123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115 |
- //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "ARMTargetTransformInfo.h"
- #include "ARMSubtarget.h"
- #include "MCTargetDesc/ARMAddressingModes.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/CodeGen/CostTable.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/IntrinsicsARM.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/MC/SubtargetFeature.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "armtti"
- static cl::opt<bool> EnableMaskedLoadStores(
- "enable-arm-maskedldst", cl::Hidden, cl::init(true),
- cl::desc("Enable the generation of masked loads and stores"));
- static cl::opt<bool> DisableLowOverheadLoops(
- "disable-arm-loloops", cl::Hidden, cl::init(false),
- cl::desc("Disable the generation of low-overhead loops"));
- static cl::opt<bool>
- AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
- cl::desc("Enable the generation of WLS loops"));
- extern cl::opt<TailPredication::Mode> EnableTailPredication;
- extern cl::opt<bool> EnableMaskedGatherScatters;
- extern cl::opt<unsigned> MVEMaxSupportedInterleaveFactor;
- /// Convert a vector load intrinsic into a simple llvm load instruction.
- /// This is beneficial when the underlying object being addressed comes
- /// from a constant, since we get constant-folding for free.
- static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
- InstCombiner::BuilderTy &Builder) {
- auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
- if (!IntrAlign)
- return nullptr;
- unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
- ? MemAlign
- : IntrAlign->getLimitedValue();
- if (!isPowerOf2_32(Alignment))
- return nullptr;
- auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
- PointerType::get(II.getType(), 0));
- return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
- }
- bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
- const Function *Callee) const {
- const TargetMachine &TM = getTLI()->getTargetMachine();
- const FeatureBitset &CallerBits =
- TM.getSubtargetImpl(*Caller)->getFeatureBits();
- const FeatureBitset &CalleeBits =
- TM.getSubtargetImpl(*Callee)->getFeatureBits();
- // To inline a callee, all features not in the allowed list must match exactly.
- bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
- (CalleeBits & ~InlineFeaturesAllowed);
- // For features in the allowed list, the callee's features must be a subset of
- // the callers'.
- bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
- (CalleeBits & InlineFeaturesAllowed);
- return MatchExact && MatchSubset;
- }
- bool ARMTTIImpl::shouldFavorBackedgeIndex(const Loop *L) const {
- if (L->getHeader()->getParent()->hasOptSize())
- return false;
- if (ST->hasMVEIntegerOps())
- return false;
- return ST->isMClass() && ST->isThumb2() && L->getNumBlocks() == 1;
- }
- bool ARMTTIImpl::shouldFavorPostInc() const {
- if (ST->hasMVEIntegerOps())
- return true;
- return false;
- }
- Optional<Instruction *>
- ARMTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
- using namespace PatternMatch;
- Intrinsic::ID IID = II.getIntrinsicID();
- switch (IID) {
- default:
- break;
- case Intrinsic::arm_neon_vld1: {
- Align MemAlign =
- getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
- &IC.getAssumptionCache(), &IC.getDominatorTree());
- if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
- return IC.replaceInstUsesWith(II, V);
- }
- break;
- }
- case Intrinsic::arm_neon_vld2:
- case Intrinsic::arm_neon_vld3:
- case Intrinsic::arm_neon_vld4:
- case Intrinsic::arm_neon_vld2lane:
- case Intrinsic::arm_neon_vld3lane:
- case Intrinsic::arm_neon_vld4lane:
- case Intrinsic::arm_neon_vst1:
- case Intrinsic::arm_neon_vst2:
- case Intrinsic::arm_neon_vst3:
- case Intrinsic::arm_neon_vst4:
- case Intrinsic::arm_neon_vst2lane:
- case Intrinsic::arm_neon_vst3lane:
- case Intrinsic::arm_neon_vst4lane: {
- Align MemAlign =
- getKnownAlignment(II.getArgOperand(0), IC.getDataLayout(), &II,
- &IC.getAssumptionCache(), &IC.getDominatorTree());
- unsigned AlignArg = II.getNumArgOperands() - 1;
- Value *AlignArgOp = II.getArgOperand(AlignArg);
- MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
- if (Align && *Align < MemAlign) {
- return IC.replaceOperand(
- II, AlignArg,
- ConstantInt::get(Type::getInt32Ty(II.getContext()), MemAlign.value(),
- false));
- }
- break;
- }
- case Intrinsic::arm_mve_pred_i2v: {
- Value *Arg = II.getArgOperand(0);
- Value *ArgArg;
- if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
- PatternMatch::m_Value(ArgArg))) &&
- II.getType() == ArgArg->getType()) {
- return IC.replaceInstUsesWith(II, ArgArg);
- }
- Constant *XorMask;
- if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
- PatternMatch::m_Value(ArgArg)),
- PatternMatch::m_Constant(XorMask))) &&
- II.getType() == ArgArg->getType()) {
- if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
- if (CI->getValue().trunc(16).isAllOnesValue()) {
- auto TrueVector = IC.Builder.CreateVectorSplat(
- cast<FixedVectorType>(II.getType())->getNumElements(),
- IC.Builder.getTrue());
- return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
- }
- }
- }
- KnownBits ScalarKnown(32);
- if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
- ScalarKnown, 0)) {
- return &II;
- }
- break;
- }
- case Intrinsic::arm_mve_pred_v2i: {
- Value *Arg = II.getArgOperand(0);
- Value *ArgArg;
- if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
- PatternMatch::m_Value(ArgArg)))) {
- return IC.replaceInstUsesWith(II, ArgArg);
- }
- if (!II.getMetadata(LLVMContext::MD_range)) {
- Type *IntTy32 = Type::getInt32Ty(II.getContext());
- Metadata *M[] = {
- ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0)),
- ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0xFFFF))};
- II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
- return &II;
- }
- break;
- }
- case Intrinsic::arm_mve_vadc:
- case Intrinsic::arm_mve_vadc_predicated: {
- unsigned CarryOp =
- (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
- assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
- "Bad type for intrinsic!");
- KnownBits CarryKnown(32);
- if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
- CarryKnown)) {
- return &II;
- }
- break;
- }
- case Intrinsic::arm_mve_vmldava: {
- Instruction *I = cast<Instruction>(&II);
- if (I->hasOneUse()) {
- auto *User = cast<Instruction>(*I->user_begin());
- Value *OpZ;
- if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
- match(I->getOperand(3), m_Zero())) {
- Value *OpX = I->getOperand(4);
- Value *OpY = I->getOperand(5);
- Type *OpTy = OpX->getType();
- IC.Builder.SetInsertPoint(User);
- Value *V =
- IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
- {I->getOperand(0), I->getOperand(1),
- I->getOperand(2), OpZ, OpX, OpY});
- IC.replaceInstUsesWith(*User, V);
- return IC.eraseInstFromFunction(*User);
- }
- }
- return None;
- }
- }
- return None;
- }
- int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind) {
- assert(Ty->isIntegerTy());
- unsigned Bits = Ty->getPrimitiveSizeInBits();
- if (Bits == 0 || Imm.getActiveBits() >= 64)
- return 4;
- int64_t SImmVal = Imm.getSExtValue();
- uint64_t ZImmVal = Imm.getZExtValue();
- if (!ST->isThumb()) {
- if ((SImmVal >= 0 && SImmVal < 65536) ||
- (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
- (ARM_AM::getSOImmVal(~ZImmVal) != -1))
- return 1;
- return ST->hasV6T2Ops() ? 2 : 3;
- }
- if (ST->isThumb2()) {
- if ((SImmVal >= 0 && SImmVal < 65536) ||
- (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
- (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
- return 1;
- return ST->hasV6T2Ops() ? 2 : 3;
- }
- // Thumb1, any i8 imm cost 1.
- if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
- return 1;
- if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
- return 2;
- // Load from constantpool.
- return 3;
- }
- // Constants smaller than 256 fit in the immediate field of
- // Thumb1 instructions so we return a zero cost and 1 otherwise.
- int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty) {
- if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
- return 0;
- return 1;
- }
- // Checks whether Inst is part of a min(max()) or max(min()) pattern
- // that will match to an SSAT instruction
- static bool isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
- Value *LHS, *RHS;
- ConstantInt *C;
- SelectPatternFlavor InstSPF = matchSelectPattern(Inst, LHS, RHS).Flavor;
- if (InstSPF == SPF_SMAX &&
- PatternMatch::match(RHS, PatternMatch::m_ConstantInt(C)) &&
- C->getValue() == Imm && Imm.isNegative() && (-Imm).isPowerOf2()) {
- auto isSSatMin = [&](Value *MinInst) {
- if (isa<SelectInst>(MinInst)) {
- Value *MinLHS, *MinRHS;
- ConstantInt *MinC;
- SelectPatternFlavor MinSPF =
- matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
- if (MinSPF == SPF_SMIN &&
- PatternMatch::match(MinRHS, PatternMatch::m_ConstantInt(MinC)) &&
- MinC->getValue() == ((-Imm) - 1))
- return true;
- }
- return false;
- };
- if (isSSatMin(Inst->getOperand(1)) ||
- (Inst->hasNUses(2) && (isSSatMin(*Inst->user_begin()) ||
- isSSatMin(*(++Inst->user_begin())))))
- return true;
- }
- return false;
- }
- int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
- const APInt &Imm, Type *Ty,
- TTI::TargetCostKind CostKind,
- Instruction *Inst) {
- // Division by a constant can be turned into multiplication, but only if we
- // know it's constant. So it's not so much that the immediate is cheap (it's
- // not), but that the alternative is worse.
- // FIXME: this is probably unneeded with GlobalISel.
- if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
- Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
- Idx == 1)
- return 0;
- if (Opcode == Instruction::And) {
- // UXTB/UXTH
- if (Imm == 255 || Imm == 65535)
- return 0;
- // Conversion to BIC is free, and means we can use ~Imm instead.
- return std::min(getIntImmCost(Imm, Ty, CostKind),
- getIntImmCost(~Imm, Ty, CostKind));
- }
- if (Opcode == Instruction::Add)
- // Conversion to SUB is free, and means we can use -Imm instead.
- return std::min(getIntImmCost(Imm, Ty, CostKind),
- getIntImmCost(-Imm, Ty, CostKind));
- if (Opcode == Instruction::ICmp && Imm.isNegative() &&
- Ty->getIntegerBitWidth() == 32) {
- int64_t NegImm = -Imm.getSExtValue();
- if (ST->isThumb2() && NegImm < 1<<12)
- // icmp X, #-C -> cmn X, #C
- return 0;
- if (ST->isThumb() && NegImm < 1<<8)
- // icmp X, #-C -> adds X, #C
- return 0;
- }
- // xor a, -1 can always be folded to MVN
- if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
- return 0;
- // Ensures negative constant of min(max()) or max(min()) patterns that
- // match to SSAT instructions don't get hoisted
- if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
- Ty->getIntegerBitWidth() <= 32) {
- if (isSSATMinMaxPattern(Inst, Imm) ||
- (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
- isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
- return 0;
- }
- return getIntImmCost(Imm, Ty, CostKind);
- }
- int ARMTTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
- if (CostKind == TTI::TCK_RecipThroughput &&
- (ST->hasNEON() || ST->hasMVEIntegerOps())) {
- // FIXME: The vectorizer is highly sensistive to the cost of these
- // instructions, which suggests that it may be using the costs incorrectly.
- // But, for now, just make them free to avoid performance regressions for
- // vector targets.
- return 0;
- }
- return BaseT::getCFInstrCost(Opcode, CostKind);
- }
- int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
- TTI::CastContextHint CCH,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- assert(ISD && "Invalid opcode");
- // TODO: Allow non-throughput costs that aren't binary.
- auto AdjustCost = [&CostKind](int Cost) {
- if (CostKind != TTI::TCK_RecipThroughput)
- return Cost == 0 ? 0 : 1;
- return Cost;
- };
- auto IsLegalFPType = [this](EVT VT) {
- EVT EltVT = VT.getScalarType();
- return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
- (EltVT == MVT::f64 && ST->hasFP64()) ||
- (EltVT == MVT::f16 && ST->hasFullFP16());
- };
- EVT SrcTy = TLI->getValueType(DL, Src);
- EVT DstTy = TLI->getValueType(DL, Dst);
- if (!SrcTy.isSimple() || !DstTy.isSimple())
- return AdjustCost(
- BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
- // Extending masked load/Truncating masked stores is expensive because we
- // currently don't split them. This means that we'll likely end up
- // loading/storing each element individually (hence the high cost).
- if ((ST->hasMVEIntegerOps() &&
- (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
- Opcode == Instruction::SExt)) ||
- (ST->hasMVEFloatOps() &&
- (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
- IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
- if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
- return 2 * DstTy.getVectorNumElements() * ST->getMVEVectorCostFactor();
- // The extend of other kinds of load is free
- if (CCH == TTI::CastContextHint::Normal ||
- CCH == TTI::CastContextHint::Masked) {
- static const TypeConversionCostTblEntry LoadConversionTbl[] = {
- {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
- {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
- {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
- {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
- {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
- {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
- {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
- {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
- {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
- {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
- {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
- {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
- };
- if (const auto *Entry = ConvertCostTableLookup(
- LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
- {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
- {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
- {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
- {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
- {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
- {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
- // The following extend from a legal type to an illegal type, so need to
- // split the load. This introduced an extra load operation, but the
- // extend is still "free".
- {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
- {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
- {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
- {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
- {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
- {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
- };
- if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVELoadConversionTbl, ISD,
- DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
- }
- static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
- // FPExtends are similar but also require the VCVT instructions.
- {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
- {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
- };
- if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
- DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
- }
- // The truncate of a store is free. This is the mirror of extends above.
- static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
- {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
- {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
- {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
- {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
- {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
- {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
- {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
- };
- if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
- SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
- return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
- }
- static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
- {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
- {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
- };
- if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
- if (const auto *Entry =
- ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
- SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
- return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
- }
- }
- // NEON vector operations that can extend their inputs.
- if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
- I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
- static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
- // vaddl
- { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 },
- // vsubl
- { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 },
- // vmull
- { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 },
- // vshll
- { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
- { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 },
- };
- auto *User = cast<Instruction>(*I->user_begin());
- int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
- if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT())) {
- return AdjustCost(Entry->Cost);
- }
- }
- // Single to/from double precision conversions.
- if (Src->isVectorTy() && ST->hasNEON() &&
- ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
- DstTy.getScalarType() == MVT::f32) ||
- (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
- DstTy.getScalarType() == MVT::f64))) {
- static const CostTblEntry NEONFltDblTbl[] = {
- // Vector fptrunc/fpext conversions.
- {ISD::FP_ROUND, MVT::v2f64, 2},
- {ISD::FP_EXTEND, MVT::v2f32, 2},
- {ISD::FP_EXTEND, MVT::v4f32, 4}};
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
- if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
- return AdjustCost(LT.first * Entry->Cost);
- }
- // Some arithmetic, load and store operations have specific instructions
- // to cast up/down their types automatically at no extra cost.
- // TODO: Get these tables to know at least what the related operations are.
- static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
- { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
- { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
- // The number of vmovl instructions for the extension.
- { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
- { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
- { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
- { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
- { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
- { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
- { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
- { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
- { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
- // Operations that we legalize using splitting.
- { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
- { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
- // Vector float <-> i32 conversions.
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
- { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
- { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
- { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
- { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
- { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
- { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
- { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
- { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
- { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
- { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
- { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
- { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
- { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
- { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
- { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
- { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
- { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
- { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
- // Vector double <-> i32 conversions.
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
- { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
- { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
- { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
- { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
- { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
- { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
- { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
- };
- if (SrcTy.isVector() && ST->hasNEON()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- // Scalar float to integer conversions.
- static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
- { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
- { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
- { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
- { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
- { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
- { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
- { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
- { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
- };
- if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- // Scalar integer to float conversions.
- static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
- { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
- { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
- { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
- { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
- { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
- };
- if (SrcTy.isInteger() && ST->hasNEON()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
- ISD, DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
- // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
- // are linearised so take more.
- static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
- { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
- { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
- { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
- { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
- };
- if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
- if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
- ISD, DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost * ST->getMVEVectorCostFactor());
- }
- if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
- // As general rule, fp converts that were not matched above are scalarized
- // and cost 1 vcvt for each lane, so long as the instruction is available.
- // If not it will become a series of function calls.
- const int CallCost = getCallInstrCost(nullptr, Dst, {Src}, CostKind);
- int Lanes = 1;
- if (SrcTy.isFixedLengthVector())
- Lanes = SrcTy.getVectorNumElements();
- if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
- return Lanes;
- else
- return Lanes * CallCost;
- }
- if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
- SrcTy.isFixedLengthVector()) {
- // Treat a truncate with larger than legal source (128bits for MVE) as
- // expensive, 2 instructions per lane.
- if ((SrcTy.getScalarType() == MVT::i8 ||
- SrcTy.getScalarType() == MVT::i16 ||
- SrcTy.getScalarType() == MVT::i32) &&
- SrcTy.getSizeInBits() > 128 &&
- SrcTy.getSizeInBits() > DstTy.getSizeInBits())
- return SrcTy.getVectorNumElements() * 2;
- }
- // Scalar integer conversion costs.
- static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
- // i16 -> i64 requires two dependent operations.
- { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
- // Truncates on i64 are assumed to be free.
- { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
- { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
- { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
- { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
- };
- if (SrcTy.isInteger()) {
- if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
- DstTy.getSimpleVT(),
- SrcTy.getSimpleVT()))
- return AdjustCost(Entry->Cost);
- }
- int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
- ? ST->getMVEVectorCostFactor()
- : 1;
- return AdjustCost(
- BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
- }
- int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
- unsigned Index) {
- // Penalize inserting into an D-subregister. We end up with a three times
- // lower estimated throughput on swift.
- if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
- ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
- return 3;
- if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
- Opcode == Instruction::ExtractElement)) {
- // Cross-class copies are expensive on many microarchitectures,
- // so assume they are expensive by default.
- if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
- return 3;
- // Even if it's not a cross class copy, this likely leads to mixing
- // of NEON and VFP code and should be therefore penalized.
- if (ValTy->isVectorTy() &&
- ValTy->getScalarSizeInBits() <= 32)
- return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
- }
- if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
- Opcode == Instruction::ExtractElement)) {
- // We say MVE moves costs at least the MVEVectorCostFactor, even though
- // they are scalar instructions. This helps prevent mixing scalar and
- // vector, to prevent vectorising where we end up just scalarising the
- // result anyway.
- return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
- ST->getMVEVectorCostFactor()) *
- cast<FixedVectorType>(ValTy)->getNumElements() / 2;
- }
- return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
- }
- int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
- CmpInst::Predicate VecPred,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- // Thumb scalar code size cost for select.
- if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
- ST->isThumb() && !ValTy->isVectorTy()) {
- // Assume expensive structs.
- if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
- return TTI::TCC_Expensive;
- // Select costs can vary because they:
- // - may require one or more conditional mov (including an IT),
- // - can't operate directly on immediates,
- // - require live flags, which we can't copy around easily.
- int Cost = TLI->getTypeLegalizationCost(DL, ValTy).first;
- // Possible IT instruction for Thumb2, or more for Thumb1.
- ++Cost;
- // i1 values may need rematerialising by using mov immediates and/or
- // flag setting instructions.
- if (ValTy->isIntegerTy(1))
- ++Cost;
- return Cost;
- }
- // On NEON a vector select gets lowered to vbsl.
- if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
- // Lowering of some vector selects is currently far from perfect.
- static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
- { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
- { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
- { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
- };
- EVT SelCondTy = TLI->getValueType(DL, CondTy);
- EVT SelValTy = TLI->getValueType(DL, ValTy);
- if (SelCondTy.isSimple() && SelValTy.isSimple()) {
- if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
- SelCondTy.getSimpleVT(),
- SelValTy.getSimpleVT()))
- return Entry->Cost;
- }
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
- return LT.first;
- }
- // Default to cheap (throughput/size of 1 instruction) but adjust throughput
- // for "multiple beats" potentially needed by MVE instructions.
- int BaseCost = 1;
- if (CostKind != TTI::TCK_CodeSize && ST->hasMVEIntegerOps() &&
- ValTy->isVectorTy())
- BaseCost = ST->getMVEVectorCostFactor();
- return BaseCost *
- BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
- }
- int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
- const SCEV *Ptr) {
- // Address computations in vectorized code with non-consecutive addresses will
- // likely result in more instructions compared to scalar code where the
- // computation can more often be merged into the index mode. The resulting
- // extra micro-ops can significantly decrease throughput.
- unsigned NumVectorInstToHideOverhead = 10;
- int MaxMergeDistance = 64;
- if (ST->hasNEON()) {
- if (Ty->isVectorTy() && SE &&
- !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
- return NumVectorInstToHideOverhead;
- // In many cases the address computation is not merged into the instruction
- // addressing mode.
- return 1;
- }
- return BaseT::getAddressComputationCost(Ty, SE, Ptr);
- }
- bool ARMTTIImpl::isProfitableLSRChainElement(Instruction *I) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
- // If a VCTP is part of a chain, it's already profitable and shouldn't be
- // optimized, else LSR may block tail-predication.
- switch (II->getIntrinsicID()) {
- case Intrinsic::arm_mve_vctp8:
- case Intrinsic::arm_mve_vctp16:
- case Intrinsic::arm_mve_vctp32:
- case Intrinsic::arm_mve_vctp64:
- return true;
- default:
- break;
- }
- }
- return false;
- }
- bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
- if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
- return false;
- if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
- // Don't support v2i1 yet.
- if (VecTy->getNumElements() == 2)
- return false;
- // We don't support extending fp types.
- unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
- if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
- return false;
- }
- unsigned EltWidth = DataTy->getScalarSizeInBits();
- return (EltWidth == 32 && Alignment >= 4) ||
- (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
- }
- bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, Align Alignment) {
- if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
- return false;
- // This method is called in 2 places:
- // - from the vectorizer with a scalar type, in which case we need to get
- // this as good as we can with the limited info we have (and rely on the cost
- // model for the rest).
- // - from the masked intrinsic lowering pass with the actual vector type.
- // For MVE, we have a custom lowering pass that will already have custom
- // legalised any gathers that we can to MVE intrinsics, and want to expand all
- // the rest. The pass runs before the masked intrinsic lowering pass, so if we
- // are here, we know we want to expand.
- if (isa<VectorType>(Ty))
- return false;
- unsigned EltWidth = Ty->getScalarSizeInBits();
- return ((EltWidth == 32 && Alignment >= 4) ||
- (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
- }
- /// Given a memcpy/memset/memmove instruction, return the number of memory
- /// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
- /// call is used.
- int ARMTTIImpl::getNumMemOps(const IntrinsicInst *I) const {
- MemOp MOp;
- unsigned DstAddrSpace = ~0u;
- unsigned SrcAddrSpace = ~0u;
- const Function *F = I->getParent()->getParent();
- if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
- ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
- // If 'size' is not a constant, a library call will be generated.
- if (!C)
- return -1;
- const unsigned Size = C->getValue().getZExtValue();
- const Align DstAlign = *MC->getDestAlign();
- const Align SrcAlign = *MC->getSourceAlign();
- MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
- /*IsVolatile*/ false);
- DstAddrSpace = MC->getDestAddressSpace();
- SrcAddrSpace = MC->getSourceAddressSpace();
- }
- else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
- ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
- // If 'size' is not a constant, a library call will be generated.
- if (!C)
- return -1;
- const unsigned Size = C->getValue().getZExtValue();
- const Align DstAlign = *MS->getDestAlign();
- MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
- /*IsZeroMemset*/ false, /*IsVolatile*/ false);
- DstAddrSpace = MS->getDestAddressSpace();
- }
- else
- llvm_unreachable("Expected a memcpy/move or memset!");
- unsigned Limit, Factor = 2;
- switch(I->getIntrinsicID()) {
- case Intrinsic::memcpy:
- Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
- break;
- case Intrinsic::memmove:
- Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
- break;
- case Intrinsic::memset:
- Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
- Factor = 1;
- break;
- default:
- llvm_unreachable("Expected a memcpy/move or memset!");
- }
- // MemOps will be poplulated with a list of data types that needs to be
- // loaded and stored. That's why we multiply the number of elements by 2 to
- // get the cost for this memcpy.
- std::vector<EVT> MemOps;
- if (getTLI()->findOptimalMemOpLowering(
- MemOps, Limit, MOp, DstAddrSpace,
- SrcAddrSpace, F->getAttributes()))
- return MemOps.size() * Factor;
- // If we can't find an optimal memop lowering, return the default cost
- return -1;
- }
- int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
- int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
- // To model the cost of a library call, we assume 1 for the call, and
- // 3 for the argument setup.
- if (NumOps == -1)
- return 4;
- return NumOps;
- }
- int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
- int Index, VectorType *SubTp) {
- if (ST->hasNEON()) {
- if (Kind == TTI::SK_Broadcast) {
- static const CostTblEntry NEONDupTbl[] = {
- // VDUP handles these cases.
- {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
- if (const auto *Entry =
- CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
- return LT.first * Entry->Cost;
- }
- if (Kind == TTI::SK_Reverse) {
- static const CostTblEntry NEONShuffleTbl[] = {
- // Reverse shuffle cost one instruction if we are shuffling within a
- // double word (vrev) or two if we shuffle a quad word (vrev, vext).
- {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
- if (const auto *Entry =
- CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
- return LT.first * Entry->Cost;
- }
- if (Kind == TTI::SK_Select) {
- static const CostTblEntry NEONSelShuffleTbl[] = {
- // Select shuffle cost table for ARM. Cost is the number of
- // instructions
- // required to create the shuffled vector.
- {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
- if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
- ISD::VECTOR_SHUFFLE, LT.second))
- return LT.first * Entry->Cost;
- }
- }
- if (ST->hasMVEIntegerOps()) {
- if (Kind == TTI::SK_Broadcast) {
- static const CostTblEntry MVEDupTbl[] = {
- // VDUP handles these cases.
- {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
- {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
- if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
- LT.second))
- return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
- }
- }
- int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
- ? ST->getMVEVectorCostFactor()
- : 1;
- return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
- }
- int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
- TTI::TargetCostKind CostKind,
- TTI::OperandValueKind Op1Info,
- TTI::OperandValueKind Op2Info,
- TTI::OperandValueProperties Opd1PropInfo,
- TTI::OperandValueProperties Opd2PropInfo,
- ArrayRef<const Value *> Args,
- const Instruction *CxtI) {
- int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
- if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
- // Make operations on i1 relatively expensive as this often involves
- // combining predicates. AND and XOR should be easier to handle with IT
- // blocks.
- switch (ISDOpcode) {
- default:
- break;
- case ISD::AND:
- case ISD::XOR:
- return 2;
- case ISD::OR:
- return 3;
- }
- }
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
- if (ST->hasNEON()) {
- const unsigned FunctionCallDivCost = 20;
- const unsigned ReciprocalDivCost = 10;
- static const CostTblEntry CostTbl[] = {
- // Division.
- // These costs are somewhat random. Choose a cost of 20 to indicate that
- // vectorizing devision (added function call) is going to be very expensive.
- // Double registers types.
- { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
- { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
- { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
- { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
- { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
- { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
- { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
- // Quad register types.
- { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
- { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
- { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
- { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
- { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
- // Multiplication.
- };
- if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
- return LT.first * Entry->Cost;
- int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
- Op2Info,
- Opd1PropInfo, Opd2PropInfo);
- // This is somewhat of a hack. The problem that we are facing is that SROA
- // creates a sequence of shift, and, or instructions to construct values.
- // These sequences are recognized by the ISel and have zero-cost. Not so for
- // the vectorized code. Because we have support for v2i64 but not i64 those
- // sequences look particularly beneficial to vectorize.
- // To work around this we increase the cost of v2i64 operations to make them
- // seem less beneficial.
- if (LT.second == MVT::v2i64 &&
- Op2Info == TargetTransformInfo::OK_UniformConstantValue)
- Cost += 4;
- return Cost;
- }
- // If this operation is a shift on arm/thumb2, it might well be folded into
- // the following instruction, hence having a cost of 0.
- auto LooksLikeAFreeShift = [&]() {
- if (ST->isThumb1Only() || Ty->isVectorTy())
- return false;
- if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
- return false;
- if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
- return false;
- // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
- switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::And:
- case Instruction::Xor:
- case Instruction::Or:
- case Instruction::ICmp:
- return true;
- default:
- return false;
- }
- };
- if (LooksLikeAFreeShift())
- return 0;
- // Default to cheap (throughput/size of 1 instruction) but adjust throughput
- // for "multiple beats" potentially needed by MVE instructions.
- int BaseCost = 1;
- if (CostKind != TTI::TCK_CodeSize && ST->hasMVEIntegerOps() &&
- Ty->isVectorTy())
- BaseCost = ST->getMVEVectorCostFactor();
- // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
- // without treating floats as more expensive that scalars or increasing the
- // costs for custom operations. The results is also multiplied by the
- // MVEVectorCostFactor where appropriate.
- if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
- return LT.first * BaseCost;
- // Else this is expand, assume that we need to scalarize this op.
- if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
- unsigned Num = VTy->getNumElements();
- unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType(),
- CostKind);
- // Return the cost of multiple scalar invocation plus the cost of
- // inserting and extracting the values.
- return BaseT::getScalarizationOverhead(VTy, Args) + Num * Cost;
- }
- return BaseCost;
- }
- int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
- MaybeAlign Alignment, unsigned AddressSpace,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- // TODO: Handle other cost kinds.
- if (CostKind != TTI::TCK_RecipThroughput)
- return 1;
- // Type legalization can't handle structs
- if (TLI->getValueType(DL, Src, true) == MVT::Other)
- return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- if (ST->hasNEON() && Src->isVectorTy() &&
- (Alignment && *Alignment != Align(16)) &&
- cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
- // Unaligned loads/stores are extremely inefficient.
- // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
- return LT.first * 4;
- }
- // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
- // Same for stores.
- if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
- ((Opcode == Instruction::Load && I->hasOneUse() &&
- isa<FPExtInst>(*I->user_begin())) ||
- (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
- FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
- Type *DstTy =
- Opcode == Instruction::Load
- ? (*I->user_begin())->getType()
- : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
- if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
- DstTy->getScalarType()->isFloatTy())
- return ST->getMVEVectorCostFactor();
- }
- int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
- ? ST->getMVEVectorCostFactor()
- : 1;
- return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind, I);
- }
- unsigned ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
- Align Alignment,
- unsigned AddressSpace,
- TTI::TargetCostKind CostKind) {
- if (ST->hasMVEIntegerOps()) {
- if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
- return ST->getMVEVectorCostFactor();
- if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
- return ST->getMVEVectorCostFactor();
- }
- if (!isa<FixedVectorType>(Src))
- return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
- CostKind);
- // Scalar cost, which is currently very high due to the efficiency of the
- // generated code.
- return cast<FixedVectorType>(Src)->getNumElements() * 8;
- }
- int ARMTTIImpl::getInterleavedMemoryOpCost(
- unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
- Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
- bool UseMaskForCond, bool UseMaskForGaps) {
- assert(Factor >= 2 && "Invalid interleave factor");
- assert(isa<VectorType>(VecTy) && "Expect a vector type");
- // vldN/vstN doesn't support vector types of i64/f64 element.
- bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
- if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
- !UseMaskForCond && !UseMaskForGaps) {
- unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
- auto *SubVecTy =
- FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
- // vldN/vstN only support legal vector types of size 64 or 128 in bits.
- // Accesses having vector types that are a multiple of 128 bits can be
- // matched to more than one vldN/vstN instruction.
- int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1;
- if (NumElts % Factor == 0 &&
- TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL))
- return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
- // Some smaller than legal interleaved patterns are cheap as we can make
- // use of the vmovn or vrev patterns to interleave a standard load. This is
- // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
- // promoted differently). The cost of 2 here is then a load and vrev or
- // vmovn.
- if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
- VecTy->isIntOrIntVectorTy() &&
- DL.getTypeSizeInBits(SubVecTy).getFixedSize() <= 64)
- return 2 * BaseCost;
- }
- return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
- Alignment, AddressSpace, CostKind,
- UseMaskForCond, UseMaskForGaps);
- }
- unsigned ARMTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
- const Value *Ptr, bool VariableMask,
- Align Alignment,
- TTI::TargetCostKind CostKind,
- const Instruction *I) {
- using namespace PatternMatch;
- if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
- return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
- Alignment, CostKind, I);
- assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
- auto *VTy = cast<FixedVectorType>(DataTy);
- // TODO: Splitting, once we do that.
- unsigned NumElems = VTy->getNumElements();
- unsigned EltSize = VTy->getScalarSizeInBits();
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, DataTy);
- // For now, it is assumed that for the MVE gather instructions the loads are
- // all effectively serialised. This means the cost is the scalar cost
- // multiplied by the number of elements being loaded. This is possibly very
- // conservative, but even so we still end up vectorising loops because the
- // cost per iteration for many loops is lower than for scalar loops.
- unsigned VectorCost = NumElems * LT.first * ST->getMVEVectorCostFactor();
- // The scalarization cost should be a lot higher. We use the number of vector
- // elements plus the scalarization overhead.
- unsigned ScalarCost =
- NumElems * LT.first + BaseT::getScalarizationOverhead(VTy, {});
- if (EltSize < 8 || Alignment < EltSize / 8)
- return ScalarCost;
- unsigned ExtSize = EltSize;
- // Check whether there's a single user that asks for an extended type
- if (I != nullptr) {
- // Dependent of the caller of this function, a gather instruction will
- // either have opcode Instruction::Load or be a call to the masked_gather
- // intrinsic
- if ((I->getOpcode() == Instruction::Load ||
- match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
- I->hasOneUse()) {
- const User *Us = *I->users().begin();
- if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
- // only allow valid type combinations
- unsigned TypeSize =
- cast<Instruction>(Us)->getType()->getScalarSizeInBits();
- if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
- (TypeSize == 16 && EltSize == 8)) &&
- TypeSize * NumElems == 128) {
- ExtSize = TypeSize;
- }
- }
- }
- // Check whether the input data needs to be truncated
- TruncInst *T;
- if ((I->getOpcode() == Instruction::Store ||
- match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
- (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
- // Only allow valid type combinations
- unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
- if (((EltSize == 16 && TypeSize == 32) ||
- (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
- TypeSize * NumElems == 128)
- ExtSize = TypeSize;
- }
- }
- if (ExtSize * NumElems != 128 || NumElems < 4)
- return ScalarCost;
- // Any (aligned) i32 gather will not need to be scalarised.
- if (ExtSize == 32)
- return VectorCost;
- // For smaller types, we need to ensure that the gep's inputs are correctly
- // extended from a small enough value. Other sizes (including i64) are
- // scalarized for now.
- if (ExtSize != 8 && ExtSize != 16)
- return ScalarCost;
- if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
- Ptr = BC->getOperand(0);
- if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
- if (GEP->getNumOperands() != 2)
- return ScalarCost;
- unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
- // Scale needs to be correct (which is only relevant for i16s).
- if (Scale != 1 && Scale * 8 != ExtSize)
- return ScalarCost;
- // And we need to zext (not sext) the indexes from a small enough type.
- if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
- if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
- return VectorCost;
- }
- return ScalarCost;
- }
- return ScalarCost;
- }
- int ARMTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
- bool IsPairwiseForm,
- TTI::TargetCostKind CostKind) {
- EVT ValVT = TLI->getValueType(DL, ValTy);
- int ISD = TLI->InstructionOpcodeToISD(Opcode);
- if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD)
- return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
- CostKind);
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
- static const CostTblEntry CostTblAdd[]{
- {ISD::ADD, MVT::v16i8, 1},
- {ISD::ADD, MVT::v8i16, 1},
- {ISD::ADD, MVT::v4i32, 1},
- };
- if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
- return Entry->Cost * ST->getMVEVectorCostFactor() * LT.first;
- return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
- CostKind);
- }
- InstructionCost
- ARMTTIImpl::getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
- Type *ResTy, VectorType *ValTy,
- TTI::TargetCostKind CostKind) {
- EVT ValVT = TLI->getValueType(DL, ValTy);
- EVT ResVT = TLI->getValueType(DL, ResTy);
- if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
- std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
- if ((LT.second == MVT::v16i8 && ResVT.getSizeInBits() <= 32) ||
- (LT.second == MVT::v8i16 &&
- ResVT.getSizeInBits() <= (IsMLA ? 64 : 32)) ||
- (LT.second == MVT::v4i32 && ResVT.getSizeInBits() <= 64))
- return ST->getMVEVectorCostFactor() * LT.first;
- }
- return BaseT::getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, ValTy,
- CostKind);
- }
- int ARMTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
- TTI::TargetCostKind CostKind) {
- switch (ICA.getID()) {
- case Intrinsic::get_active_lane_mask:
- // Currently we make a somewhat optimistic assumption that
- // active_lane_mask's are always free. In reality it may be freely folded
- // into a tail predicated loop, expanded into a VCPT or expanded into a lot
- // of add/icmp code. We may need to improve this in the future, but being
- // able to detect if it is free or not involves looking at a lot of other
- // code. We currently assume that the vectorizer inserted these, and knew
- // what it was doing in adding one.
- if (ST->hasMVEIntegerOps())
- return 0;
- break;
- case Intrinsic::sadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::usub_sat: {
- if (!ST->hasMVEIntegerOps())
- break;
- // Get the Return type, either directly of from ICA.ReturnType and ICA.VF.
- Type *VT = ICA.getReturnType();
- if (!VT->isVectorTy() && !ICA.getVectorFactor().isScalar())
- VT = VectorType::get(VT, ICA.getVectorFactor());
- std::pair<int, MVT> LT =
- TLI->getTypeLegalizationCost(DL, VT);
- if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
- LT.second == MVT::v16i8) {
- // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
- // need to extend the type, as it uses shr(qadd(shl, shl)).
- unsigned Instrs = LT.second.getScalarSizeInBits() ==
- ICA.getReturnType()->getScalarSizeInBits()
- ? 1
- : 4;
- return LT.first * ST->getMVEVectorCostFactor() * Instrs;
- }
- break;
- }
- }
- return BaseT::getIntrinsicInstrCost(ICA, CostKind);
- }
- bool ARMTTIImpl::isLoweredToCall(const Function *F) {
- if (!F->isIntrinsic())
- BaseT::isLoweredToCall(F);
- // Assume all Arm-specific intrinsics map to an instruction.
- if (F->getName().startswith("llvm.arm"))
- return false;
- switch (F->getIntrinsicID()) {
- default: break;
- case Intrinsic::powi:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::pow:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- return true;
- case Intrinsic::sqrt:
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::canonicalize:
- case Intrinsic::lround:
- case Intrinsic::llround:
- case Intrinsic::lrint:
- case Intrinsic::llrint:
- if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
- return true;
- if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
- return true;
- // Some operations can be handled by vector instructions and assume
- // unsupported vectors will be expanded into supported scalar ones.
- // TODO Handle scalar operations properly.
- return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
- case Intrinsic::masked_store:
- case Intrinsic::masked_load:
- case Intrinsic::masked_gather:
- case Intrinsic::masked_scatter:
- return !ST->hasMVEIntegerOps();
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::sadd_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::usub_sat:
- return false;
- }
- return BaseT::isLoweredToCall(F);
- }
- bool ARMTTIImpl::maybeLoweredToCall(Instruction &I) {
- unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
- EVT VT = TLI->getValueType(DL, I.getType(), true);
- if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
- return true;
- // Check if an intrinsic will be lowered to a call and assume that any
- // other CallInst will generate a bl.
- if (auto *Call = dyn_cast<CallInst>(&I)) {
- if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
- switch(II->getIntrinsicID()) {
- case Intrinsic::memcpy:
- case Intrinsic::memset:
- case Intrinsic::memmove:
- return getNumMemOps(II) == -1;
- default:
- if (const Function *F = Call->getCalledFunction())
- return isLoweredToCall(F);
- }
- }
- return true;
- }
- // FPv5 provides conversions between integer, double-precision,
- // single-precision, and half-precision formats.
- switch (I.getOpcode()) {
- default:
- break;
- case Instruction::FPToSI:
- case Instruction::FPToUI:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- return !ST->hasFPARMv8Base();
- }
- // FIXME: Unfortunately the approach of checking the Operation Action does
- // not catch all cases of Legalization that use library calls. Our
- // Legalization step categorizes some transformations into library calls as
- // Custom, Expand or even Legal when doing type legalization. So for now
- // we have to special case for instance the SDIV of 64bit integers and the
- // use of floating point emulation.
- if (VT.isInteger() && VT.getSizeInBits() >= 64) {
- switch (ISD) {
- default:
- break;
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- case ISD::SDIVREM:
- case ISD::UDIVREM:
- return true;
- }
- }
- // Assume all other non-float operations are supported.
- if (!VT.isFloatingPoint())
- return false;
- // We'll need a library call to handle most floats when using soft.
- if (TLI->useSoftFloat()) {
- switch (I.getOpcode()) {
- default:
- return true;
- case Instruction::Alloca:
- case Instruction::Load:
- case Instruction::Store:
- case Instruction::Select:
- case Instruction::PHI:
- return false;
- }
- }
- // We'll need a libcall to perform double precision operations on a single
- // precision only FPU.
- if (I.getType()->isDoubleTy() && !ST->hasFP64())
- return true;
- // Likewise for half precision arithmetic.
- if (I.getType()->isHalfTy() && !ST->hasFullFP16())
- return true;
- return false;
- }
- bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
- AssumptionCache &AC,
- TargetLibraryInfo *LibInfo,
- HardwareLoopInfo &HWLoopInfo) {
- // Low-overhead branches are only supported in the 'low-overhead branch'
- // extension of v8.1-m.
- if (!ST->hasLOB() || DisableLowOverheadLoops) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
- return false;
- }
- if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
- return false;
- }
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
- return false;
- }
- const SCEV *TripCountSCEV =
- SE.getAddExpr(BackedgeTakenCount,
- SE.getOne(BackedgeTakenCount->getType()));
- // We need to store the trip count in LR, a 32-bit register.
- if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
- return false;
- }
- // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
- // point in generating a hardware loop if that's going to happen.
- auto IsHardwareLoopIntrinsic = [](Instruction &I) {
- if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
- switch (Call->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::start_loop_iterations:
- case Intrinsic::test_set_loop_iterations:
- case Intrinsic::loop_decrement:
- case Intrinsic::loop_decrement_reg:
- return true;
- }
- }
- return false;
- };
- // Scan the instructions to see if there's any that we know will turn into a
- // call or if this loop is already a low-overhead loop or will become a tail
- // predicated loop.
- bool IsTailPredLoop = false;
- auto ScanLoop = [&](Loop *L) {
- for (auto *BB : L->getBlocks()) {
- for (auto &I : *BB) {
- if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
- isa<InlineAsm>(I)) {
- LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
- return false;
- }
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- IsTailPredLoop |=
- II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
- II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
- }
- }
- return true;
- };
- // Visit inner loops.
- for (auto Inner : *L)
- if (!ScanLoop(Inner))
- return false;
- if (!ScanLoop(L))
- return false;
- // TODO: Check whether the trip count calculation is expensive. If L is the
- // inner loop but we know it has a low trip count, calculating that trip
- // count (in the parent loop) may be detrimental.
- LLVMContext &C = L->getHeader()->getContext();
- HWLoopInfo.CounterInReg = true;
- HWLoopInfo.IsNestingLegal = false;
- HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
- HWLoopInfo.CountType = Type::getInt32Ty(C);
- HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
- return true;
- }
- static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
- // We don't allow icmp's, and because we only look at single block loops,
- // we simply count the icmps, i.e. there should only be 1 for the backedge.
- if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
- return false;
- if (isa<FCmpInst>(&I))
- return false;
- // We could allow extending/narrowing FP loads/stores, but codegen is
- // too inefficient so reject this for now.
- if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
- return false;
- // Extends have to be extending-loads
- if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
- if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
- return false;
- // Truncs have to be narrowing-stores
- if (isa<TruncInst>(&I) )
- if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
- return false;
- return true;
- }
- // To set up a tail-predicated loop, we need to know the total number of
- // elements processed by that loop. Thus, we need to determine the element
- // size and:
- // 1) it should be uniform for all operations in the vector loop, so we
- // e.g. don't want any widening/narrowing operations.
- // 2) it should be smaller than i64s because we don't have vector operations
- // that work on i64s.
- // 3) we don't want elements to be reversed or shuffled, to make sure the
- // tail-predication masks/predicates the right lanes.
- //
- static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
- const DataLayout &DL,
- const LoopAccessInfo *LAI) {
- LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
- // If there are live-out values, it is probably a reduction. We can predicate
- // most reduction operations freely under MVE using a combination of
- // prefer-predicated-reduction-select and inloop reductions. We limit this to
- // floating point and integer reductions, but don't check for operators
- // specifically here. If the value ends up not being a reduction (and so the
- // vectorizer cannot tailfold the loop), we should fall back to standard
- // vectorization automatically.
- SmallVector< Instruction *, 8 > LiveOuts;
- LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
- bool ReductionsDisabled =
- EnableTailPredication == TailPredication::EnabledNoReductions ||
- EnableTailPredication == TailPredication::ForceEnabledNoReductions;
- for (auto *I : LiveOuts) {
- if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
- !I->getType()->isHalfTy()) {
- LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
- "live-out value\n");
- return false;
- }
- if (ReductionsDisabled) {
- LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
- return false;
- }
- }
- // Next, check that all instructions can be tail-predicated.
- PredicatedScalarEvolution PSE = LAI->getPSE();
- SmallVector<Instruction *, 16> LoadStores;
- int ICmpCount = 0;
- for (BasicBlock *BB : L->blocks()) {
- for (Instruction &I : BB->instructionsWithoutDebug()) {
- if (isa<PHINode>(&I))
- continue;
- if (!canTailPredicateInstruction(I, ICmpCount)) {
- LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
- return false;
- }
- Type *T = I.getType();
- if (T->isPointerTy())
- T = T->getPointerElementType();
- if (T->getScalarSizeInBits() > 32) {
- LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
- return false;
- }
- if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
- Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1);
- int64_t NextStride = getPtrStride(PSE, Ptr, L);
- if (NextStride == 1) {
- // TODO: for now only allow consecutive strides of 1. We could support
- // other strides as long as it is uniform, but let's keep it simple
- // for now.
- continue;
- } else if (NextStride == -1 ||
- (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
- (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
- LLVM_DEBUG(dbgs()
- << "Consecutive strides of 2 found, vld2/vstr2 can't "
- "be tail-predicated\n.");
- return false;
- // TODO: don't tail predicate if there is a reversed load?
- } else if (EnableMaskedGatherScatters) {
- // Gather/scatters do allow loading from arbitrary strides, at
- // least if they are loop invariant.
- // TODO: Loop variant strides should in theory work, too, but
- // this requires further testing.
- const SCEV *PtrScev =
- replaceSymbolicStrideSCEV(PSE, llvm::ValueToValueMap(), Ptr);
- if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
- const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
- if (PSE.getSE()->isLoopInvariant(Step, L))
- continue;
- }
- }
- LLVM_DEBUG(dbgs() << "Bad stride found, can't "
- "tail-predicate\n.");
- return false;
- }
- }
- }
- LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
- return true;
- }
- bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
- ScalarEvolution &SE,
- AssumptionCache &AC,
- TargetLibraryInfo *TLI,
- DominatorTree *DT,
- const LoopAccessInfo *LAI) {
- if (!EnableTailPredication) {
- LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
- return false;
- }
- // Creating a predicated vector loop is the first step for generating a
- // tail-predicated hardware loop, for which we need the MVE masked
- // load/stores instructions:
- if (!ST->hasMVEIntegerOps())
- return false;
- // For now, restrict this to single block loops.
- if (L->getNumBlocks() > 1) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
- "loop.\n");
- return false;
- }
- assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
- HardwareLoopInfo HWLoopInfo(L);
- if (!HWLoopInfo.canAnalyze(*LI)) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
- "analyzable.\n");
- return false;
- }
- // This checks if we have the low-overhead branch architecture
- // extension, and if we will create a hardware-loop:
- if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
- "profitable.\n");
- return false;
- }
- if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
- LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
- "a candidate.\n");
- return false;
- }
- return canTailPredicateLoop(L, LI, SE, DL, LAI);
- }
- bool ARMTTIImpl::emitGetActiveLaneMask() const {
- if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
- return false;
- // Intrinsic @llvm.get.active.lane.mask is supported.
- // It is used in the MVETailPredication pass, which requires the number of
- // elements processed by this vector loop to setup the tail-predicated
- // loop.
- return true;
- }
- void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::UnrollingPreferences &UP) {
- // Only currently enable these preferences for M-Class cores.
- if (!ST->isMClass())
- return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
- // Disable loop unrolling for Oz and Os.
- UP.OptSizeThreshold = 0;
- UP.PartialOptSizeThreshold = 0;
- if (L->getHeader()->getParent()->hasOptSize())
- return;
- // Only enable on Thumb-2 targets.
- if (!ST->isThumb2())
- return;
- SmallVector<BasicBlock*, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- LLVM_DEBUG(dbgs() << "Loop has:\n"
- << "Blocks: " << L->getNumBlocks() << "\n"
- << "Exit blocks: " << ExitingBlocks.size() << "\n");
- // Only allow another exit other than the latch. This acts as an early exit
- // as it mirrors the profitability calculation of the runtime unroller.
- if (ExitingBlocks.size() > 2)
- return;
- // Limit the CFG of the loop body for targets with a branch predictor.
- // Allowing 4 blocks permits if-then-else diamonds in the body.
- if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
- return;
- // Don't unroll vectorized loops, including the remainder loop
- if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
- return;
- // Scan the loop: don't unroll loops with calls as this could prevent
- // inlining.
- unsigned Cost = 0;
- for (auto *BB : L->getBlocks()) {
- for (auto &I : *BB) {
- // Don't unroll vectorised loop. MVE does not benefit from it as much as
- // scalar code.
- if (I.getType()->isVectorTy())
- return;
- if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
- if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
- if (!isLoweredToCall(F))
- continue;
- }
- return;
- }
- SmallVector<const Value*, 4> Operands(I.operand_values());
- Cost +=
- getUserCost(&I, Operands, TargetTransformInfo::TCK_SizeAndLatency);
- }
- }
- LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
- UP.Partial = true;
- UP.Runtime = true;
- UP.UpperBound = true;
- UP.UnrollRemainder = true;
- UP.DefaultUnrollRuntimeCount = 4;
- UP.UnrollAndJam = true;
- UP.UnrollAndJamInnerLoopThreshold = 60;
- // Force unrolling small loops can be very useful because of the branch
- // taken cost of the backedge.
- if (Cost < 12)
- UP.Force = true;
- }
- void ARMTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
- TTI::PeelingPreferences &PP) {
- BaseT::getPeelingPreferences(L, SE, PP);
- }
- bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
- TTI::ReductionFlags Flags) const {
- return ST->hasMVEIntegerOps();
- }
- bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
- TTI::ReductionFlags Flags) const {
- if (!ST->hasMVEIntegerOps())
- return false;
- unsigned ScalarBits = Ty->getScalarSizeInBits();
- switch (Opcode) {
- case Instruction::Add:
- return ScalarBits <= 64;
- default:
- return false;
- }
- }
- bool ARMTTIImpl::preferPredicatedReductionSelect(
- unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
- if (!ST->hasMVEIntegerOps())
- return false;
- return true;
- }
|