305. def HasAltivec : Predicate<"Subtarget->hasAltivec()">;
  306. let Predicates = [HasAltivec] in {
  307. def DSS : DSS_Form<0, 822, (outs), (ins u5imm:$STRM),
  308. "dss $STRM", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dss imm:$STRM)]>,
  309. Deprecated<DeprecatedDST> {
  310. let A = 0;
  311. let B = 0;
  312. }
  313. def DSSALL : DSS_Form<1, 822, (outs), (ins),
  314. "dssall", IIC_LdStLoad /*FIXME*/, [(int_ppc_altivec_dssall)]>,
  315. Deprecated<DeprecatedDST> {
  316. let STRM = 0;
  317. let A = 0;
  318. let B = 0;
  319. }
  320. def DST : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
  321. "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  322. [(int_ppc_altivec_dst i32:$rA, i32:$rB, imm:$STRM)]>,
  323. Deprecated<DeprecatedDST>;
  324. def DSTT : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
  325. "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  326. [(int_ppc_altivec_dstt i32:$rA, i32:$rB, imm:$STRM)]>,
  327. Deprecated<DeprecatedDST>;
  328. def DSTST : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
  329. "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  330. [(int_ppc_altivec_dstst i32:$rA, i32:$rB, imm:$STRM)]>,
  331. Deprecated<DeprecatedDST>;
  332. def DSTSTT : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, gprc:$rA, gprc:$rB),
  333. "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  334. [(int_ppc_altivec_dststt i32:$rA, i32:$rB, imm:$STRM)]>,
  335. Deprecated<DeprecatedDST>;
  336. let isCodeGenOnly = 1 in {
  337. // The very same instructions as above, but formally matching 64bit registers.
  338. def DST64 : DSS_Form<0, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
  339. "dst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  340. [(int_ppc_altivec_dst i64:$rA, i32:$rB, imm:$STRM)]>,
  341. Deprecated<DeprecatedDST>;
  342. def DSTT64 : DSS_Form<1, 342, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
  343. "dstt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  344. [(int_ppc_altivec_dstt i64:$rA, i32:$rB, imm:$STRM)]>,
  345. Deprecated<DeprecatedDST>;
  346. def DSTST64 : DSS_Form<0, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
  347. "dstst $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  348. [(int_ppc_altivec_dstst i64:$rA, i32:$rB,
  349. imm:$STRM)]>,
  350. Deprecated<DeprecatedDST>;
  351. def DSTSTT64 : DSS_Form<1, 374, (outs), (ins u5imm:$STRM, g8rc:$rA, gprc:$rB),
  352. "dststt $rA, $rB, $STRM", IIC_LdStLoad /*FIXME*/,
  353. [(int_ppc_altivec_dststt i64:$rA, i32:$rB,
  354. imm:$STRM)]>,
  355. Deprecated<DeprecatedDST>;
  356. }
  357. let hasSideEffects = 1 in {
  358. def MFVSCR : VXForm_4<1540, (outs vrrc:$vD), (ins),
  359. "mfvscr $vD", IIC_LdStStore,
  360. [(set v8i16:$vD, (int_ppc_altivec_mfvscr))]>;
  361. def MTVSCR : VXForm_5<1604, (outs), (ins vrrc:$vB),
  362. "mtvscr $vB", IIC_LdStLoad,
  363. [(int_ppc_altivec_mtvscr v4i32:$vB)]>;
  364. }
  365. let PPC970_Unit = 2, mayLoad = 1, mayStore = 0 in { // Loads.
  366. def LVEBX: XForm_1_memOp<31, 7, (outs vrrc:$vD), (ins memrr:$src),
  367. "lvebx $vD, $src", IIC_LdStLoad,
  368. [(set v16i8:$vD, (int_ppc_altivec_lvebx xoaddr:$src))]>;
  369. def LVEHX: XForm_1_memOp<31, 39, (outs vrrc:$vD), (ins memrr:$src),
  370. "lvehx $vD, $src", IIC_LdStLoad,
  371. [(set v8i16:$vD, (int_ppc_altivec_lvehx xoaddr:$src))]>;
  372. def LVEWX: XForm_1_memOp<31, 71, (outs vrrc:$vD), (ins memrr:$src),
  373. "lvewx $vD, $src", IIC_LdStLoad,
  374. [(set v4i32:$vD, (int_ppc_altivec_lvewx xoaddr:$src))]>;
  375. def LVX : XForm_1_memOp<31, 103, (outs vrrc:$vD), (ins memrr:$src),
  376. "lvx $vD, $src", IIC_LdStLoad,
  377. [(set v4i32:$vD, (int_ppc_altivec_lvx xoaddr:$src))]>;
  378. def LVXL : XForm_1_memOp<31, 359, (outs vrrc:$vD), (ins memrr:$src),
  379. "lvxl $vD, $src", IIC_LdStLoad,
  380. [(set v4i32:$vD, (int_ppc_altivec_lvxl xoaddr:$src))]>;
  381. }
  382. def LVSL : XForm_1_memOp<31, 6, (outs vrrc:$vD), (ins memrr:$src),
  383. "lvsl $vD, $src", IIC_LdStLoad,
  384. [(set v16i8:$vD, (int_ppc_altivec_lvsl xoaddr:$src))]>,
  385. PPC970_Unit_LSU;
  386. def LVSR : XForm_1_memOp<31, 38, (outs vrrc:$vD), (ins memrr:$src),
  387. "lvsr $vD, $src", IIC_LdStLoad,
  388. [(set v16i8:$vD, (int_ppc_altivec_lvsr xoaddr:$src))]>,
  389. PPC970_Unit_LSU;
  390. let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { // Stores.
  391. def STVEBX: XForm_8_memOp<31, 135, (outs), (ins vrrc:$rS, memrr:$dst),
  392. "stvebx $rS, $dst", IIC_LdStStore,
  393. [(int_ppc_altivec_stvebx v16i8:$rS, xoaddr:$dst)]>;
  394. def STVEHX: XForm_8_memOp<31, 167, (outs), (ins vrrc:$rS, memrr:$dst),
  395. "stvehx $rS, $dst", IIC_LdStStore,
  396. [(int_ppc_altivec_stvehx v8i16:$rS, xoaddr:$dst)]>;
  397. def STVEWX: XForm_8_memOp<31, 199, (outs), (ins vrrc:$rS, memrr:$dst),
  398. "stvewx $rS, $dst", IIC_LdStStore,
  399. [(int_ppc_altivec_stvewx v4i32:$rS, xoaddr:$dst)]>;
  400. def STVX : XForm_8_memOp<31, 231, (outs), (ins vrrc:$rS, memrr:$dst),
  401. "stvx $rS, $dst", IIC_LdStStore,
  402. [(int_ppc_altivec_stvx v4i32:$rS, xoaddr:$dst)]>;
  403. def STVXL : XForm_8_memOp<31, 487, (outs), (ins vrrc:$rS, memrr:$dst),
  404. "stvxl $rS, $dst", IIC_LdStStore,
  405. [(int_ppc_altivec_stvxl v4i32:$rS, xoaddr:$dst)]>;
  406. }
  407. let PPC970_Unit = 5 in { // VALU Operations.
  408. // VA-Form instructions. 3-input AltiVec ops.
  409. let isCommutable = 1 in {
  410. def VMADDFP : VAForm_1<46, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB),
  411. "vmaddfp $vD, $vA, $vC, $vB", IIC_VecFP,
  412. [(set v4f32:$vD,
  413. (fma v4f32:$vA, v4f32:$vC, v4f32:$vB))]>;
  414. // FIXME: The fma+fneg pattern won't match because fneg is not legal.
  415. def VNMSUBFP: VAForm_1<47, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vC, vrrc:$vB),
  416. "vnmsubfp $vD, $vA, $vC, $vB", IIC_VecFP,
  417. [(set v4f32:$vD, (fneg (fma v4f32:$vA, v4f32:$vC,
  418. (fneg v4f32:$vB))))]>;
  419. let hasSideEffects = 1 in {
  420. def VMHADDSHS : VA1a_Int_Ty<32, "vmhaddshs", int_ppc_altivec_vmhaddshs, v8i16>;
  421. def VMHRADDSHS : VA1a_Int_Ty<33, "vmhraddshs", int_ppc_altivec_vmhraddshs,
  422. v8i16>;
  423. }
  424. def VMLADDUHM : VA1a_Int_Ty<34, "vmladduhm", int_ppc_altivec_vmladduhm, v8i16>;
  425. } // isCommutable
  426. def VPERM : VA1a_Int_Ty3<43, "vperm", int_ppc_altivec_vperm,
  427. v4i32, v4i32, v16i8>;
  428. def VSEL : VA1a_Int_Ty<42, "vsel", int_ppc_altivec_vsel, v4i32>;
  429. // Shuffles.
  430. def VSLDOI : VAForm_2<44, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u4imm:$SH),
  431. "vsldoi $vD, $vA, $vB, $SH", IIC_VecFP,
  432. [(set v16i8:$vD,
  433. (PPCvecshl v16i8:$vA, v16i8:$vB, imm32SExt16:$SH))]>;
  434. // VX-Form instructions. AltiVec arithmetic ops.
  435. let isCommutable = 1 in {
  436. def VADDFP : VXForm_1<10, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  437. "vaddfp $vD, $vA, $vB", IIC_VecFP,
  438. [(set v4f32:$vD, (fadd v4f32:$vA, v4f32:$vB))]>;
  439. def VADDUBM : VXForm_1<0, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  440. "vaddubm $vD, $vA, $vB", IIC_VecGeneral,
  441. [(set v16i8:$vD, (add v16i8:$vA, v16i8:$vB))]>;
  442. def VADDUHM : VXForm_1<64, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  443. "vadduhm $vD, $vA, $vB", IIC_VecGeneral,
  444. [(set v8i16:$vD, (add v8i16:$vA, v8i16:$vB))]>;
  445. def VADDUWM : VXForm_1<128, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  446. "vadduwm $vD, $vA, $vB", IIC_VecGeneral,
  447. [(set v4i32:$vD, (add v4i32:$vA, v4i32:$vB))]>;
  448. def VADDCUW : VX1_Int_Ty<384, "vaddcuw", int_ppc_altivec_vaddcuw, v4i32>;
  449. def VADDSBS : VX1_Int_Ty<768, "vaddsbs", int_ppc_altivec_vaddsbs, v16i8>;
  450. def VADDSHS : VX1_Int_Ty<832, "vaddshs", int_ppc_altivec_vaddshs, v8i16>;
  451. def VADDSWS : VX1_Int_Ty<896, "vaddsws", int_ppc_altivec_vaddsws, v4i32>;
  452. def VADDUBS : VX1_Int_Ty<512, "vaddubs", int_ppc_altivec_vaddubs, v16i8>;
  453. def VADDUHS : VX1_Int_Ty<576, "vadduhs", int_ppc_altivec_vadduhs, v8i16>;
  454. def VADDUWS : VX1_Int_Ty<640, "vadduws", int_ppc_altivec_vadduws, v4i32>;
  455. } // isCommutable
  456. let isCommutable = 1 in
  457. def VAND : VXForm_1<1028, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  458. "vand $vD, $vA, $vB", IIC_VecFP,
  459. [(set v4i32:$vD, (and v4i32:$vA, v4i32:$vB))]>;
  460. def VANDC : VXForm_1<1092, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  461. "vandc $vD, $vA, $vB", IIC_VecFP,
  462. [(set v4i32:$vD, (and v4i32:$vA,
  463. (vnot_ppc v4i32:$vB)))]>;
  464. def VCFSX : VXForm_1<842, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  465. "vcfsx $vD, $vB, $UIMM", IIC_VecFP,
  466. [(set v4f32:$vD,
  467. (int_ppc_altivec_vcfsx v4i32:$vB, timm:$UIMM))]>;
  468. def VCFUX : VXForm_1<778, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  469. "vcfux $vD, $vB, $UIMM", IIC_VecFP,
  470. [(set v4f32:$vD,
  471. (int_ppc_altivec_vcfux v4i32:$vB, timm:$UIMM))]>;
  472. def VCTSXS : VXForm_1<970, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  473. "vctsxs $vD, $vB, $UIMM", IIC_VecFP,
  474. [(set v4i32:$vD,
  475. (int_ppc_altivec_vctsxs v4f32:$vB, timm:$UIMM))]>;
  476. def VCTUXS : VXForm_1<906, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  477. "vctuxs $vD, $vB, $UIMM", IIC_VecFP,
  478. [(set v4i32:$vD,
  479. (int_ppc_altivec_vctuxs v4f32:$vB, timm:$UIMM))]>;
  480. // Defines with the UIM field set to 0 for floating-point
  481. // to integer (fp_to_sint/fp_to_uint) conversions and integer
  482. // to floating-point (sint_to_fp/uint_to_fp) conversions.
  483. let isCodeGenOnly = 1, VA = 0 in {
  484. def VCFSX_0 : VXForm_1<842, (outs vrrc:$vD), (ins vrrc:$vB),
  485. "vcfsx $vD, $vB, 0", IIC_VecFP,
  486. [(set v4f32:$vD,
  487. (int_ppc_altivec_vcfsx v4i32:$vB, 0))]>;
  488. def VCTUXS_0 : VXForm_1<906, (outs vrrc:$vD), (ins vrrc:$vB),
  489. "vctuxs $vD, $vB, 0", IIC_VecFP,
  490. [(set v4i32:$vD,
  491. (int_ppc_altivec_vctuxs v4f32:$vB, 0))]>;
  492. def VCFUX_0 : VXForm_1<778, (outs vrrc:$vD), (ins vrrc:$vB),
  493. "vcfux $vD, $vB, 0", IIC_VecFP,
  494. [(set v4f32:$vD,
  495. (int_ppc_altivec_vcfux v4i32:$vB, 0))]>;
  496. def VCTSXS_0 : VXForm_1<970, (outs vrrc:$vD), (ins vrrc:$vB),
  497. "vctsxs $vD, $vB, 0", IIC_VecFP,
  498. [(set v4i32:$vD,
  499. (int_ppc_altivec_vctsxs v4f32:$vB, 0))]>;
  500. }
  501. def VEXPTEFP : VX2_Int_SP<394, "vexptefp", int_ppc_altivec_vexptefp>;
  502. def VLOGEFP : VX2_Int_SP<458, "vlogefp", int_ppc_altivec_vlogefp>;
  503. let isCommutable = 1 in {
  504. def VAVGSB : VX1_Int_Ty<1282, "vavgsb", int_ppc_altivec_vavgsb, v16i8>;
  505. def VAVGSH : VX1_Int_Ty<1346, "vavgsh", int_ppc_altivec_vavgsh, v8i16>;
  506. def VAVGSW : VX1_Int_Ty<1410, "vavgsw", int_ppc_altivec_vavgsw, v4i32>;
  507. def VAVGUB : VX1_Int_Ty<1026, "vavgub", int_ppc_altivec_vavgub, v16i8>;
  508. def VAVGUH : VX1_Int_Ty<1090, "vavguh", int_ppc_altivec_vavguh, v8i16>;
  509. def VAVGUW : VX1_Int_Ty<1154, "vavguw", int_ppc_altivec_vavguw, v4i32>;
  510. def VMAXFP : VX1_Int_Ty<1034, "vmaxfp", int_ppc_altivec_vmaxfp, v4f32>;
  511. def VMAXSB : VX1_Int_Ty< 258, "vmaxsb", int_ppc_altivec_vmaxsb, v16i8>;
  512. def VMAXSH : VX1_Int_Ty< 322, "vmaxsh", int_ppc_altivec_vmaxsh, v8i16>;
  513. def VMAXSW : VX1_Int_Ty< 386, "vmaxsw", int_ppc_altivec_vmaxsw, v4i32>;
  514. def VMAXUB : VX1_Int_Ty< 2, "vmaxub", int_ppc_altivec_vmaxub, v16i8>;
  515. def VMAXUH : VX1_Int_Ty< 66, "vmaxuh", int_ppc_altivec_vmaxuh, v8i16>;
  516. def VMAXUW : VX1_Int_Ty< 130, "vmaxuw", int_ppc_altivec_vmaxuw, v4i32>;
  517. def VMINFP : VX1_Int_Ty<1098, "vminfp", int_ppc_altivec_vminfp, v4f32>;
  518. def VMINSB : VX1_Int_Ty< 770, "vminsb", int_ppc_altivec_vminsb, v16i8>;
  519. def VMINSH : VX1_Int_Ty< 834, "vminsh", int_ppc_altivec_vminsh, v8i16>;
  520. def VMINSW : VX1_Int_Ty< 898, "vminsw", int_ppc_altivec_vminsw, v4i32>;
  521. def VMINUB : VX1_Int_Ty< 514, "vminub", int_ppc_altivec_vminub, v16i8>;
  522. def VMINUH : VX1_Int_Ty< 578, "vminuh", int_ppc_altivec_vminuh, v8i16>;
  523. def VMINUW : VX1_Int_Ty< 642, "vminuw", int_ppc_altivec_vminuw, v4i32>;
  524. } // isCommutable
  525. def VMRGHB : VXForm_1< 12, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  526. "vmrghb $vD, $vA, $vB", IIC_VecFP,
  527. [(set v16i8:$vD, (vmrghb_shuffle v16i8:$vA, v16i8:$vB))]>;
  528. def VMRGHH : VXForm_1< 76, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  529. "vmrghh $vD, $vA, $vB", IIC_VecFP,
  530. [(set v16i8:$vD, (vmrghh_shuffle v16i8:$vA, v16i8:$vB))]>;
  531. def VMRGHW : VXForm_1<140, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  532. "vmrghw $vD, $vA, $vB", IIC_VecFP,
  533. [(set v16i8:$vD, (vmrghw_shuffle v16i8:$vA, v16i8:$vB))]>;
  534. def VMRGLB : VXForm_1<268, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  535. "vmrglb $vD, $vA, $vB", IIC_VecFP,
  536. [(set v16i8:$vD, (vmrglb_shuffle v16i8:$vA, v16i8:$vB))]>;
  537. def VMRGLH : VXForm_1<332, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  538. "vmrglh $vD, $vA, $vB", IIC_VecFP,
  539. [(set v16i8:$vD, (vmrglh_shuffle v16i8:$vA, v16i8:$vB))]>;
  540. def VMRGLW : VXForm_1<396, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  541. "vmrglw $vD, $vA, $vB", IIC_VecFP,
  542. [(set v16i8:$vD, (vmrglw_shuffle v16i8:$vA, v16i8:$vB))]>;
  543. def VMSUMMBM : VA1a_Int_Ty3<37, "vmsummbm", int_ppc_altivec_vmsummbm,
  544. v4i32, v16i8, v4i32>;
  545. def VMSUMSHM : VA1a_Int_Ty3<40, "vmsumshm", int_ppc_altivec_vmsumshm,
  546. v4i32, v8i16, v4i32>;
  547. def VMSUMUBM : VA1a_Int_Ty3<36, "vmsumubm", int_ppc_altivec_vmsumubm,
  548. v4i32, v16i8, v4i32>;
  549. def VMSUMUHM : VA1a_Int_Ty3<38, "vmsumuhm", int_ppc_altivec_vmsumuhm,
  550. v4i32, v8i16, v4i32>;
  551. let hasSideEffects = 1 in {
  552. def VMSUMSHS : VA1a_Int_Ty3<41, "vmsumshs", int_ppc_altivec_vmsumshs,
  553. v4i32, v8i16, v4i32>;
  554. def VMSUMUHS : VA1a_Int_Ty3<39, "vmsumuhs", int_ppc_altivec_vmsumuhs,
  555. v4i32, v8i16, v4i32>;
  556. }
  557. let isCommutable = 1 in {
  558. def VMULESB : VX1_Int_Ty2<776, "vmulesb", int_ppc_altivec_vmulesb,
  559. v8i16, v16i8>;
  560. def VMULESH : VX1_Int_Ty2<840, "vmulesh", int_ppc_altivec_vmulesh,
  561. v4i32, v8i16>;
  562. def VMULEUB : VX1_Int_Ty2<520, "vmuleub", int_ppc_altivec_vmuleub,
  563. v8i16, v16i8>;
  564. def VMULEUH : VX1_Int_Ty2<584, "vmuleuh", int_ppc_altivec_vmuleuh,
  565. v4i32, v8i16>;
  566. def VMULOSB : VX1_Int_Ty2<264, "vmulosb", int_ppc_altivec_vmulosb,
  567. v8i16, v16i8>;
  568. def VMULOSH : VX1_Int_Ty2<328, "vmulosh", int_ppc_altivec_vmulosh,
  569. v4i32, v8i16>;
  570. def VMULOUB : VX1_Int_Ty2< 8, "vmuloub", int_ppc_altivec_vmuloub,
  571. v8i16, v16i8>;
  572. def VMULOUH : VX1_Int_Ty2< 72, "vmulouh", int_ppc_altivec_vmulouh,
  573. v4i32, v8i16>;
  574. } // isCommutable
  575. def VREFP : VX2_Int_SP<266, "vrefp", int_ppc_altivec_vrefp>;
  576. def VRFIM : VX2_Int_SP<714, "vrfim", int_ppc_altivec_vrfim>;
  577. def VRFIN : VX2_Int_SP<522, "vrfin", int_ppc_altivec_vrfin>;
  578. def VRFIP : VX2_Int_SP<650, "vrfip", int_ppc_altivec_vrfip>;
  579. def VRFIZ : VX2_Int_SP<586, "vrfiz", int_ppc_altivec_vrfiz>;
  580. def VRSQRTEFP : VX2_Int_SP<330, "vrsqrtefp", int_ppc_altivec_vrsqrtefp>;
  581. def VSUBCUW : VX1_Int_Ty<1408, "vsubcuw", int_ppc_altivec_vsubcuw, v4i32>;
  582. def VSUBFP : VXForm_1<74, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  583. "vsubfp $vD, $vA, $vB", IIC_VecGeneral,
  584. [(set v4f32:$vD, (fsub v4f32:$vA, v4f32:$vB))]>;
  585. def VSUBUBM : VXForm_1<1024, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  586. "vsububm $vD, $vA, $vB", IIC_VecGeneral,
  587. [(set v16i8:$vD, (sub v16i8:$vA, v16i8:$vB))]>;
  588. def VSUBUHM : VXForm_1<1088, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  589. "vsubuhm $vD, $vA, $vB", IIC_VecGeneral,
  590. [(set v8i16:$vD, (sub v8i16:$vA, v8i16:$vB))]>;
  591. def VSUBUWM : VXForm_1<1152, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  592. "vsubuwm $vD, $vA, $vB", IIC_VecGeneral,
  593. [(set v4i32:$vD, (sub v4i32:$vA, v4i32:$vB))]>;
  594. def VSUBSBS : VX1_Int_Ty<1792, "vsubsbs" , int_ppc_altivec_vsubsbs, v16i8>;
  595. def VSUBSHS : VX1_Int_Ty<1856, "vsubshs" , int_ppc_altivec_vsubshs, v8i16>;
  596. def VSUBSWS : VX1_Int_Ty<1920, "vsubsws" , int_ppc_altivec_vsubsws, v4i32>;
  597. def VSUBUBS : VX1_Int_Ty<1536, "vsububs" , int_ppc_altivec_vsububs, v16i8>;
  598. def VSUBUHS : VX1_Int_Ty<1600, "vsubuhs" , int_ppc_altivec_vsubuhs, v8i16>;
  599. def VSUBUWS : VX1_Int_Ty<1664, "vsubuws" , int_ppc_altivec_vsubuws, v4i32>;
  600. let hasSideEffects = 1 in {
  601. def VSUMSWS : VX1_Int_Ty<1928, "vsumsws" , int_ppc_altivec_vsumsws, v4i32>;
  602. def VSUM2SWS: VX1_Int_Ty<1672, "vsum2sws", int_ppc_altivec_vsum2sws, v4i32>;
  603. def VSUM4SBS: VX1_Int_Ty3<1800, "vsum4sbs", int_ppc_altivec_vsum4sbs,
  604. v4i32, v16i8, v4i32>;
  605. def VSUM4SHS: VX1_Int_Ty3<1608, "vsum4shs", int_ppc_altivec_vsum4shs,
  606. v4i32, v8i16, v4i32>;
  607. def VSUM4UBS: VX1_Int_Ty3<1544, "vsum4ubs", int_ppc_altivec_vsum4ubs,
  608. v4i32, v16i8, v4i32>;
  609. }
  610. def VNOR : VXForm_1<1284, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  611. "vnor $vD, $vA, $vB", IIC_VecFP,
  612. [(set v4i32:$vD, (vnot_ppc (or v4i32:$vA,
  613. v4i32:$vB)))]>;
  614. let isCommutable = 1 in {
  615. def VOR : VXForm_1<1156, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  616. "vor $vD, $vA, $vB", IIC_VecFP,
  617. [(set v4i32:$vD, (or v4i32:$vA, v4i32:$vB))]>;
  618. def VXOR : VXForm_1<1220, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  619. "vxor $vD, $vA, $vB", IIC_VecFP,
  620. [(set v4i32:$vD, (xor v4i32:$vA, v4i32:$vB))]>;
  621. } // isCommutable
  622. def VRLB : VX1_Int_Ty< 4, "vrlb", int_ppc_altivec_vrlb, v16i8>;
  623. def VRLH : VX1_Int_Ty< 68, "vrlh", int_ppc_altivec_vrlh, v8i16>;
  624. def VRLW : VX1_Int_Ty< 132, "vrlw", int_ppc_altivec_vrlw, v4i32>;
  625. def VSL : VX1_Int_Ty< 452, "vsl" , int_ppc_altivec_vsl, v4i32 >;
  626. def VSLO : VX1_Int_Ty<1036, "vslo", int_ppc_altivec_vslo, v4i32>;
  627. def VSLB : VX1_Int_Ty< 260, "vslb", int_ppc_altivec_vslb, v16i8>;
  628. def VSLH : VX1_Int_Ty< 324, "vslh", int_ppc_altivec_vslh, v8i16>;
  629. def VSLW : VX1_Int_Ty< 388, "vslw", int_ppc_altivec_vslw, v4i32>;
  630. def VSPLTB : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  631. "vspltb $vD, $vB, $UIMM", IIC_VecPerm,
  632. [(set v16i8:$vD,
  633. (vspltb_shuffle:$UIMM v16i8:$vB, (undef)))]>;
  634. def VSPLTH : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  635. "vsplth $vD, $vB, $UIMM", IIC_VecPerm,
  636. [(set v16i8:$vD,
  637. (vsplth_shuffle:$UIMM v16i8:$vB, (undef)))]>;
  638. def VSPLTW : VXForm_1<652, (outs vrrc:$vD), (ins u5imm:$UIMM, vrrc:$vB),
  639. "vspltw $vD, $vB, $UIMM", IIC_VecPerm,
  640. [(set v16i8:$vD,
  641. (vspltw_shuffle:$UIMM v16i8:$vB, (undef)))]>;
  642. let isCodeGenOnly = 1, hasSideEffects = 0 in {
  643. def VSPLTBs : VXForm_1<524, (outs vrrc:$vD), (ins u5imm:$UIMM, vfrc:$vB),
  644. "vspltb $vD, $vB, $UIMM", IIC_VecPerm, []>;
  645. def VSPLTHs : VXForm_1<588, (outs vrrc:$vD), (ins u5imm:$UIMM, vfrc:$vB),
  646. "vsplth $vD, $vB, $UIMM", IIC_VecPerm, []>;
  647. }
  648. def VSR : VX1_Int_Ty< 708, "vsr" , int_ppc_altivec_vsr, v4i32>;
  649. def VSRO : VX1_Int_Ty<1100, "vsro" , int_ppc_altivec_vsro, v4i32>;
  650. def VSRAB : VX1_Int_Ty< 772, "vsrab", int_ppc_altivec_vsrab, v16i8>;
  651. def VSRAH : VX1_Int_Ty< 836, "vsrah", int_ppc_altivec_vsrah, v8i16>;
  652. def VSRAW : VX1_Int_Ty< 900, "vsraw", int_ppc_altivec_vsraw, v4i32>;
  653. def VSRB : VX1_Int_Ty< 516, "vsrb" , int_ppc_altivec_vsrb , v16i8>;
  654. def VSRH : VX1_Int_Ty< 580, "vsrh" , int_ppc_altivec_vsrh , v8i16>;
  655. def VSRW : VX1_Int_Ty< 644, "vsrw" , int_ppc_altivec_vsrw , v4i32>;
  656. def VSPLTISB : VXForm_3<780, (outs vrrc:$vD), (ins s5imm:$SIMM),
  657. "vspltisb $vD, $SIMM", IIC_VecPerm,
  658. [(set v16i8:$vD, (v16i8 vecspltisb:$SIMM))]>;
  659. def VSPLTISH : VXForm_3<844, (outs vrrc:$vD), (ins s5imm:$SIMM),
  660. "vspltish $vD, $SIMM", IIC_VecPerm,
  661. [(set v8i16:$vD, (v8i16 vecspltish:$SIMM))]>;
  662. def VSPLTISW : VXForm_3<908, (outs vrrc:$vD), (ins s5imm:$SIMM),
  663. "vspltisw $vD, $SIMM", IIC_VecPerm,
  664. [(set v4i32:$vD, (v4i32 vecspltisw:$SIMM))]>;
  665. // Vector Pack.
  666. def VPKPX : VX1_Int_Ty2<782, "vpkpx", int_ppc_altivec_vpkpx,
  667. v8i16, v4i32>;
  668. let hasSideEffects = 1 in {
  669. def VPKSHSS : VX1_Int_Ty2<398, "vpkshss", int_ppc_altivec_vpkshss,
  670. v16i8, v8i16>;
  671. def VPKSHUS : VX1_Int_Ty2<270, "vpkshus", int_ppc_altivec_vpkshus,
  672. v16i8, v8i16>;
  673. def VPKSWSS : VX1_Int_Ty2<462, "vpkswss", int_ppc_altivec_vpkswss,
  674. v8i16, v4i32>;
  675. def VPKSWUS : VX1_Int_Ty2<334, "vpkswus", int_ppc_altivec_vpkswus,
  676. v8i16, v4i32>;
  677. def VPKUHUS : VX1_Int_Ty2<142, "vpkuhus", int_ppc_altivec_vpkuhus,
  678. v16i8, v8i16>;
  679. def VPKUWUS : VX1_Int_Ty2<206, "vpkuwus", int_ppc_altivec_vpkuwus,
  680. v8i16, v4i32>;
  681. }
  682. def VPKUHUM : VXForm_1<14, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  683. "vpkuhum $vD, $vA, $vB", IIC_VecFP,
  684. [(set v16i8:$vD,
  685. (vpkuhum_shuffle v16i8:$vA, v16i8:$vB))]>;
  686. def VPKUWUM : VXForm_1<78, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  687. "vpkuwum $vD, $vA, $vB", IIC_VecFP,
  688. [(set v16i8:$vD,
  689. (vpkuwum_shuffle v16i8:$vA, v16i8:$vB))]>;
  690. // Vector Unpack.
  691. def VUPKHPX : VX2_Int_Ty2<846, "vupkhpx", int_ppc_altivec_vupkhpx,
  692. v4i32, v8i16>;
  693. def VUPKHSB : VX2_Int_Ty2<526, "vupkhsb", int_ppc_altivec_vupkhsb,
  694. v8i16, v16i8>;
  695. def VUPKHSH : VX2_Int_Ty2<590, "vupkhsh", int_ppc_altivec_vupkhsh,
  696. v4i32, v8i16>;
  697. def VUPKLPX : VX2_Int_Ty2<974, "vupklpx", int_ppc_altivec_vupklpx,
  698. v4i32, v8i16>;
  699. def VUPKLSB : VX2_Int_Ty2<654, "vupklsb", int_ppc_altivec_vupklsb,
  700. v8i16, v16i8>;
  701. def VUPKLSH : VX2_Int_Ty2<718, "vupklsh", int_ppc_altivec_vupklsh,
  702. v4i32, v8i16>;
  703. // Altivec Comparisons.
  704. class VCMP<bits<10> xo, string asmstr, ValueType Ty>
  705. : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr,
  706. IIC_VecFPCompare,
  707. [(set Ty:$vD, (Ty (PPCvcmp Ty:$vA, Ty:$vB, xo)))]>;
  708. class VCMP_rec<bits<10> xo, string asmstr, ValueType Ty>
  709. : VXRForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), asmstr,
  710. IIC_VecFPCompare,
  711. [(set Ty:$vD, (Ty (PPCvcmp_rec Ty:$vA, Ty:$vB, xo)))]> {
  712. let Defs = [CR6];
  713. let RC = 1;
  714. }
  715. // f32 element comparisons.0
  716. def VCMPBFP : VCMP <966, "vcmpbfp $vD, $vA, $vB" , v4f32>;
  717. def VCMPBFP_rec : VCMP_rec<966, "vcmpbfp. $vD, $vA, $vB" , v4f32>;
  718. def VCMPEQFP : VCMP <198, "vcmpeqfp $vD, $vA, $vB" , v4f32>;
  719. def VCMPEQFP_rec : VCMP_rec<198, "vcmpeqfp. $vD, $vA, $vB", v4f32>;
  720. def VCMPGEFP : VCMP <454, "vcmpgefp $vD, $vA, $vB" , v4f32>;
  721. def VCMPGEFP_rec : VCMP_rec<454, "vcmpgefp. $vD, $vA, $vB", v4f32>;
  722. def VCMPGTFP : VCMP <710, "vcmpgtfp $vD, $vA, $vB" , v4f32>;
  723. def VCMPGTFP_rec : VCMP_rec<710, "vcmpgtfp. $vD, $vA, $vB", v4f32>;
  724. // i8 element comparisons.
  725. def VCMPEQUB : VCMP < 6, "vcmpequb $vD, $vA, $vB" , v16i8>;
  726. def VCMPEQUB_rec : VCMP_rec< 6, "vcmpequb. $vD, $vA, $vB", v16i8>;
  727. def VCMPGTSB : VCMP <774, "vcmpgtsb $vD, $vA, $vB" , v16i8>;
  728. def VCMPGTSB_rec : VCMP_rec<774, "vcmpgtsb. $vD, $vA, $vB", v16i8>;
  729. def VCMPGTUB : VCMP <518, "vcmpgtub $vD, $vA, $vB" , v16i8>;
  730. def VCMPGTUB_rec : VCMP_rec<518, "vcmpgtub. $vD, $vA, $vB", v16i8>;
  731. // i16 element comparisons.
  732. def VCMPEQUH : VCMP < 70, "vcmpequh $vD, $vA, $vB" , v8i16>;
  733. def VCMPEQUH_rec : VCMP_rec< 70, "vcmpequh. $vD, $vA, $vB", v8i16>;
  734. def VCMPGTSH : VCMP <838, "vcmpgtsh $vD, $vA, $vB" , v8i16>;
  735. def VCMPGTSH_rec : VCMP_rec<838, "vcmpgtsh. $vD, $vA, $vB", v8i16>;
  736. def VCMPGTUH : VCMP <582, "vcmpgtuh $vD, $vA, $vB" , v8i16>;
  737. def VCMPGTUH_rec : VCMP_rec<582, "vcmpgtuh. $vD, $vA, $vB", v8i16>;
  738. // i32 element comparisons.
  739. def VCMPEQUW : VCMP <134, "vcmpequw $vD, $vA, $vB" , v4i32>;
  740. def VCMPEQUW_rec : VCMP_rec<134, "vcmpequw. $vD, $vA, $vB", v4i32>;
  741. def VCMPGTSW : VCMP <902, "vcmpgtsw $vD, $vA, $vB" , v4i32>;
  742. def VCMPGTSW_rec : VCMP_rec<902, "vcmpgtsw. $vD, $vA, $vB", v4i32>;
  743. def VCMPGTUW : VCMP <646, "vcmpgtuw $vD, $vA, $vB" , v4i32>;
  744. def VCMPGTUW_rec : VCMP_rec<646, "vcmpgtuw. $vD, $vA, $vB", v4i32>;
  745. let isCodeGenOnly = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
  746. isReMaterializable = 1 in {
  747. def V_SET0B : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
  748. "vxor $vD, $vD, $vD", IIC_VecFP,
  749. [(set v16i8:$vD, (v16i8 immAllZerosV))]>;
  750. def V_SET0H : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
  751. "vxor $vD, $vD, $vD", IIC_VecFP,
  752. [(set v8i16:$vD, (v8i16 immAllZerosV))]>;
  753. def V_SET0 : VXForm_setzero<1220, (outs vrrc:$vD), (ins),
  754. "vxor $vD, $vD, $vD", IIC_VecFP,
  755. [(set v4i32:$vD, (v4i32 immAllZerosV))]>;
  756. let IMM=-1 in {
  757. def V_SETALLONESB : VXForm_3<908, (outs vrrc:$vD), (ins),
  758. "vspltisw $vD, -1", IIC_VecFP,
  759. [(set v16i8:$vD, (v16i8 immAllOnesV))]>;
  760. def V_SETALLONESH : VXForm_3<908, (outs vrrc:$vD), (ins),
  761. "vspltisw $vD, -1", IIC_VecFP,
  762. [(set v8i16:$vD, (v8i16 immAllOnesV))]>;
  763. def V_SETALLONES : VXForm_3<908, (outs vrrc:$vD), (ins),
  764. "vspltisw $vD, -1", IIC_VecFP,
  765. [(set v4i32:$vD, (v4i32 immAllOnesV))]>;
  766. }
  767. }
  768. } // VALU Operations.
  769. //===----------------------------------------------------------------------===//
  770. // Additional Altivec Patterns
  771. //
  772. // Extended mnemonics
  773. def : InstAlias<"vmr $vD, $vA", (VOR vrrc:$vD, vrrc:$vA, vrrc:$vA)>;
  774. def : InstAlias<"vnot $vD, $vA", (VNOR vrrc:$vD, vrrc:$vA, vrrc:$vA)>;
  775. // Rotates.
  776. def : Pat<(v16i8 (rotl v16i8:$vA, v16i8:$vB)),
  777. (v16i8 (VRLB v16i8:$vA, v16i8:$vB))>;
  778. def : Pat<(v8i16 (rotl v8i16:$vA, v8i16:$vB)),
  779. (v8i16 (VRLH v8i16:$vA, v8i16:$vB))>;
  780. def : Pat<(v4i32 (rotl v4i32:$vA, v4i32:$vB)),
  781. (v4i32 (VRLW v4i32:$vA, v4i32:$vB))>;
  782. // Multiply
  783. def : Pat<(mul v8i16:$vA, v8i16:$vB), (VMLADDUHM $vA, $vB, (v8i16(V_SET0H)))>;
  784. // Add
  785. def : Pat<(add (mul v8i16:$vA, v8i16:$vB), v8i16:$vC), (VMLADDUHM $vA, $vB, $vC)>;
  786. // Saturating adds/subtracts.
  787. def : Pat<(v16i8 (saddsat v16i8:$vA, v16i8:$vB)), (v16i8 (VADDSBS $vA, $vB))>;
  788. def : Pat<(v16i8 (uaddsat v16i8:$vA, v16i8:$vB)), (v16i8 (VADDUBS $vA, $vB))>;
  789. def : Pat<(v8i16 (saddsat v8i16:$vA, v8i16:$vB)), (v8i16 (VADDSHS $vA, $vB))>;
  790. def : Pat<(v8i16 (uaddsat v8i16:$vA, v8i16:$vB)), (v8i16 (VADDUHS $vA, $vB))>;
  791. def : Pat<(v4i32 (saddsat v4i32:$vA, v4i32:$vB)), (v4i32 (VADDSWS $vA, $vB))>;
  792. def : Pat<(v4i32 (uaddsat v4i32:$vA, v4i32:$vB)), (v4i32 (VADDUWS $vA, $vB))>;
  793. def : Pat<(v16i8 (ssubsat v16i8:$vA, v16i8:$vB)), (v16i8 (VSUBSBS $vA, $vB))>;
  794. def : Pat<(v16i8 (usubsat v16i8:$vA, v16i8:$vB)), (v16i8 (VSUBUBS $vA, $vB))>;
  795. def : Pat<(v8i16 (ssubsat v8i16:$vA, v8i16:$vB)), (v8i16 (VSUBSHS $vA, $vB))>;
  796. def : Pat<(v8i16 (usubsat v8i16:$vA, v8i16:$vB)), (v8i16 (VSUBUHS $vA, $vB))>;
  797. def : Pat<(v4i32 (ssubsat v4i32:$vA, v4i32:$vB)), (v4i32 (VSUBSWS $vA, $vB))>;
  798. def : Pat<(v4i32 (usubsat v4i32:$vA, v4i32:$vB)), (v4i32 (VSUBUWS $vA, $vB))>;
  799. // Loads.
  800. def : Pat<(v4i32 (load xoaddr:$src)), (LVX xoaddr:$src)>;
  801. // Stores.
  802. def : Pat<(store v4i32:$rS, xoaddr:$dst),
  803. (STVX $rS, xoaddr:$dst)>;
  804. // Bit conversions.
  805. def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>;
  806. def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>;
  807. def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>;
  808. def : Pat<(v16i8 (bitconvert (v2i64 VRRC:$src))), (v16i8 VRRC:$src)>;
  809. def : Pat<(v16i8 (bitconvert (v1i128 VRRC:$src))), (v16i8 VRRC:$src)>;
  810. def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>;
  811. def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>;
  812. def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>;
  813. def : Pat<(v8i16 (bitconvert (v2i64 VRRC:$src))), (v8i16 VRRC:$src)>;
  814. def : Pat<(v8i16 (bitconvert (v1i128 VRRC:$src))), (v8i16 VRRC:$src)>;
  815. def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>;
  816. def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>;
  817. def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>;
  818. def : Pat<(v4i32 (bitconvert (v2i64 VRRC:$src))), (v4i32 VRRC:$src)>;
  819. def : Pat<(v4i32 (bitconvert (v1i128 VRRC:$src))), (v4i32 VRRC:$src)>;
  820. def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>;
  821. def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>;
  822. def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>;
  823. def : Pat<(v4f32 (bitconvert (v2i64 VRRC:$src))), (v4f32 VRRC:$src)>;
  824. def : Pat<(v4f32 (bitconvert (v1i128 VRRC:$src))), (v4f32 VRRC:$src)>;
  825. def : Pat<(v2i64 (bitconvert (v16i8 VRRC:$src))), (v2i64 VRRC:$src)>;
  826. def : Pat<(v2i64 (bitconvert (v8i16 VRRC:$src))), (v2i64 VRRC:$src)>;
  827. def : Pat<(v2i64 (bitconvert (v4i32 VRRC:$src))), (v2i64 VRRC:$src)>;
  828. def : Pat<(v2i64 (bitconvert (v4f32 VRRC:$src))), (v2i64 VRRC:$src)>;
  829. def : Pat<(v2i64 (bitconvert (v1i128 VRRC:$src))), (v2i64 VRRC:$src)>;
  830. def : Pat<(v1i128 (bitconvert (v16i8 VRRC:$src))), (v1i128 VRRC:$src)>;
  831. def : Pat<(v1i128 (bitconvert (v8i16 VRRC:$src))), (v1i128 VRRC:$src)>;
  832. def : Pat<(v1i128 (bitconvert (v4i32 VRRC:$src))), (v1i128 VRRC:$src)>;
  833. def : Pat<(v1i128 (bitconvert (v4f32 VRRC:$src))), (v1i128 VRRC:$src)>;
  834. def : Pat<(v1i128 (bitconvert (v2i64 VRRC:$src))), (v1i128 VRRC:$src)>;
  835. def : Pat<(f128 (bitconvert (v16i8 VRRC:$src))), (f128 VRRC:$src)>;
  836. def : Pat<(f128 (bitconvert (v8i16 VRRC:$src))), (f128 VRRC:$src)>;
  837. def : Pat<(f128 (bitconvert (v4i32 VRRC:$src))), (f128 VRRC:$src)>;
  838. def : Pat<(f128 (bitconvert (v4f32 VRRC:$src))), (f128 VRRC:$src)>;
  839. def : Pat<(f128 (bitconvert (v2f64 VRRC:$src))), (f128 VRRC:$src)>;
  840. def : Pat<(v16i8 (bitconvert (f128 VRRC:$src))), (v16i8 VRRC:$src)>;
  841. def : Pat<(v8i16 (bitconvert (f128 VRRC:$src))), (v8i16 VRRC:$src)>;
  842. def : Pat<(v4i32 (bitconvert (f128 VRRC:$src))), (v4i32 VRRC:$src)>;
  843. def : Pat<(v4f32 (bitconvert (f128 VRRC:$src))), (v4f32 VRRC:$src)>;
  844. def : Pat<(v2f64 (bitconvert (f128 VRRC:$src))), (v2f64 VRRC:$src)>;
  845. // Max/Min
  846. def : Pat<(v16i8 (umax v16i8:$src1, v16i8:$src2)),
  847. (v16i8 (VMAXUB $src1, $src2))>;
  848. def : Pat<(v16i8 (smax v16i8:$src1, v16i8:$src2)),
  849. (v16i8 (VMAXSB $src1, $src2))>;
  850. def : Pat<(v8i16 (umax v8i16:$src1, v8i16:$src2)),
  851. (v8i16 (VMAXUH $src1, $src2))>;
  852. def : Pat<(v8i16 (smax v8i16:$src1, v8i16:$src2)),
  853. (v8i16 (VMAXSH $src1, $src2))>;
  854. def : Pat<(v4i32 (umax v4i32:$src1, v4i32:$src2)),
  855. (v4i32 (VMAXUW $src1, $src2))>;
  856. def : Pat<(v4i32 (smax v4i32:$src1, v4i32:$src2)),
  857. (v4i32 (VMAXSW $src1, $src2))>;
  858. def : Pat<(v16i8 (umin v16i8:$src1, v16i8:$src2)),
  859. (v16i8 (VMINUB $src1, $src2))>;
  860. def : Pat<(v16i8 (smin v16i8:$src1, v16i8:$src2)),
  861. (v16i8 (VMINSB $src1, $src2))>;
  862. def : Pat<(v8i16 (umin v8i16:$src1, v8i16:$src2)),
  863. (v8i16 (VMINUH $src1, $src2))>;
  864. def : Pat<(v8i16 (smin v8i16:$src1, v8i16:$src2)),
  865. (v8i16 (VMINSH $src1, $src2))>;
  866. def : Pat<(v4i32 (umin v4i32:$src1, v4i32:$src2)),
  867. (v4i32 (VMINUW $src1, $src2))>;
  868. def : Pat<(v4i32 (smin v4i32:$src1, v4i32:$src2)),
  869. (v4i32 (VMINSW $src1, $src2))>;
  870. // Shuffles.
  871. // Match vsldoi(x,x), vpkuwum(x,x), vpkuhum(x,x)
  872. def:Pat<(vsldoi_unary_shuffle:$in v16i8:$vA, undef),
  873. (VSLDOI $vA, $vA, (VSLDOI_unary_get_imm $in))>;
  874. def:Pat<(vpkuwum_unary_shuffle v16i8:$vA, undef),
  875. (VPKUWUM $vA, $vA)>;
  876. def:Pat<(vpkuhum_unary_shuffle v16i8:$vA, undef),
  877. (VPKUHUM $vA, $vA)>;
  878. def:Pat<(vsldoi_shuffle:$SH v16i8:$vA, v16i8:$vB),
  879. (VSLDOI v16i8:$vA, v16i8:$vB, (VSLDOI_get_imm $SH))>;
  880. // Match vsldoi(y,x), vpkuwum(y,x), vpkuhum(y,x), i.e., swapped operands.
  881. // These fragments are matched for little-endian, where the inputs must
  882. // be swapped for correct semantics.
  883. def:Pat<(vsldoi_swapped_shuffle:$in v16i8:$vA, v16i8:$vB),
  884. (VSLDOI $vB, $vA, (VSLDOI_swapped_get_imm $in))>;
  885. def:Pat<(vpkuwum_swapped_shuffle v16i8:$vA, v16i8:$vB),
  886. (VPKUWUM $vB, $vA)>;
  887. def:Pat<(vpkuhum_swapped_shuffle v16i8:$vA, v16i8:$vB),
  888. (VPKUHUM $vB, $vA)>;
  889. // Match vmrg*(x,x)
  890. def:Pat<(vmrglb_unary_shuffle v16i8:$vA, undef),
  891. (VMRGLB $vA, $vA)>;
  892. def:Pat<(vmrglh_unary_shuffle v16i8:$vA, undef),
  893. (VMRGLH $vA, $vA)>;
  894. def:Pat<(vmrglw_unary_shuffle v16i8:$vA, undef),
  895. (VMRGLW $vA, $vA)>;
  896. def:Pat<(vmrghb_unary_shuffle v16i8:$vA, undef),
  897. (VMRGHB $vA, $vA)>;
  898. def:Pat<(vmrghh_unary_shuffle v16i8:$vA, undef),
  899. (VMRGHH $vA, $vA)>;
  900. def:Pat<(vmrghw_unary_shuffle v16i8:$vA, undef),
  901. (VMRGHW $vA, $vA)>;
  902. // Match vmrg*(y,x), i.e., swapped operands. These fragments
  903. // are matched for little-endian, where the inputs must be
  904. // swapped for correct semantics.
  905. def:Pat<(vmrglb_swapped_shuffle v16i8:$vA, v16i8:$vB),
  906. (VMRGLB $vB, $vA)>;
  907. def:Pat<(vmrglh_swapped_shuffle v16i8:$vA, v16i8:$vB),
  908. (VMRGLH $vB, $vA)>;
  909. def:Pat<(vmrglw_swapped_shuffle v16i8:$vA, v16i8:$vB),
  910. (VMRGLW $vB, $vA)>;
  911. def:Pat<(vmrghb_swapped_shuffle v16i8:$vA, v16i8:$vB),
  912. (VMRGHB $vB, $vA)>;
  913. def:Pat<(vmrghh_swapped_shuffle v16i8:$vA, v16i8:$vB),
  914. (VMRGHH $vB, $vA)>;
  915. def:Pat<(vmrghw_swapped_shuffle v16i8:$vA, v16i8:$vB),
  916. (VMRGHW $vB, $vA)>;
  917. // Logical Operations
  918. def : Pat<(vnot_ppc v4i32:$vA), (VNOR $vA, $vA)>;
  919. def : Pat<(vnot_ppc (or v4i32:$A, v4i32:$B)),
  920. (VNOR $A, $B)>;
  921. def : Pat<(and v4i32:$A, (vnot_ppc v4i32:$B)),
  922. (VANDC $A, $B)>;
  923. def : Pat<(fmul v4f32:$vA, v4f32:$vB),
  924. (VMADDFP $vA, $vB,
  925. (v4i32 (VSLW (v4i32 (V_SETALLONES)), (v4i32 (V_SETALLONES)))))>;
  926. def : Pat<(PPCfnmsub v4f32:$A, v4f32:$B, v4f32:$C),
  927. (VNMSUBFP $A, $B, $C)>;
  928. def : Pat<(int_ppc_altivec_vmaddfp v4f32:$A, v4f32:$B, v4f32:$C),
  929. (VMADDFP $A, $B, $C)>;
  930. def : Pat<(int_ppc_altivec_vnmsubfp v4f32:$A, v4f32:$B, v4f32:$C),
  931. (VNMSUBFP $A, $B, $C)>;
  932. def : Pat<(PPCvperm v16i8:$vA, v16i8:$vB, v16i8:$vC),
  933. (VPERM $vA, $vB, $vC)>;
  934. def : Pat<(PPCfre v4f32:$A), (VREFP $A)>;
  935. def : Pat<(PPCfrsqrte v4f32:$A), (VRSQRTEFP $A)>;
  936. // Vector shifts
  937. def : Pat<(v16i8 (shl v16i8:$vA, v16i8:$vB)),
  938. (v16i8 (VSLB $vA, $vB))>;
  939. def : Pat<(v8i16 (shl v8i16:$vA, v8i16:$vB)),
  940. (v8i16 (VSLH $vA, $vB))>;
  941. def : Pat<(v4i32 (shl v4i32:$vA, v4i32:$vB)),
  942. (v4i32 (VSLW $vA, $vB))>;
  943. def : Pat<(v1i128 (shl v1i128:$vA, v1i128:$vB)),
  944. (v1i128 (VSL (v16i8 (VSLO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>;
  945. def : Pat<(v16i8 (PPCshl v16i8:$vA, v16i8:$vB)),
  946. (v16i8 (VSLB $vA, $vB))>;
  947. def : Pat<(v8i16 (PPCshl v8i16:$vA, v8i16:$vB)),
  948. (v8i16 (VSLH $vA, $vB))>;
  949. def : Pat<(v4i32 (PPCshl v4i32:$vA, v4i32:$vB)),
  950. (v4i32 (VSLW $vA, $vB))>;
  951. def : Pat<(v1i128 (PPCshl v1i128:$vA, v1i128:$vB)),
  952. (v1i128 (VSL (v16i8 (VSLO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>;
  953. def : Pat<(v16i8 (srl v16i8:$vA, v16i8:$vB)),
  954. (v16i8 (VSRB $vA, $vB))>;
  955. def : Pat<(v8i16 (srl v8i16:$vA, v8i16:$vB)),
  956. (v8i16 (VSRH $vA, $vB))>;
  957. def : Pat<(v4i32 (srl v4i32:$vA, v4i32:$vB)),
  958. (v4i32 (VSRW $vA, $vB))>;
  959. def : Pat<(v1i128 (srl v1i128:$vA, v1i128:$vB)),
  960. (v1i128 (VSR (v16i8 (VSRO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>;
  961. def : Pat<(v16i8 (PPCsrl v16i8:$vA, v16i8:$vB)),
  962. (v16i8 (VSRB $vA, $vB))>;
  963. def : Pat<(v8i16 (PPCsrl v8i16:$vA, v8i16:$vB)),
  964. (v8i16 (VSRH $vA, $vB))>;
  965. def : Pat<(v4i32 (PPCsrl v4i32:$vA, v4i32:$vB)),
  966. (v4i32 (VSRW $vA, $vB))>;
  967. def : Pat<(v1i128 (PPCsrl v1i128:$vA, v1i128:$vB)),
  968. (v1i128 (VSR (v16i8 (VSRO $vA, $vB)), (v16i8 (VSPLTB 15, $vB))))>;
  969. def : Pat<(v16i8 (sra v16i8:$vA, v16i8:$vB)),
  970. (v16i8 (VSRAB $vA, $vB))>;
  971. def : Pat<(v8i16 (sra v8i16:$vA, v8i16:$vB)),
  972. (v8i16 (VSRAH $vA, $vB))>;
  973. def : Pat<(v4i32 (sra v4i32:$vA, v4i32:$vB)),
  974. (v4i32 (VSRAW $vA, $vB))>;
  975. def : Pat<(v16i8 (PPCsra v16i8:$vA, v16i8:$vB)),
  976. (v16i8 (VSRAB $vA, $vB))>;
  977. def : Pat<(v8i16 (PPCsra v8i16:$vA, v8i16:$vB)),
  978. (v8i16 (VSRAH $vA, $vB))>;
  979. def : Pat<(v4i32 (PPCsra v4i32:$vA, v4i32:$vB)),
  980. (v4i32 (VSRAW $vA, $vB))>;
  981. // Float to integer and integer to float conversions
  982. def : Pat<(v4i32 (fp_to_sint v4f32:$vA)),
  983. (VCTSXS_0 $vA)>;
  984. def : Pat<(v4i32 (fp_to_uint v4f32:$vA)),
  985. (VCTUXS_0 $vA)>;
  986. def : Pat<(v4f32 (sint_to_fp v4i32:$vA)),
  987. (VCFSX_0 $vA)>;
  988. def : Pat<(v4f32 (uint_to_fp v4i32:$vA)),
  989. (VCFUX_0 $vA)>;
  990. // Floating-point rounding
  991. def : Pat<(v4f32 (ffloor v4f32:$vA)),
  992. (VRFIM $vA)>;
  993. def : Pat<(v4f32 (fceil v4f32:$vA)),
  994. (VRFIP $vA)>;
  995. def : Pat<(v4f32 (ftrunc v4f32:$vA)),
  996. (VRFIZ $vA)>;
  997. def : Pat<(v4f32 (fnearbyint v4f32:$vA)),
  998. (VRFIN $vA)>;
  999. // Vector selection
  1000. def : Pat<(v16i8 (vselect v16i8:$vA, v16i8:$vB, v16i8:$vC)),
  1001. (VSEL $vC, $vB, $vA)>;
  1002. def : Pat<(v8i16 (vselect v8i16:$vA, v8i16:$vB, v8i16:$vC)),
  1003. (VSEL $vC, $vB, $vA)>;
  1004. def : Pat<(v4i32 (vselect v4i32:$vA, v4i32:$vB, v4i32:$vC)),
  1005. (VSEL $vC, $vB, $vA)>;
  1006. def : Pat<(v2i64 (vselect v2i64:$vA, v2i64:$vB, v2i64:$vC)),
  1007. (VSEL $vC, $vB, $vA)>;
  1008. def : Pat<(v4f32 (vselect v4i32:$vA, v4f32:$vB, v4f32:$vC)),
  1009. (VSEL $vC, $vB, $vA)>;
  1010. def : Pat<(v2f64 (vselect v2i64:$vA, v2f64:$vB, v2f64:$vC)),
  1011. (VSEL $vC, $vB, $vA)>;
  1012. // Vector Integer Average Instructions
  1013. def : Pat<(v4i32 (sra (sub v4i32:$vA, (vnot_ppc v4i32:$vB)),
  1014. (v4i32 (immEQOneV)))), (v4i32 (VAVGSW $vA, $vB))>;
  1015. def : Pat<(v8i16 (sra (sub v8i16:$vA, (v8i16 (bitconvert(vnot_ppc v4i32:$vB)))),
  1016. (v8i16 (immEQOneV)))), (v8i16 (VAVGSH $vA, $vB))>;
  1017. def : Pat<(v16i8 (sra (sub v16i8:$vA, (v16i8 (bitconvert(vnot_ppc v4i32:$vB)))),
  1018. (v16i8 (immEQOneV)))), (v16i8 (VAVGSB $vA, $vB))>;
  1019. def : Pat<(v4i32 (srl (sub v4i32:$vA, (vnot_ppc v4i32:$vB)),
  1020. (v4i32 (immEQOneV)))), (v4i32 (VAVGUW $vA, $vB))>;
  1021. def : Pat<(v8i16 (srl (sub v8i16:$vA, (v8i16 (bitconvert(vnot_ppc v4i32:$vB)))),
  1022. (v8i16 (immEQOneV)))), (v8i16 (VAVGUH $vA, $vB))>;
  1023. def : Pat<(v16i8 (srl (sub v16i8:$vA, (v16i8 (bitconvert(vnot_ppc v4i32:$vB)))),
  1024. (v16i8 (immEQOneV)))), (v16i8 (VAVGUB $vA, $vB))>;
  1025. } // end HasAltivec
  1026. def HasP8Altivec : Predicate<"Subtarget->hasP8Altivec()">;
  1027. def HasP8Crypto : Predicate<"Subtarget->hasP8Crypto()">;
  1028. let Predicates = [HasP8Altivec] in {
  1029. let isCommutable = 1 in {
  1030. def VMULESW : VX1_Int_Ty2<904, "vmulesw", int_ppc_altivec_vmulesw,
  1031. v2i64, v4i32>;
  1032. def VMULEUW : VX1_Int_Ty2<648, "vmuleuw", int_ppc_altivec_vmuleuw,
  1033. v2i64, v4i32>;
  1034. def VMULOSW : VX1_Int_Ty2<392, "vmulosw", int_ppc_altivec_vmulosw,
  1035. v2i64, v4i32>;
  1036. def VMULOUW : VX1_Int_Ty2<136, "vmulouw", int_ppc_altivec_vmulouw,
  1037. v2i64, v4i32>;
  1038. def VMULUWM : VXForm_1<137, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1039. "vmuluwm $vD, $vA, $vB", IIC_VecGeneral,
  1040. [(set v4i32:$vD, (mul v4i32:$vA, v4i32:$vB))]>;
  1041. def VMAXSD : VX1_Int_Ty<450, "vmaxsd", int_ppc_altivec_vmaxsd, v2i64>;
  1042. def VMAXUD : VX1_Int_Ty<194, "vmaxud", int_ppc_altivec_vmaxud, v2i64>;
  1043. def VMINSD : VX1_Int_Ty<962, "vminsd", int_ppc_altivec_vminsd, v2i64>;
  1044. def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>;
  1045. } // isCommutable
  1046. // Vector merge
  1047. def VMRGEW : VXForm_1<1932, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1048. "vmrgew $vD, $vA, $vB", IIC_VecFP,
  1049. [(set v16i8:$vD,
  1050. (v16i8 (vmrgew_shuffle v16i8:$vA, v16i8:$vB)))]>;
  1051. def VMRGOW : VXForm_1<1676, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1052. "vmrgow $vD, $vA, $vB", IIC_VecFP,
  1053. [(set v16i8:$vD,
  1054. (v16i8 (vmrgow_shuffle v16i8:$vA, v16i8:$vB)))]>;
  1055. // Match vmrgew(x,x) and vmrgow(x,x)
  1056. def:Pat<(vmrgew_unary_shuffle v16i8:$vA, undef),
  1057. (VMRGEW $vA, $vA)>;
  1058. def:Pat<(vmrgow_unary_shuffle v16i8:$vA, undef),
  1059. (VMRGOW $vA, $vA)>;
  1060. // Match vmrgew(y,x) and vmrgow(y,x), i.e., swapped operands. These fragments
  1061. // are matched for little-endian, where the inputs must be swapped for correct
  1062. // semantics.w
  1063. def:Pat<(vmrgew_swapped_shuffle v16i8:$vA, v16i8:$vB),
  1064. (VMRGEW $vB, $vA)>;
  1065. def:Pat<(vmrgow_swapped_shuffle v16i8:$vA, v16i8:$vB),
  1066. (VMRGOW $vB, $vA)>;
  1067. // Vector rotates.
  1068. def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>;
  1069. def : Pat<(v2i64 (rotl v2i64:$vA, v2i64:$vB)),
  1070. (v2i64 (VRLD v2i64:$vA, v2i64:$vB))>;
  1071. // Vector shifts
  1072. def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1073. "vsld $vD, $vA, $vB", IIC_VecGeneral, []>;
  1074. def VSRD : VXForm_1<1732, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1075. "vsrd $vD, $vA, $vB", IIC_VecGeneral, []>;
  1076. def VSRAD : VXForm_1<964, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1077. "vsrad $vD, $vA, $vB", IIC_VecGeneral, []>;
  1078. def : Pat<(v2i64 (shl v2i64:$vA, v2i64:$vB)),
  1079. (v2i64 (VSLD $vA, $vB))>;
  1080. def : Pat<(v2i64 (PPCshl v2i64:$vA, v2i64:$vB)),
  1081. (v2i64 (VSLD $vA, $vB))>;
  1082. def : Pat<(v2i64 (srl v2i64:$vA, v2i64:$vB)),
  1083. (v2i64 (VSRD $vA, $vB))>;
  1084. def : Pat<(v2i64 (PPCsrl v2i64:$vA, v2i64:$vB)),
  1085. (v2i64 (VSRD $vA, $vB))>;
  1086. def : Pat<(v2i64 (sra v2i64:$vA, v2i64:$vB)),
  1087. (v2i64 (VSRAD $vA, $vB))>;
  1088. def : Pat<(v2i64 (PPCsra v2i64:$vA, v2i64:$vB)),
  1089. (v2i64 (VSRAD $vA, $vB))>;
  1090. // Vector Integer Arithmetic Instructions
  1091. let isCommutable = 1 in {
  1092. def VADDUDM : VXForm_1<192, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1093. "vaddudm $vD, $vA, $vB", IIC_VecGeneral,
  1094. [(set v2i64:$vD, (add v2i64:$vA, v2i64:$vB))]>;
  1095. def VADDUQM : VXForm_1<256, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1096. "vadduqm $vD, $vA, $vB", IIC_VecGeneral,
  1097. [(set v1i128:$vD, (add v1i128:$vA, v1i128:$vB))]>;
  1098. } // isCommutable
  1099. // Vector Quadword Add
  1100. def VADDEUQM : VA1a_Int_Ty<60, "vaddeuqm", int_ppc_altivec_vaddeuqm, v1i128>;
  1101. def VADDCUQ : VX1_Int_Ty<320, "vaddcuq", int_ppc_altivec_vaddcuq, v1i128>;
  1102. def VADDECUQ : VA1a_Int_Ty<61, "vaddecuq", int_ppc_altivec_vaddecuq, v1i128>;
  1103. // Vector Doubleword Subtract
  1104. def VSUBUDM : VXForm_1<1216, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1105. "vsubudm $vD, $vA, $vB", IIC_VecGeneral,
  1106. [(set v2i64:$vD, (sub v2i64:$vA, v2i64:$vB))]>;
  1107. // Vector Quadword Subtract
  1108. def VSUBUQM : VXForm_1<1280, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1109. "vsubuqm $vD, $vA, $vB", IIC_VecGeneral,
  1110. [(set v1i128:$vD, (sub v1i128:$vA, v1i128:$vB))]>;
  1111. def VSUBEUQM : VA1a_Int_Ty<62, "vsubeuqm", int_ppc_altivec_vsubeuqm, v1i128>;
  1112. def VSUBCUQ : VX1_Int_Ty<1344, "vsubcuq", int_ppc_altivec_vsubcuq, v1i128>;
  1113. def VSUBECUQ : VA1a_Int_Ty<63, "vsubecuq", int_ppc_altivec_vsubecuq, v1i128>;
  1114. // Count Leading Zeros
  1115. def VCLZB : VXForm_2<1794, (outs vrrc:$vD), (ins vrrc:$vB),
  1116. "vclzb $vD, $vB", IIC_VecGeneral,
  1117. [(set v16i8:$vD, (ctlz v16i8:$vB))]>;
  1118. def VCLZH : VXForm_2<1858, (outs vrrc:$vD), (ins vrrc:$vB),
  1119. "vclzh $vD, $vB", IIC_VecGeneral,
  1120. [(set v8i16:$vD, (ctlz v8i16:$vB))]>;
  1121. def VCLZW : VXForm_2<1922, (outs vrrc:$vD), (ins vrrc:$vB),
  1122. "vclzw $vD, $vB", IIC_VecGeneral,
  1123. [(set v4i32:$vD, (ctlz v4i32:$vB))]>;
  1124. def VCLZD : VXForm_2<1986, (outs vrrc:$vD), (ins vrrc:$vB),
  1125. "vclzd $vD, $vB", IIC_VecGeneral,
  1126. [(set v2i64:$vD, (ctlz v2i64:$vB))]>;
  1127. // Population Count
  1128. def VPOPCNTB : VXForm_2<1795, (outs vrrc:$vD), (ins vrrc:$vB),
  1129. "vpopcntb $vD, $vB", IIC_VecGeneral,
  1130. [(set v16i8:$vD, (ctpop v16i8:$vB))]>;
  1131. def VPOPCNTH : VXForm_2<1859, (outs vrrc:$vD), (ins vrrc:$vB),
  1132. "vpopcnth $vD, $vB", IIC_VecGeneral,
  1133. [(set v8i16:$vD, (ctpop v8i16:$vB))]>;
  1134. def VPOPCNTW : VXForm_2<1923, (outs vrrc:$vD), (ins vrrc:$vB),
  1135. "vpopcntw $vD, $vB", IIC_VecGeneral,
  1136. [(set v4i32:$vD, (ctpop v4i32:$vB))]>;
  1137. def VPOPCNTD : VXForm_2<1987, (outs vrrc:$vD), (ins vrrc:$vB),
  1138. "vpopcntd $vD, $vB", IIC_VecGeneral,
  1139. [(set v2i64:$vD, (ctpop v2i64:$vB))]>;
  1140. let isCommutable = 1 in {
  1141. // FIXME: Use AddedComplexity > 400 to ensure these patterns match before the
  1142. // VSX equivalents. We need to fix this up at some point. Two possible
  1143. // solutions for this problem:
  1144. // 1. Disable Altivec patterns that compete with VSX patterns using the
  1145. // !HasVSX predicate. This essentially favours VSX over Altivec, in
  1146. // hopes of reducing register pressure (larger register set using VSX
  1147. // instructions than VMX instructions)
  1148. // 2. Employ a more disciplined use of AddedComplexity, which would provide
  1149. // more fine-grained control than option 1. This would be beneficial
  1150. // if we find situations where Altivec is really preferred over VSX.
  1151. def VEQV : VXForm_1<1668, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1152. "veqv $vD, $vA, $vB", IIC_VecGeneral,
  1153. [(set v4i32:$vD, (vnot_ppc (xor v4i32:$vA, v4i32:$vB)))]>;
  1154. def VNAND : VXForm_1<1412, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1155. "vnand $vD, $vA, $vB", IIC_VecGeneral,
  1156. [(set v4i32:$vD, (vnot_ppc (and v4i32:$vA, v4i32:$vB)))]>;
  1157. } // isCommutable
  1158. def VORC : VXForm_1<1348, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1159. "vorc $vD, $vA, $vB", IIC_VecGeneral,
  1160. [(set v4i32:$vD, (or v4i32:$vA,
  1161. (vnot_ppc v4i32:$vB)))]>;
  1162. // i64 element comparisons.
  1163. def VCMPEQUD : VCMP <199, "vcmpequd $vD, $vA, $vB" , v2i64>;
  1164. def VCMPEQUD_rec : VCMP_rec<199, "vcmpequd. $vD, $vA, $vB", v2i64>;
  1165. def VCMPGTSD : VCMP <967, "vcmpgtsd $vD, $vA, $vB" , v2i64>;
  1166. def VCMPGTSD_rec : VCMP_rec<967, "vcmpgtsd. $vD, $vA, $vB", v2i64>;
  1167. def VCMPGTUD : VCMP <711, "vcmpgtud $vD, $vA, $vB" , v2i64>;
  1168. def VCMPGTUD_rec : VCMP_rec<711, "vcmpgtud. $vD, $vA, $vB", v2i64>;
  1169. // The cryptography instructions that do not require Category:Vector.Crypto
  1170. def VPMSUMB : VX1_Int_Ty<1032, "vpmsumb",
  1171. int_ppc_altivec_crypto_vpmsumb, v16i8>;
  1172. def VPMSUMH : VX1_Int_Ty<1096, "vpmsumh",
  1173. int_ppc_altivec_crypto_vpmsumh, v8i16>;
  1174. def VPMSUMW : VX1_Int_Ty<1160, "vpmsumw",
  1175. int_ppc_altivec_crypto_vpmsumw, v4i32>;
  1176. def VPMSUMD : VX1_Int_Ty<1224, "vpmsumd",
  1177. int_ppc_altivec_crypto_vpmsumd, v2i64>;
  1178. def VPERMXOR : VAForm_1<45, (outs vrrc:$VD), (ins vrrc:$VA, vrrc:$VB, vrrc:$VC),
  1179. "vpermxor $VD, $VA, $VB, $VC", IIC_VecFP, []>;
  1180. // Vector doubleword integer pack and unpack.
  1181. let hasSideEffects = 1 in {
  1182. def VPKSDSS : VX1_Int_Ty2<1486, "vpksdss", int_ppc_altivec_vpksdss,
  1183. v4i32, v2i64>;
  1184. def VPKSDUS : VX1_Int_Ty2<1358, "vpksdus", int_ppc_altivec_vpksdus,
  1185. v4i32, v2i64>;
  1186. def VPKUDUS : VX1_Int_Ty2<1230, "vpkudus", int_ppc_altivec_vpkudus,
  1187. v4i32, v2i64>;
  1188. }
  1189. def VPKUDUM : VXForm_1<1102, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1190. "vpkudum $vD, $vA, $vB", IIC_VecFP,
  1191. [(set v16i8:$vD,
  1192. (vpkudum_shuffle v16i8:$vA, v16i8:$vB))]>;
  1193. def VUPKHSW : VX2_Int_Ty2<1614, "vupkhsw", int_ppc_altivec_vupkhsw,
  1194. v2i64, v4i32>;
  1195. def VUPKLSW : VX2_Int_Ty2<1742, "vupklsw", int_ppc_altivec_vupklsw,
  1196. v2i64, v4i32>;
  1197. // Shuffle patterns for unary and swapped (LE) vector pack modulo.
  1198. def:Pat<(vpkudum_unary_shuffle v16i8:$vA, undef),
  1199. (VPKUDUM $vA, $vA)>;
  1200. def:Pat<(vpkudum_swapped_shuffle v16i8:$vA, v16i8:$vB),
  1201. (VPKUDUM $vB, $vA)>;
  1202. def VGBBD : VX2_Int_Ty2<1292, "vgbbd", int_ppc_altivec_vgbbd, v16i8, v16i8>;
  1203. def VBPERMQ : VX1_Int_Ty2<1356, "vbpermq", int_ppc_altivec_vbpermq,
  1204. v2i64, v16i8>;
  1205. } // end HasP8Altivec
  1206. // Crypto instructions (from builtins)
  1207. let Predicates = [HasP8Crypto] in {
  1208. def VSHASIGMAW : VXCR_Int_Ty<1666, "vshasigmaw",
  1209. int_ppc_altivec_crypto_vshasigmaw, v4i32>;
  1210. def VSHASIGMAD : VXCR_Int_Ty<1730, "vshasigmad",
  1211. int_ppc_altivec_crypto_vshasigmad, v2i64>;
  1212. def VCIPHER : VX1_Int_Ty<1288, "vcipher", int_ppc_altivec_crypto_vcipher,
  1213. v2i64>;
  1214. def VCIPHERLAST : VX1_Int_Ty<1289, "vcipherlast",
  1215. int_ppc_altivec_crypto_vcipherlast, v2i64>;
  1216. def VNCIPHER : VX1_Int_Ty<1352, "vncipher",
  1217. int_ppc_altivec_crypto_vncipher, v2i64>;
  1218. def VNCIPHERLAST : VX1_Int_Ty<1353, "vncipherlast",
  1219. int_ppc_altivec_crypto_vncipherlast, v2i64>;
  1220. def VSBOX : VXBX_Int_Ty<1480, "vsbox", int_ppc_altivec_crypto_vsbox, v2i64>;
  1221. } // HasP8Crypto
  1222. // The following altivec instructions were introduced in Power ISA 3.0
  1223. def HasP9Altivec : Predicate<"Subtarget->hasP9Altivec()">;
  1224. let Predicates = [HasP9Altivec] in {
  1225. // Vector Multiply-Sum
  1226. def VMSUMUDM : VA1a_Int_Ty3<35, "vmsumudm", int_ppc_altivec_vmsumudm,
  1227. v1i128, v2i64, v1i128>;
  1228. // i8 element comparisons.
  1229. def VCMPNEB : VCMP < 7, "vcmpneb $vD, $vA, $vB" , v16i8>;
  1230. def VCMPNEB_rec : VCMP_rec < 7, "vcmpneb. $vD, $vA, $vB" , v16i8>;
  1231. def VCMPNEZB : VCMP <263, "vcmpnezb $vD, $vA, $vB" , v16i8>;
  1232. def VCMPNEZB_rec : VCMP_rec<263, "vcmpnezb. $vD, $vA, $vB", v16i8>;
  1233. // i16 element comparisons.
  1234. def VCMPNEH : VCMP < 71, "vcmpneh $vD, $vA, $vB" , v8i16>;
  1235. def VCMPNEH_rec : VCMP_rec< 71, "vcmpneh. $vD, $vA, $vB" , v8i16>;
  1236. def VCMPNEZH : VCMP <327, "vcmpnezh $vD, $vA, $vB" , v8i16>;
  1237. def VCMPNEZH_rec : VCMP_rec<327, "vcmpnezh. $vD, $vA, $vB", v8i16>;
  1238. // i32 element comparisons.
  1239. def VCMPNEW : VCMP <135, "vcmpnew $vD, $vA, $vB" , v4i32>;
  1240. def VCMPNEW_rec : VCMP_rec<135, "vcmpnew. $vD, $vA, $vB" , v4i32>;
  1241. def VCMPNEZW : VCMP <391, "vcmpnezw $vD, $vA, $vB" , v4i32>;
  1242. def VCMPNEZW_rec : VCMP_rec<391, "vcmpnezw. $vD, $vA, $vB", v4i32>;
  1243. // VX-Form: [PO VRT / UIM VRB XO].
  1244. // We use VXForm_1 to implement it, that is, we use "VRA" (5 bit) to represent
  1245. // "/ UIM" (1 + 4 bit)
  1246. class VX1_VT5_UIM5_VB5<bits<11> xo, string opc, list<dag> pattern>
  1247. : VXForm_1<xo, (outs vrrc:$vD), (ins u4imm:$UIMM, vrrc:$vB),
  1248. !strconcat(opc, " $vD, $vB, $UIMM"), IIC_VecGeneral, pattern>;
  1249. class VX1_RT5_RA5_VB5<bits<11> xo, string opc, list<dag> pattern>
  1250. : VXForm_1<xo, (outs g8rc:$rD), (ins g8rc:$rA, vrrc:$vB),
  1251. !strconcat(opc, " $rD, $rA, $vB"), IIC_VecGeneral, pattern>;
  1252. // Vector Extract Unsigned
  1253. def VEXTRACTUB : VX1_VT5_UIM5_VB5<525, "vextractub", []>;
  1254. def VEXTRACTUH : VX1_VT5_UIM5_VB5<589, "vextractuh", []>;
  1255. def VEXTRACTUW : VX1_VT5_UIM5_VB5<653, "vextractuw", []>;
  1256. def VEXTRACTD : VX1_VT5_UIM5_VB5<717, "vextractd" , []>;
  1257. // Vector Extract Unsigned Byte/Halfword/Word Left/Right-Indexed
  1258. let hasSideEffects = 0 in {
  1259. def VEXTUBLX : VX1_RT5_RA5_VB5<1549, "vextublx", []>;
  1260. def VEXTUBRX : VX1_RT5_RA5_VB5<1805, "vextubrx", []>;
  1261. def VEXTUHLX : VX1_RT5_RA5_VB5<1613, "vextuhlx", []>;
  1262. def VEXTUHRX : VX1_RT5_RA5_VB5<1869, "vextuhrx", []>;
  1263. def VEXTUWLX : VX1_RT5_RA5_VB5<1677, "vextuwlx", []>;
  1264. def VEXTUWRX : VX1_RT5_RA5_VB5<1933, "vextuwrx", []>;
  1265. }
  1266. // Vector Insert Element Instructions
  1267. def VINSERTB : VXForm_1<781, (outs vrrc:$vD),
  1268. (ins vrrc:$vDi, u4imm:$UIM, vrrc:$vB),
  1269. "vinsertb $vD, $vB, $UIM", IIC_VecGeneral,
  1270. [(set v16i8:$vD, (PPCvecinsert v16i8:$vDi, v16i8:$vB,
  1271. imm32SExt16:$UIM))]>,
  1272. RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
  1273. def VINSERTH : VXForm_1<845, (outs vrrc:$vD),
  1274. (ins vrrc:$vDi, u4imm:$UIM, vrrc:$vB),
  1275. "vinserth $vD, $vB, $UIM", IIC_VecGeneral,
  1276. [(set v8i16:$vD, (PPCvecinsert v8i16:$vDi, v8i16:$vB,
  1277. imm32SExt16:$UIM))]>,
  1278. RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
  1279. def VINSERTW : VX1_VT5_UIM5_VB5<909, "vinsertw", []>;
  1280. def VINSERTD : VX1_VT5_UIM5_VB5<973, "vinsertd", []>;
  1281. class VX_VT5_EO5_VB5<bits<11> xo, bits<5> eo, string opc, list<dag> pattern>
  1282. : VXForm_RD5_XO5_RS5<xo, eo, (outs vrrc:$vD), (ins vrrc:$vB),
  1283. !strconcat(opc, " $vD, $vB"), IIC_VecGeneral, pattern>;
  1284. class VX_VT5_EO5_VB5s<bits<11> xo, bits<5> eo, string opc, list<dag> pattern>
  1285. : VXForm_RD5_XO5_RS5<xo, eo, (outs vfrc:$vD), (ins vfrc:$vB),
  1286. !strconcat(opc, " $vD, $vB"), IIC_VecGeneral, pattern>;
  1287. // Vector Count Leading/Trailing Zero LSB. Result is placed into GPR[rD]
  1288. def VCLZLSBB : VXForm_RD5_XO5_RS5<1538, 0, (outs gprc:$rD), (ins vrrc:$vB),
  1289. "vclzlsbb $rD, $vB", IIC_VecGeneral,
  1290. [(set i32:$rD, (int_ppc_altivec_vclzlsbb
  1291. v16i8:$vB))]>;
  1292. def VCTZLSBB : VXForm_RD5_XO5_RS5<1538, 1, (outs gprc:$rD), (ins vrrc:$vB),
  1293. "vctzlsbb $rD, $vB", IIC_VecGeneral,
  1294. [(set i32:$rD, (int_ppc_altivec_vctzlsbb
  1295. v16i8:$vB))]>;
  1296. // Vector Count Trailing Zeros
  1297. def VCTZB : VX_VT5_EO5_VB5<1538, 28, "vctzb",
  1298. [(set v16i8:$vD, (cttz v16i8:$vB))]>;
  1299. def VCTZH : VX_VT5_EO5_VB5<1538, 29, "vctzh",
  1300. [(set v8i16:$vD, (cttz v8i16:$vB))]>;
  1301. def VCTZW : VX_VT5_EO5_VB5<1538, 30, "vctzw",
  1302. [(set v4i32:$vD, (cttz v4i32:$vB))]>;
  1303. def VCTZD : VX_VT5_EO5_VB5<1538, 31, "vctzd",
  1304. [(set v2i64:$vD, (cttz v2i64:$vB))]>;
  1305. // Vector Extend Sign
  1306. def VEXTSB2W : VX_VT5_EO5_VB5<1538, 16, "vextsb2w",
  1307. [(set v4i32:$vD, (int_ppc_altivec_vextsb2w v16i8:$vB))]>;
  1308. def VEXTSH2W : VX_VT5_EO5_VB5<1538, 17, "vextsh2w",
  1309. [(set v4i32:$vD, (int_ppc_altivec_vextsh2w v8i16:$vB))]>;
  1310. def VEXTSB2D : VX_VT5_EO5_VB5<1538, 24, "vextsb2d",
  1311. [(set v2i64:$vD, (int_ppc_altivec_vextsb2d v16i8:$vB))]>;
  1312. def VEXTSH2D : VX_VT5_EO5_VB5<1538, 25, "vextsh2d",
  1313. [(set v2i64:$vD, (int_ppc_altivec_vextsh2d v8i16:$vB))]>;
  1314. def VEXTSW2D : VX_VT5_EO5_VB5<1538, 26, "vextsw2d",
  1315. [(set v2i64:$vD, (int_ppc_altivec_vextsw2d v4i32:$vB))]>;
  1316. let isCodeGenOnly = 1 in {
  1317. def VEXTSB2Ws : VX_VT5_EO5_VB5s<1538, 16, "vextsb2w", []>;
  1318. def VEXTSH2Ws : VX_VT5_EO5_VB5s<1538, 17, "vextsh2w", []>;
  1319. def VEXTSB2Ds : VX_VT5_EO5_VB5s<1538, 24, "vextsb2d", []>;
  1320. def VEXTSH2Ds : VX_VT5_EO5_VB5s<1538, 25, "vextsh2d", []>;
  1321. def VEXTSW2Ds : VX_VT5_EO5_VB5s<1538, 26, "vextsw2d", []>;
  1322. }
  1323. def : Pat<(v4i32 (sext_inreg v4i32:$VRB, v4i8)), (v4i32 (VEXTSB2W $VRB))>;
  1324. def : Pat<(v4i32 (sext_inreg v4i32:$VRB, v4i16)), (v4i32 (VEXTSH2W $VRB))>;
  1325. def : Pat<(v2i64 (sext_inreg v2i64:$VRB, v2i8)), (v2i64 (VEXTSB2D $VRB))>;
  1326. def : Pat<(v2i64 (sext_inreg v2i64:$VRB, v2i16)), (v2i64 (VEXTSH2D $VRB))>;
  1327. def : Pat<(v2i64 (sext_inreg v2i64:$VRB, v2i32)), (v2i64 (VEXTSW2D $VRB))>;
  1328. // Vector Integer Negate
  1329. def VNEGW : VX_VT5_EO5_VB5<1538, 6, "vnegw",
  1330. [(set v4i32:$vD,
  1331. (sub (v4i32 immAllZerosV), v4i32:$vB))]>;
  1332. def VNEGD : VX_VT5_EO5_VB5<1538, 7, "vnegd",
  1333. [(set v2i64:$vD,
  1334. (sub (v2i64 (bitconvert (v4i32 immAllZerosV))),
  1335. v2i64:$vB))]>;
  1336. // Vector Parity Byte
  1337. def VPRTYBW : VX_VT5_EO5_VB5<1538, 8, "vprtybw", [(set v4i32:$vD,
  1338. (int_ppc_altivec_vprtybw v4i32:$vB))]>;
  1339. def VPRTYBD : VX_VT5_EO5_VB5<1538, 9, "vprtybd", [(set v2i64:$vD,
  1340. (int_ppc_altivec_vprtybd v2i64:$vB))]>;
  1341. def VPRTYBQ : VX_VT5_EO5_VB5<1538, 10, "vprtybq", [(set v1i128:$vD,
  1342. (int_ppc_altivec_vprtybq v1i128:$vB))]>;
  1343. // Vector (Bit) Permute (Right-indexed)
  1344. def VBPERMD : VXForm_1<1484, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1345. "vbpermd $vD, $vA, $vB", IIC_VecFP, []>;
  1346. def VPERMR : VAForm_1a<59, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vC),
  1347. "vpermr $vD, $vA, $vB, $vC", IIC_VecFP, []>;
  1348. class VX1_VT5_VA5_VB5<bits<11> xo, string opc, list<dag> pattern>
  1349. : VXForm_1<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1350. !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, pattern>;
  1351. // Vector Rotate Left Mask/Mask-Insert
  1352. def VRLWNM : VX1_VT5_VA5_VB5<389, "vrlwnm",
  1353. [(set v4i32:$vD,
  1354. (int_ppc_altivec_vrlwnm v4i32:$vA,
  1355. v4i32:$vB))]>;
  1356. def VRLWMI : VXForm_1<133, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vDi),
  1357. "vrlwmi $vD, $vA, $vB", IIC_VecFP,
  1358. [(set v4i32:$vD,
  1359. (int_ppc_altivec_vrlwmi v4i32:$vA, v4i32:$vB,
  1360. v4i32:$vDi))]>,
  1361. RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
  1362. def VRLDNM : VX1_VT5_VA5_VB5<453, "vrldnm",
  1363. [(set v2i64:$vD,
  1364. (int_ppc_altivec_vrldnm v2i64:$vA,
  1365. v2i64:$vB))]>;
  1366. def VRLDMI : VXForm_1<197, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, vrrc:$vDi),
  1367. "vrldmi $vD, $vA, $vB", IIC_VecFP,
  1368. [(set v2i64:$vD,
  1369. (int_ppc_altivec_vrldmi v2i64:$vA, v2i64:$vB,
  1370. v2i64:$vDi))]>,
  1371. RegConstraint<"$vDi = $vD">, NoEncode<"$vDi">;
  1372. // Vector Shift Left/Right
  1373. def VSLV : VX1_VT5_VA5_VB5<1860, "vslv",
  1374. [(set v16i8 : $vD, (int_ppc_altivec_vslv v16i8 : $vA, v16i8 : $vB))]>;
  1375. def VSRV : VX1_VT5_VA5_VB5<1796, "vsrv",
  1376. [(set v16i8 : $vD, (int_ppc_altivec_vsrv v16i8 : $vA, v16i8 : $vB))]>;
  1377. // Vector Multiply-by-10 (& Write Carry) Unsigned Quadword
  1378. def VMUL10UQ : VXForm_BX<513, (outs vrrc:$vD), (ins vrrc:$vA),
  1379. "vmul10uq $vD, $vA", IIC_VecFP, []>;
  1380. def VMUL10CUQ : VXForm_BX< 1, (outs vrrc:$vD), (ins vrrc:$vA),
  1381. "vmul10cuq $vD, $vA", IIC_VecFP, []>;
  1382. // Vector Multiply-by-10 Extended (& Write Carry) Unsigned Quadword
  1383. def VMUL10EUQ : VX1_VT5_VA5_VB5<577, "vmul10euq" , []>;
  1384. def VMUL10ECUQ : VX1_VT5_VA5_VB5< 65, "vmul10ecuq", []>;
  1385. // Decimal Integer Format Conversion Instructions
  1386. // [PO VRT EO VRB 1 PS XO], "_o" means CR6 is set.
  1387. class VX_VT5_EO5_VB5_PS1_XO9_o<bits<5> eo, bits<9> xo, string opc,
  1388. list<dag> pattern>
  1389. : VX_RD5_EO5_RS5_PS1_XO9<eo, xo, (outs vrrc:$vD), (ins vrrc:$vB, u1imm:$PS),
  1390. !strconcat(opc, " $vD, $vB, $PS"), IIC_VecFP, pattern> {
  1391. let Defs = [CR6];
  1392. }
  1393. // [PO VRT EO VRB 1 / XO]
  1394. class VX_VT5_EO5_VB5_XO9_o<bits<5> eo, bits<9> xo, string opc,
  1395. list<dag> pattern>
  1396. : VX_RD5_EO5_RS5_PS1_XO9<eo, xo, (outs vrrc:$vD), (ins vrrc:$vB),
  1397. !strconcat(opc, " $vD, $vB"), IIC_VecFP, pattern> {
  1398. let Defs = [CR6];
  1399. let PS = 0;
  1400. }
  1401. // Decimal Convert From/to National/Zoned/Signed-QWord
  1402. def BCDCFN_rec : VX_VT5_EO5_VB5_PS1_XO9_o<7, 385, "bcdcfn." , []>;
  1403. def BCDCFZ_rec : VX_VT5_EO5_VB5_PS1_XO9_o<6, 385, "bcdcfz." , []>;
  1404. def BCDCTN_rec : VX_VT5_EO5_VB5_XO9_o <5, 385, "bcdctn." , []>;
  1405. def BCDCTZ_rec : VX_VT5_EO5_VB5_PS1_XO9_o<4, 385, "bcdctz." , []>;
  1406. def BCDCFSQ_rec : VX_VT5_EO5_VB5_PS1_XO9_o<2, 385, "bcdcfsq.", []>;
  1407. def BCDCTSQ_rec : VX_VT5_EO5_VB5_XO9_o <0, 385, "bcdctsq.", []>;
  1408. // Decimal Copy-Sign/Set-Sign
  1409. let Defs = [CR6] in
  1410. def BCDCPSGN_rec : VX1_VT5_VA5_VB5<833, "bcdcpsgn.", []>;
  1411. def BCDSETSGN_rec : VX_VT5_EO5_VB5_PS1_XO9_o<31, 385, "bcdsetsgn.", []>;
  1412. // [PO VRT VRA VRB 1 PS XO], "_o" means CR6 is set.
  1413. class VX_VT5_VA5_VB5_PS1_XO9_o<bits<9> xo, string opc, list<dag> pattern>
  1414. : VX_RD5_RSp5_PS1_XO9<xo,
  1415. (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB, u1imm:$PS),
  1416. !strconcat(opc, " $vD, $vA, $vB, $PS"), IIC_VecFP, pattern> {
  1417. let Defs = [CR6];
  1418. }
  1419. // [PO VRT VRA VRB 1 / XO]
  1420. class VX_VT5_VA5_VB5_XO9_o<bits<9> xo, string opc, list<dag> pattern>
  1421. : VX_RD5_RSp5_PS1_XO9<xo, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1422. !strconcat(opc, " $vD, $vA, $vB"), IIC_VecFP, pattern> {
  1423. let Defs = [CR6];
  1424. let PS = 0;
  1425. }
  1426. // Decimal Shift/Unsigned-Shift/Shift-and-Round
  1427. def BCDS_rec : VX_VT5_VA5_VB5_PS1_XO9_o<193, "bcds." , []>;
  1428. def BCDUS_rec : VX_VT5_VA5_VB5_XO9_o <129, "bcdus.", []>;
  1429. def BCDSR_rec : VX_VT5_VA5_VB5_PS1_XO9_o<449, "bcdsr.", []>;
  1430. // Decimal (Unsigned) Truncate
  1431. def BCDTRUNC_rec : VX_VT5_VA5_VB5_PS1_XO9_o<257, "bcdtrunc." , []>;
  1432. def BCDUTRUNC_rec : VX_VT5_VA5_VB5_XO9_o <321, "bcdutrunc.", []>;
  1433. // Absolute Difference
  1434. def VABSDUB : VXForm_1<1027, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1435. "vabsdub $vD, $vA, $vB", IIC_VecGeneral,
  1436. [(set v16i8:$vD, (int_ppc_altivec_vabsdub v16i8:$vA, v16i8:$vB))]>;
  1437. def VABSDUH : VXForm_1<1091, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1438. "vabsduh $vD, $vA, $vB", IIC_VecGeneral,
  1439. [(set v8i16:$vD, (int_ppc_altivec_vabsduh v8i16:$vA, v8i16:$vB))]>;
  1440. def VABSDUW : VXForm_1<1155, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
  1441. "vabsduw $vD, $vA, $vB", IIC_VecGeneral,
  1442. [(set v4i32:$vD, (int_ppc_altivec_vabsduw v4i32:$vA, v4i32:$vB))]>;
  1443. } // end HasP9Altivec