ARMInstrVFP.td 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865
  1. //===-- ARMInstrVFP.td - VFP support for ARM ---------------*- tablegen -*-===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file describes the ARM VFP instruction set.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. def SDT_CMPFP0 : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
  13. def SDT_VMOVDRR : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisVT<1, i32>,
  14. SDTCisSameAs<1, 2>]>;
  15. def SDT_VMOVRRD : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
  16. SDTCisVT<2, f64>]>;
  17. def SDT_VMOVSR : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i32>]>;
  18. def arm_fmstat : SDNode<"ARMISD::FMSTAT", SDTNone, [SDNPInGlue, SDNPOutGlue]>;
  19. def arm_cmpfp : SDNode<"ARMISD::CMPFP", SDT_ARMCmp, [SDNPOutGlue]>;
  20. def arm_cmpfp0 : SDNode<"ARMISD::CMPFPw0", SDT_CMPFP0, [SDNPOutGlue]>;
  21. def arm_cmpfpe : SDNode<"ARMISD::CMPFPE", SDT_ARMCmp, [SDNPOutGlue]>;
  22. def arm_cmpfpe0: SDNode<"ARMISD::CMPFPEw0",SDT_CMPFP0, [SDNPOutGlue]>;
  23. def arm_fmdrr : SDNode<"ARMISD::VMOVDRR", SDT_VMOVDRR>;
  24. def arm_fmrrd : SDNode<"ARMISD::VMOVRRD", SDT_VMOVRRD>;
  25. def arm_vmovsr : SDNode<"ARMISD::VMOVSR", SDT_VMOVSR>;
  26. def SDT_VMOVhr : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, i32>] >;
  27. def SDT_VMOVrh : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisFP<1>] >;
  28. def arm_vmovhr : SDNode<"ARMISD::VMOVhr", SDT_VMOVhr>;
  29. def arm_vmovrh : SDNode<"ARMISD::VMOVrh", SDT_VMOVrh>;
  30. //===----------------------------------------------------------------------===//
  31. // Operand Definitions.
  32. //
  33. // 8-bit floating-point immediate encodings.
  34. def FPImmOperand : AsmOperandClass {
  35. let Name = "FPImm";
  36. let ParserMethod = "parseFPImm";
  37. }
  38. def vfp_f16imm : Operand<f16>,
  39. PatLeaf<(f16 fpimm), [{
  40. return ARM_AM::getFP16Imm(N->getValueAPF()) != -1;
  41. }], SDNodeXForm<fpimm, [{
  42. APFloat InVal = N->getValueAPF();
  43. uint32_t enc = ARM_AM::getFP16Imm(InVal);
  44. return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
  45. }]>> {
  46. let PrintMethod = "printFPImmOperand";
  47. let ParserMatchClass = FPImmOperand;
  48. }
  49. def vfp_f32f16imm_xform : SDNodeXForm<fpimm, [{
  50. APFloat InVal = N->getValueAPF();
  51. uint32_t enc = ARM_AM::getFP32FP16Imm(InVal);
  52. return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
  53. }]>;
  54. def vfp_f32f16imm : PatLeaf<(f32 fpimm), [{
  55. return ARM_AM::getFP32FP16Imm(N->getValueAPF()) != -1;
  56. }], vfp_f32f16imm_xform>;
  57. def vfp_f32imm_xform : SDNodeXForm<fpimm, [{
  58. APFloat InVal = N->getValueAPF();
  59. uint32_t enc = ARM_AM::getFP32Imm(InVal);
  60. return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
  61. }]>;
  62. def gi_vfp_f32imm : GICustomOperandRenderer<"renderVFPF32Imm">,
  63. GISDNodeXFormEquiv<vfp_f32imm_xform>;
  64. def vfp_f32imm : Operand<f32>,
  65. PatLeaf<(f32 fpimm), [{
  66. return ARM_AM::getFP32Imm(N->getValueAPF()) != -1;
  67. }], vfp_f32imm_xform> {
  68. let PrintMethod = "printFPImmOperand";
  69. let ParserMatchClass = FPImmOperand;
  70. let GISelPredicateCode = [{
  71. const auto &MO = MI.getOperand(1);
  72. if (!MO.isFPImm())
  73. return false;
  74. return ARM_AM::getFP32Imm(MO.getFPImm()->getValueAPF()) != -1;
  75. }];
  76. }
  77. def vfp_f64imm_xform : SDNodeXForm<fpimm, [{
  78. APFloat InVal = N->getValueAPF();
  79. uint32_t enc = ARM_AM::getFP64Imm(InVal);
  80. return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
  81. }]>;
  82. def gi_vfp_f64imm : GICustomOperandRenderer<"renderVFPF64Imm">,
  83. GISDNodeXFormEquiv<vfp_f64imm_xform>;
  84. def vfp_f64imm : Operand<f64>,
  85. PatLeaf<(f64 fpimm), [{
  86. return ARM_AM::getFP64Imm(N->getValueAPF()) != -1;
  87. }], vfp_f64imm_xform> {
  88. let PrintMethod = "printFPImmOperand";
  89. let ParserMatchClass = FPImmOperand;
  90. let GISelPredicateCode = [{
  91. const auto &MO = MI.getOperand(1);
  92. if (!MO.isFPImm())
  93. return false;
  94. return ARM_AM::getFP64Imm(MO.getFPImm()->getValueAPF()) != -1;
  95. }];
  96. }
  97. def alignedload16 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
  98. return cast<LoadSDNode>(N)->getAlignment() >= 2;
  99. }]>;
  100. def alignedload32 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
  101. return cast<LoadSDNode>(N)->getAlignment() >= 4;
  102. }]>;
  103. def alignedstore16 : PatFrag<(ops node:$val, node:$ptr),
  104. (store node:$val, node:$ptr), [{
  105. return cast<StoreSDNode>(N)->getAlignment() >= 2;
  106. }]>;
  107. def alignedstore32 : PatFrag<(ops node:$val, node:$ptr),
  108. (store node:$val, node:$ptr), [{
  109. return cast<StoreSDNode>(N)->getAlignment() >= 4;
  110. }]>;
  111. // The VCVT to/from fixed-point instructions encode the 'fbits' operand
  112. // (the number of fixed bits) differently than it appears in the assembly
  113. // source. It's encoded as "Size - fbits" where Size is the size of the
  114. // fixed-point representation (32 or 16) and fbits is the value appearing
  115. // in the assembly source, an integer in [0,16] or (0,32], depending on size.
  116. def fbits32_asm_operand : AsmOperandClass { let Name = "FBits32"; }
  117. def fbits32 : Operand<i32> {
  118. let PrintMethod = "printFBits32";
  119. let ParserMatchClass = fbits32_asm_operand;
  120. }
  121. def fbits16_asm_operand : AsmOperandClass { let Name = "FBits16"; }
  122. def fbits16 : Operand<i32> {
  123. let PrintMethod = "printFBits16";
  124. let ParserMatchClass = fbits16_asm_operand;
  125. }
  126. //===----------------------------------------------------------------------===//
  127. // Load / store Instructions.
  128. //
  129. let canFoldAsLoad = 1, isReMaterializable = 1 in {
  130. def VLDRD : ADI5<0b1101, 0b01, (outs DPR:$Dd), (ins addrmode5:$addr),
  131. IIC_fpLoad64, "vldr", "\t$Dd, $addr",
  132. [(set DPR:$Dd, (f64 (alignedload32 addrmode5:$addr)))]>,
  133. Requires<[HasFPRegs]>;
  134. def VLDRS : ASI5<0b1101, 0b01, (outs SPR:$Sd), (ins addrmode5:$addr),
  135. IIC_fpLoad32, "vldr", "\t$Sd, $addr",
  136. [(set SPR:$Sd, (alignedload32 addrmode5:$addr))]>,
  137. Requires<[HasFPRegs]> {
  138. // Some single precision VFP instructions may be executed on both NEON and VFP
  139. // pipelines.
  140. let D = VFPNeonDomain;
  141. }
  142. let isUnpredicable = 1 in
  143. def VLDRH : AHI5<0b1101, 0b01, (outs HPR:$Sd), (ins addrmode5fp16:$addr),
  144. IIC_fpLoad16, "vldr", ".16\t$Sd, $addr",
  145. [(set HPR:$Sd, (f16 (alignedload16 addrmode5fp16:$addr)))]>,
  146. Requires<[HasFPRegs16]>;
  147. } // End of 'let canFoldAsLoad = 1, isReMaterializable = 1 in'
  148. def : Pat<(bf16 (alignedload16 addrmode5fp16:$addr)),
  149. (VLDRH addrmode5fp16:$addr)> {
  150. let Predicates = [HasFPRegs16];
  151. }
  152. def : Pat<(bf16 (alignedload16 addrmode3:$addr)),
  153. (COPY_TO_REGCLASS (LDRH addrmode3:$addr), HPR)> {
  154. let Predicates = [HasNoFPRegs16, IsARM];
  155. }
  156. def : Pat<(bf16 (alignedload16 t2addrmode_imm12:$addr)),
  157. (COPY_TO_REGCLASS (t2LDRHi12 t2addrmode_imm12:$addr), HPR)> {
  158. let Predicates = [HasNoFPRegs16, IsThumb];
  159. }
  160. def VSTRD : ADI5<0b1101, 0b00, (outs), (ins DPR:$Dd, addrmode5:$addr),
  161. IIC_fpStore64, "vstr", "\t$Dd, $addr",
  162. [(alignedstore32 (f64 DPR:$Dd), addrmode5:$addr)]>,
  163. Requires<[HasFPRegs]>;
  164. def VSTRS : ASI5<0b1101, 0b00, (outs), (ins SPR:$Sd, addrmode5:$addr),
  165. IIC_fpStore32, "vstr", "\t$Sd, $addr",
  166. [(alignedstore32 SPR:$Sd, addrmode5:$addr)]>,
  167. Requires<[HasFPRegs]> {
  168. // Some single precision VFP instructions may be executed on both NEON and VFP
  169. // pipelines.
  170. let D = VFPNeonDomain;
  171. }
  172. let isUnpredicable = 1 in
  173. def VSTRH : AHI5<0b1101, 0b00, (outs), (ins HPR:$Sd, addrmode5fp16:$addr),
  174. IIC_fpStore16, "vstr", ".16\t$Sd, $addr",
  175. [(alignedstore16 (f16 HPR:$Sd), addrmode5fp16:$addr)]>,
  176. Requires<[HasFPRegs16]>;
  177. def : Pat<(alignedstore16 (bf16 HPR:$Sd), addrmode5fp16:$addr),
  178. (VSTRH (bf16 HPR:$Sd), addrmode5fp16:$addr)> {
  179. let Predicates = [HasFPRegs16];
  180. }
  181. def : Pat<(alignedstore16 (bf16 HPR:$Sd), addrmode3:$addr),
  182. (STRH (COPY_TO_REGCLASS $Sd, GPR), addrmode3:$addr)> {
  183. let Predicates = [HasNoFPRegs16, IsARM];
  184. }
  185. def : Pat<(alignedstore16 (bf16 HPR:$Sd), t2addrmode_imm12:$addr),
  186. (t2STRHi12 (COPY_TO_REGCLASS $Sd, GPR), t2addrmode_imm12:$addr)> {
  187. let Predicates = [HasNoFPRegs16, IsThumb];
  188. }
  189. //===----------------------------------------------------------------------===//
  190. // Load / store multiple Instructions.
  191. //
  192. multiclass vfp_ldst_mult<string asm, bit L_bit,
  193. InstrItinClass itin, InstrItinClass itin_upd> {
  194. let Predicates = [HasFPRegs] in {
  195. // Double Precision
  196. def DIA :
  197. AXDI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
  198. IndexModeNone, itin,
  199. !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
  200. let Inst{24-23} = 0b01; // Increment After
  201. let Inst{21} = 0; // No writeback
  202. let Inst{20} = L_bit;
  203. }
  204. def DIA_UPD :
  205. AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
  206. variable_ops),
  207. IndexModeUpd, itin_upd,
  208. !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
  209. let Inst{24-23} = 0b01; // Increment After
  210. let Inst{21} = 1; // Writeback
  211. let Inst{20} = L_bit;
  212. }
  213. def DDB_UPD :
  214. AXDI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs,
  215. variable_ops),
  216. IndexModeUpd, itin_upd,
  217. !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
  218. let Inst{24-23} = 0b10; // Decrement Before
  219. let Inst{21} = 1; // Writeback
  220. let Inst{20} = L_bit;
  221. }
  222. // Single Precision
  223. def SIA :
  224. AXSI4<(outs), (ins GPR:$Rn, pred:$p, spr_reglist:$regs, variable_ops),
  225. IndexModeNone, itin,
  226. !strconcat(asm, "ia${p}\t$Rn, $regs"), "", []> {
  227. let Inst{24-23} = 0b01; // Increment After
  228. let Inst{21} = 0; // No writeback
  229. let Inst{20} = L_bit;
  230. // Some single precision VFP instructions may be executed on both NEON and
  231. // VFP pipelines.
  232. let D = VFPNeonDomain;
  233. }
  234. def SIA_UPD :
  235. AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
  236. variable_ops),
  237. IndexModeUpd, itin_upd,
  238. !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
  239. let Inst{24-23} = 0b01; // Increment After
  240. let Inst{21} = 1; // Writeback
  241. let Inst{20} = L_bit;
  242. // Some single precision VFP instructions may be executed on both NEON and
  243. // VFP pipelines.
  244. let D = VFPNeonDomain;
  245. }
  246. def SDB_UPD :
  247. AXSI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, spr_reglist:$regs,
  248. variable_ops),
  249. IndexModeUpd, itin_upd,
  250. !strconcat(asm, "db${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
  251. let Inst{24-23} = 0b10; // Decrement Before
  252. let Inst{21} = 1; // Writeback
  253. let Inst{20} = L_bit;
  254. // Some single precision VFP instructions may be executed on both NEON and
  255. // VFP pipelines.
  256. let D = VFPNeonDomain;
  257. }
  258. }
  259. }
  260. let hasSideEffects = 0 in {
  261. let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
  262. defm VLDM : vfp_ldst_mult<"vldm", 1, IIC_fpLoad_m, IIC_fpLoad_mu>;
  263. let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
  264. defm VSTM : vfp_ldst_mult<"vstm", 0, IIC_fpStore_m, IIC_fpStore_mu>;
  265. } // hasSideEffects
  266. def : MnemonicAlias<"vldm", "vldmia">;
  267. def : MnemonicAlias<"vstm", "vstmia">;
  268. //===----------------------------------------------------------------------===//
  269. // Lazy load / store multiple Instructions
  270. //
  271. def VLLDM : AXSI4<(outs), (ins GPRnopc:$Rn, pred:$p), IndexModeNone,
  272. NoItinerary, "vlldm${p}\t$Rn", "", []>,
  273. Requires<[HasV8MMainline, Has8MSecExt]> {
  274. let Inst{24-23} = 0b00;
  275. let Inst{22} = 0;
  276. let Inst{21} = 1;
  277. let Inst{20} = 1;
  278. let Inst{15-12} = 0;
  279. let Inst{7-0} = 0;
  280. let mayLoad = 1;
  281. let Defs = [Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, VPR, FPSCR, FPSCR_NZCV];
  282. }
  283. def VLSTM : AXSI4<(outs), (ins GPRnopc:$Rn, pred:$p), IndexModeNone,
  284. NoItinerary, "vlstm${p}\t$Rn", "", []>,
  285. Requires<[HasV8MMainline, Has8MSecExt]> {
  286. let Inst{24-23} = 0b00;
  287. let Inst{22} = 0;
  288. let Inst{21} = 1;
  289. let Inst{20} = 0;
  290. let Inst{15-12} = 0;
  291. let Inst{7-0} = 0;
  292. let mayStore = 1;
  293. }
  294. def : InstAlias<"vpush${p} $r", (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r), 0>,
  295. Requires<[HasFPRegs]>;
  296. def : InstAlias<"vpush${p} $r", (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r), 0>,
  297. Requires<[HasFPRegs]>;
  298. def : InstAlias<"vpop${p} $r", (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r), 0>,
  299. Requires<[HasFPRegs]>;
  300. def : InstAlias<"vpop${p} $r", (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r), 0>,
  301. Requires<[HasFPRegs]>;
  302. defm : VFPDTAnyInstAlias<"vpush${p}", "$r",
  303. (VSTMSDB_UPD SP, pred:$p, spr_reglist:$r)>;
  304. defm : VFPDTAnyInstAlias<"vpush${p}", "$r",
  305. (VSTMDDB_UPD SP, pred:$p, dpr_reglist:$r)>;
  306. defm : VFPDTAnyInstAlias<"vpop${p}", "$r",
  307. (VLDMSIA_UPD SP, pred:$p, spr_reglist:$r)>;
  308. defm : VFPDTAnyInstAlias<"vpop${p}", "$r",
  309. (VLDMDIA_UPD SP, pred:$p, dpr_reglist:$r)>;
  310. // FLDMX, FSTMX - Load and store multiple unknown precision registers for
  311. // pre-armv6 cores.
  312. // These instruction are deprecated so we don't want them to get selected.
  313. // However, there is no UAL syntax for them, so we keep them around for
  314. // (dis)assembly only.
  315. multiclass vfp_ldstx_mult<string asm, bit L_bit> {
  316. let Predicates = [HasFPRegs], hasNoSchedulingInfo = 1 in {
  317. // Unknown precision
  318. def XIA :
  319. AXXI4<(outs), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
  320. IndexModeNone, !strconcat(asm, "iax${p}\t$Rn, $regs"), "", []> {
  321. let Inst{24-23} = 0b01; // Increment After
  322. let Inst{21} = 0; // No writeback
  323. let Inst{20} = L_bit;
  324. }
  325. def XIA_UPD :
  326. AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
  327. IndexModeUpd, !strconcat(asm, "iax${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
  328. let Inst{24-23} = 0b01; // Increment After
  329. let Inst{21} = 1; // Writeback
  330. let Inst{20} = L_bit;
  331. }
  332. def XDB_UPD :
  333. AXXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, dpr_reglist:$regs, variable_ops),
  334. IndexModeUpd, !strconcat(asm, "dbx${p}\t$Rn!, $regs"), "$Rn = $wb", []> {
  335. let Inst{24-23} = 0b10; // Decrement Before
  336. let Inst{21} = 1; // Writeback
  337. let Inst{20} = L_bit;
  338. }
  339. }
  340. }
  341. defm FLDM : vfp_ldstx_mult<"fldm", 1>;
  342. defm FSTM : vfp_ldstx_mult<"fstm", 0>;
  343. def : VFP2MnemonicAlias<"fldmeax", "fldmdbx">;
  344. def : VFP2MnemonicAlias<"fldmfdx", "fldmiax">;
  345. def : VFP2MnemonicAlias<"fstmeax", "fstmiax">;
  346. def : VFP2MnemonicAlias<"fstmfdx", "fstmdbx">;
  347. //===----------------------------------------------------------------------===//
  348. // FP Binary Operations.
  349. //
  350. let TwoOperandAliasConstraint = "$Dn = $Dd" in
  351. def VADDD : ADbI<0b11100, 0b11, 0, 0,
  352. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  353. IIC_fpALU64, "vadd", ".f64\t$Dd, $Dn, $Dm",
  354. [(set DPR:$Dd, (fadd DPR:$Dn, (f64 DPR:$Dm)))]>,
  355. Sched<[WriteFPALU64]>;
  356. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  357. def VADDS : ASbIn<0b11100, 0b11, 0, 0,
  358. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  359. IIC_fpALU32, "vadd", ".f32\t$Sd, $Sn, $Sm",
  360. [(set SPR:$Sd, (fadd SPR:$Sn, SPR:$Sm))]>,
  361. Sched<[WriteFPALU32]> {
  362. // Some single precision VFP instructions may be executed on both NEON and
  363. // VFP pipelines on A8.
  364. let D = VFPNeonA8Domain;
  365. }
  366. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  367. def VADDH : AHbI<0b11100, 0b11, 0, 0,
  368. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  369. IIC_fpALU16, "vadd", ".f16\t$Sd, $Sn, $Sm",
  370. [(set (f16 HPR:$Sd), (fadd (f16 HPR:$Sn), (f16 HPR:$Sm)))]>,
  371. Sched<[WriteFPALU32]>;
  372. let TwoOperandAliasConstraint = "$Dn = $Dd" in
  373. def VSUBD : ADbI<0b11100, 0b11, 1, 0,
  374. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  375. IIC_fpALU64, "vsub", ".f64\t$Dd, $Dn, $Dm",
  376. [(set DPR:$Dd, (fsub DPR:$Dn, (f64 DPR:$Dm)))]>,
  377. Sched<[WriteFPALU64]>;
  378. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  379. def VSUBS : ASbIn<0b11100, 0b11, 1, 0,
  380. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  381. IIC_fpALU32, "vsub", ".f32\t$Sd, $Sn, $Sm",
  382. [(set SPR:$Sd, (fsub SPR:$Sn, SPR:$Sm))]>,
  383. Sched<[WriteFPALU32]>{
  384. // Some single precision VFP instructions may be executed on both NEON and
  385. // VFP pipelines on A8.
  386. let D = VFPNeonA8Domain;
  387. }
  388. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  389. def VSUBH : AHbI<0b11100, 0b11, 1, 0,
  390. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  391. IIC_fpALU16, "vsub", ".f16\t$Sd, $Sn, $Sm",
  392. [(set (f16 HPR:$Sd), (fsub (f16 HPR:$Sn), (f16 HPR:$Sm)))]>,
  393. Sched<[WriteFPALU32]>;
  394. let TwoOperandAliasConstraint = "$Dn = $Dd" in
  395. def VDIVD : ADbI<0b11101, 0b00, 0, 0,
  396. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  397. IIC_fpDIV64, "vdiv", ".f64\t$Dd, $Dn, $Dm",
  398. [(set DPR:$Dd, (fdiv DPR:$Dn, (f64 DPR:$Dm)))]>,
  399. Sched<[WriteFPDIV64]>;
  400. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  401. def VDIVS : ASbI<0b11101, 0b00, 0, 0,
  402. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  403. IIC_fpDIV32, "vdiv", ".f32\t$Sd, $Sn, $Sm",
  404. [(set SPR:$Sd, (fdiv SPR:$Sn, SPR:$Sm))]>,
  405. Sched<[WriteFPDIV32]>;
  406. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  407. def VDIVH : AHbI<0b11101, 0b00, 0, 0,
  408. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  409. IIC_fpDIV16, "vdiv", ".f16\t$Sd, $Sn, $Sm",
  410. [(set (f16 HPR:$Sd), (fdiv (f16 HPR:$Sn), (f16 HPR:$Sm)))]>,
  411. Sched<[WriteFPDIV32]>;
  412. let TwoOperandAliasConstraint = "$Dn = $Dd" in
  413. def VMULD : ADbI<0b11100, 0b10, 0, 0,
  414. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  415. IIC_fpMUL64, "vmul", ".f64\t$Dd, $Dn, $Dm",
  416. [(set DPR:$Dd, (fmul DPR:$Dn, (f64 DPR:$Dm)))]>,
  417. Sched<[WriteFPMUL64, ReadFPMUL, ReadFPMUL]>;
  418. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  419. def VMULS : ASbIn<0b11100, 0b10, 0, 0,
  420. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  421. IIC_fpMUL32, "vmul", ".f32\t$Sd, $Sn, $Sm",
  422. [(set SPR:$Sd, (fmul SPR:$Sn, SPR:$Sm))]>,
  423. Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]> {
  424. // Some single precision VFP instructions may be executed on both NEON and
  425. // VFP pipelines on A8.
  426. let D = VFPNeonA8Domain;
  427. }
  428. let TwoOperandAliasConstraint = "$Sn = $Sd" in
  429. def VMULH : AHbI<0b11100, 0b10, 0, 0,
  430. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  431. IIC_fpMUL16, "vmul", ".f16\t$Sd, $Sn, $Sm",
  432. [(set (f16 HPR:$Sd), (fmul (f16 HPR:$Sn), (f16 HPR:$Sm)))]>,
  433. Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]>;
  434. def VNMULD : ADbI<0b11100, 0b10, 1, 0,
  435. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  436. IIC_fpMUL64, "vnmul", ".f64\t$Dd, $Dn, $Dm",
  437. [(set DPR:$Dd, (fneg (fmul DPR:$Dn, (f64 DPR:$Dm))))]>,
  438. Sched<[WriteFPMUL64, ReadFPMUL, ReadFPMUL]>;
  439. def VNMULS : ASbI<0b11100, 0b10, 1, 0,
  440. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  441. IIC_fpMUL32, "vnmul", ".f32\t$Sd, $Sn, $Sm",
  442. [(set SPR:$Sd, (fneg (fmul SPR:$Sn, SPR:$Sm)))]>,
  443. Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]> {
  444. // Some single precision VFP instructions may be executed on both NEON and
  445. // VFP pipelines on A8.
  446. let D = VFPNeonA8Domain;
  447. }
  448. def VNMULH : AHbI<0b11100, 0b10, 1, 0,
  449. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  450. IIC_fpMUL16, "vnmul", ".f16\t$Sd, $Sn, $Sm",
  451. [(set (f16 HPR:$Sd), (fneg (fmul (f16 HPR:$Sn), (f16 HPR:$Sm))))]>,
  452. Sched<[WriteFPMUL32, ReadFPMUL, ReadFPMUL]>;
  453. multiclass vsel_inst<string op, bits<2> opc, int CC> {
  454. let DecoderNamespace = "VFPV8", PostEncoderMethod = "",
  455. Uses = [CPSR], AddedComplexity = 4, isUnpredicable = 1 in {
  456. def H : AHbInp<0b11100, opc, 0,
  457. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  458. NoItinerary, !strconcat("vsel", op, ".f16\t$Sd, $Sn, $Sm"),
  459. [(set (f16 HPR:$Sd), (ARMcmov (f16 HPR:$Sm), (f16 HPR:$Sn), CC))]>,
  460. Requires<[HasFullFP16]>;
  461. def S : ASbInp<0b11100, opc, 0,
  462. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  463. NoItinerary, !strconcat("vsel", op, ".f32\t$Sd, $Sn, $Sm"),
  464. [(set SPR:$Sd, (ARMcmov SPR:$Sm, SPR:$Sn, CC))]>,
  465. Requires<[HasFPARMv8]>;
  466. def D : ADbInp<0b11100, opc, 0,
  467. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  468. NoItinerary, !strconcat("vsel", op, ".f64\t$Dd, $Dn, $Dm"),
  469. [(set DPR:$Dd, (ARMcmov (f64 DPR:$Dm), (f64 DPR:$Dn), CC))]>,
  470. Requires<[HasFPARMv8, HasDPVFP]>;
  471. }
  472. }
  473. // The CC constants here match ARMCC::CondCodes.
  474. defm VSELGT : vsel_inst<"gt", 0b11, 12>;
  475. defm VSELGE : vsel_inst<"ge", 0b10, 10>;
  476. defm VSELEQ : vsel_inst<"eq", 0b00, 0>;
  477. defm VSELVS : vsel_inst<"vs", 0b01, 6>;
  478. multiclass vmaxmin_inst<string op, bit opc, SDNode SD> {
  479. let DecoderNamespace = "VFPV8", PostEncoderMethod = "",
  480. isUnpredicable = 1 in {
  481. def H : AHbInp<0b11101, 0b00, opc,
  482. (outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm),
  483. NoItinerary, !strconcat(op, ".f16\t$Sd, $Sn, $Sm"),
  484. [(set (f16 HPR:$Sd), (SD (f16 HPR:$Sn), (f16 HPR:$Sm)))]>,
  485. Requires<[HasFullFP16]>;
  486. def S : ASbInp<0b11101, 0b00, opc,
  487. (outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm),
  488. NoItinerary, !strconcat(op, ".f32\t$Sd, $Sn, $Sm"),
  489. [(set SPR:$Sd, (SD SPR:$Sn, SPR:$Sm))]>,
  490. Requires<[HasFPARMv8]>;
  491. def D : ADbInp<0b11101, 0b00, opc,
  492. (outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm),
  493. NoItinerary, !strconcat(op, ".f64\t$Dd, $Dn, $Dm"),
  494. [(set DPR:$Dd, (f64 (SD (f64 DPR:$Dn), (f64 DPR:$Dm))))]>,
  495. Requires<[HasFPARMv8, HasDPVFP]>;
  496. }
  497. }
  498. defm VFP_VMAXNM : vmaxmin_inst<"vmaxnm", 0, fmaxnum>;
  499. defm VFP_VMINNM : vmaxmin_inst<"vminnm", 1, fminnum>;
  500. // Match reassociated forms only if not sign dependent rounding.
  501. def : Pat<(fmul (fneg DPR:$a), (f64 DPR:$b)),
  502. (VNMULD DPR:$a, DPR:$b)>,
  503. Requires<[NoHonorSignDependentRounding,HasDPVFP]>;
  504. def : Pat<(fmul (fneg SPR:$a), SPR:$b),
  505. (VNMULS SPR:$a, SPR:$b)>, Requires<[NoHonorSignDependentRounding]>;
  506. // These are encoded as unary instructions.
  507. let Defs = [FPSCR_NZCV] in {
  508. def VCMPED : ADuI<0b11101, 0b11, 0b0100, 0b11, 0,
  509. (outs), (ins DPR:$Dd, DPR:$Dm),
  510. IIC_fpCMP64, "vcmpe", ".f64\t$Dd, $Dm",
  511. [(arm_cmpfpe DPR:$Dd, (f64 DPR:$Dm))]>;
  512. def VCMPES : ASuI<0b11101, 0b11, 0b0100, 0b11, 0,
  513. (outs), (ins SPR:$Sd, SPR:$Sm),
  514. IIC_fpCMP32, "vcmpe", ".f32\t$Sd, $Sm",
  515. [(arm_cmpfpe SPR:$Sd, SPR:$Sm)]> {
  516. // Some single precision VFP instructions may be executed on both NEON and
  517. // VFP pipelines on A8.
  518. let D = VFPNeonA8Domain;
  519. }
  520. def VCMPEH : AHuI<0b11101, 0b11, 0b0100, 0b11, 0,
  521. (outs), (ins HPR:$Sd, HPR:$Sm),
  522. IIC_fpCMP16, "vcmpe", ".f16\t$Sd, $Sm",
  523. [(arm_cmpfpe (f16 HPR:$Sd), (f16 HPR:$Sm))]>;
  524. def VCMPD : ADuI<0b11101, 0b11, 0b0100, 0b01, 0,
  525. (outs), (ins DPR:$Dd, DPR:$Dm),
  526. IIC_fpCMP64, "vcmp", ".f64\t$Dd, $Dm",
  527. [(arm_cmpfp DPR:$Dd, (f64 DPR:$Dm))]>;
  528. def VCMPS : ASuI<0b11101, 0b11, 0b0100, 0b01, 0,
  529. (outs), (ins SPR:$Sd, SPR:$Sm),
  530. IIC_fpCMP32, "vcmp", ".f32\t$Sd, $Sm",
  531. [(arm_cmpfp SPR:$Sd, SPR:$Sm)]> {
  532. // Some single precision VFP instructions may be executed on both NEON and
  533. // VFP pipelines on A8.
  534. let D = VFPNeonA8Domain;
  535. }
  536. def VCMPH : AHuI<0b11101, 0b11, 0b0100, 0b01, 0,
  537. (outs), (ins HPR:$Sd, HPR:$Sm),
  538. IIC_fpCMP16, "vcmp", ".f16\t$Sd, $Sm",
  539. [(arm_cmpfp (f16 HPR:$Sd), (f16 HPR:$Sm))]>;
  540. } // Defs = [FPSCR_NZCV]
  541. //===----------------------------------------------------------------------===//
  542. // FP Unary Operations.
  543. //
  544. def VABSD : ADuI<0b11101, 0b11, 0b0000, 0b11, 0,
  545. (outs DPR:$Dd), (ins DPR:$Dm),
  546. IIC_fpUNA64, "vabs", ".f64\t$Dd, $Dm",
  547. [(set DPR:$Dd, (fabs (f64 DPR:$Dm)))]>;
  548. def VABSS : ASuIn<0b11101, 0b11, 0b0000, 0b11, 0,
  549. (outs SPR:$Sd), (ins SPR:$Sm),
  550. IIC_fpUNA32, "vabs", ".f32\t$Sd, $Sm",
  551. [(set SPR:$Sd, (fabs SPR:$Sm))]> {
  552. // Some single precision VFP instructions may be executed on both NEON and
  553. // VFP pipelines on A8.
  554. let D = VFPNeonA8Domain;
  555. }
  556. def VABSH : AHuI<0b11101, 0b11, 0b0000, 0b11, 0,
  557. (outs HPR:$Sd), (ins HPR:$Sm),
  558. IIC_fpUNA16, "vabs", ".f16\t$Sd, $Sm",
  559. [(set (f16 HPR:$Sd), (fabs (f16 HPR:$Sm)))]>;
  560. let Defs = [FPSCR_NZCV] in {
  561. def VCMPEZD : ADuI<0b11101, 0b11, 0b0101, 0b11, 0,
  562. (outs), (ins DPR:$Dd),
  563. IIC_fpCMP64, "vcmpe", ".f64\t$Dd, #0",
  564. [(arm_cmpfpe0 (f64 DPR:$Dd))]> {
  565. let Inst{3-0} = 0b0000;
  566. let Inst{5} = 0;
  567. }
  568. def VCMPEZS : ASuI<0b11101, 0b11, 0b0101, 0b11, 0,
  569. (outs), (ins SPR:$Sd),
  570. IIC_fpCMP32, "vcmpe", ".f32\t$Sd, #0",
  571. [(arm_cmpfpe0 SPR:$Sd)]> {
  572. let Inst{3-0} = 0b0000;
  573. let Inst{5} = 0;
  574. // Some single precision VFP instructions may be executed on both NEON and
  575. // VFP pipelines on A8.
  576. let D = VFPNeonA8Domain;
  577. }
  578. def VCMPEZH : AHuI<0b11101, 0b11, 0b0101, 0b11, 0,
  579. (outs), (ins HPR:$Sd),
  580. IIC_fpCMP16, "vcmpe", ".f16\t$Sd, #0",
  581. [(arm_cmpfpe0 (f16 HPR:$Sd))]> {
  582. let Inst{3-0} = 0b0000;
  583. let Inst{5} = 0;
  584. }
  585. def VCMPZD : ADuI<0b11101, 0b11, 0b0101, 0b01, 0,
  586. (outs), (ins DPR:$Dd),
  587. IIC_fpCMP64, "vcmp", ".f64\t$Dd, #0",
  588. [(arm_cmpfp0 (f64 DPR:$Dd))]> {
  589. let Inst{3-0} = 0b0000;
  590. let Inst{5} = 0;
  591. }
  592. def VCMPZS : ASuI<0b11101, 0b11, 0b0101, 0b01, 0,
  593. (outs), (ins SPR:$Sd),
  594. IIC_fpCMP32, "vcmp", ".f32\t$Sd, #0",
  595. [(arm_cmpfp0 SPR:$Sd)]> {
  596. let Inst{3-0} = 0b0000;
  597. let Inst{5} = 0;
  598. // Some single precision VFP instructions may be executed on both NEON and
  599. // VFP pipelines on A8.
  600. let D = VFPNeonA8Domain;
  601. }
  602. def VCMPZH : AHuI<0b11101, 0b11, 0b0101, 0b01, 0,
  603. (outs), (ins HPR:$Sd),
  604. IIC_fpCMP16, "vcmp", ".f16\t$Sd, #0",
  605. [(arm_cmpfp0 (f16 HPR:$Sd))]> {
  606. let Inst{3-0} = 0b0000;
  607. let Inst{5} = 0;
  608. }
  609. } // Defs = [FPSCR_NZCV]
  610. def VCVTDS : ASuI<0b11101, 0b11, 0b0111, 0b11, 0,
  611. (outs DPR:$Dd), (ins SPR:$Sm),
  612. IIC_fpCVTDS, "vcvt", ".f64.f32\t$Dd, $Sm",
  613. [(set DPR:$Dd, (fpextend SPR:$Sm))]>,
  614. Sched<[WriteFPCVT]> {
  615. // Instruction operands.
  616. bits<5> Dd;
  617. bits<5> Sm;
  618. // Encode instruction operands.
  619. let Inst{3-0} = Sm{4-1};
  620. let Inst{5} = Sm{0};
  621. let Inst{15-12} = Dd{3-0};
  622. let Inst{22} = Dd{4};
  623. let Predicates = [HasVFP2, HasDPVFP];
  624. let hasSideEffects = 0;
  625. }
  626. // Special case encoding: bits 11-8 is 0b1011.
  627. def VCVTSD : VFPAI<(outs SPR:$Sd), (ins DPR:$Dm), VFPUnaryFrm,
  628. IIC_fpCVTSD, "vcvt", ".f32.f64\t$Sd, $Dm",
  629. [(set SPR:$Sd, (fpround DPR:$Dm))]>,
  630. Sched<[WriteFPCVT]> {
  631. // Instruction operands.
  632. bits<5> Sd;
  633. bits<5> Dm;
  634. // Encode instruction operands.
  635. let Inst{3-0} = Dm{3-0};
  636. let Inst{5} = Dm{4};
  637. let Inst{15-12} = Sd{4-1};
  638. let Inst{22} = Sd{0};
  639. let Inst{27-23} = 0b11101;
  640. let Inst{21-16} = 0b110111;
  641. let Inst{11-8} = 0b1011;
  642. let Inst{7-6} = 0b11;
  643. let Inst{4} = 0;
  644. let Predicates = [HasVFP2, HasDPVFP];
  645. let hasSideEffects = 0;
  646. }
  647. // Between half, single and double-precision.
  648. let hasSideEffects = 0 in
  649. def VCVTBHS: ASuI<0b11101, 0b11, 0b0010, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm),
  650. /* FIXME */ IIC_fpCVTSH, "vcvtb", ".f32.f16\t$Sd, $Sm",
  651. [/* Intentionally left blank, see patterns below */]>,
  652. Requires<[HasFP16]>,
  653. Sched<[WriteFPCVT]>;
  654. def : FP16Pat<(f32 (fpextend (f16 HPR:$Sm))),
  655. (VCVTBHS (COPY_TO_REGCLASS (f16 HPR:$Sm), SPR))>;
  656. def : FP16Pat<(f16_to_fp GPR:$a),
  657. (VCVTBHS (COPY_TO_REGCLASS GPR:$a, SPR))>;
  658. let hasSideEffects = 0 in
  659. def VCVTBSH: ASuI<0b11101, 0b11, 0b0011, 0b01, 0, (outs SPR:$Sd), (ins SPR:$Sm),
  660. /* FIXME */ IIC_fpCVTHS, "vcvtb", ".f16.f32\t$Sd, $Sm",
  661. [/* Intentionally left blank, see patterns below */]>,
  662. Requires<[HasFP16]>,
  663. Sched<[WriteFPCVT]>;
  664. def : FP16Pat<(f16 (fpround SPR:$Sm)),
  665. (COPY_TO_REGCLASS (VCVTBSH SPR:$Sm), HPR)>;
  666. def : FP16Pat<(fp_to_f16 SPR:$a),
  667. (i32 (COPY_TO_REGCLASS (VCVTBSH SPR:$a), GPR))>;
  668. def : FP16Pat<(insertelt (v8f16 MQPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_even:$lane),
  669. (v8f16 (INSERT_SUBREG (v8f16 MQPR:$src1), (VCVTBSH SPR:$src2),
  670. (SSubReg_f16_reg imm:$lane)))>;
  671. def : FP16Pat<(insertelt (v4f16 DPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_even:$lane),
  672. (v4f16 (INSERT_SUBREG (v4f16 DPR:$src1), (VCVTBSH SPR:$src2),
  673. (SSubReg_f16_reg imm:$lane)))>;
  674. let hasSideEffects = 0 in
  675. def VCVTTHS: ASuI<0b11101, 0b11, 0b0010, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm),
  676. /* FIXME */ IIC_fpCVTSH, "vcvtt", ".f32.f16\t$Sd, $Sm",
  677. [/* Intentionally left blank, see patterns below */]>,
  678. Requires<[HasFP16]>,
  679. Sched<[WriteFPCVT]>;
  680. def : FP16Pat<(f32 (fpextend (extractelt (v8f16 MQPR:$src), imm_odd:$lane))),
  681. (VCVTTHS (EXTRACT_SUBREG MQPR:$src, (SSubReg_f16_reg imm_odd:$lane)))>;
  682. def : FP16Pat<(f32 (fpextend (extractelt (v4f16 DPR:$src), imm_odd:$lane))),
  683. (VCVTTHS (EXTRACT_SUBREG
  684. (v2f32 (COPY_TO_REGCLASS (v4f16 DPR:$src), DPR_VFP2)),
  685. (SSubReg_f16_reg imm_odd:$lane)))>;
  686. let hasSideEffects = 0 in
  687. def VCVTTSH: ASuI<0b11101, 0b11, 0b0011, 0b11, 0, (outs SPR:$Sd), (ins SPR:$Sm),
  688. /* FIXME */ IIC_fpCVTHS, "vcvtt", ".f16.f32\t$Sd, $Sm",
  689. [/* Intentionally left blank, see patterns below */]>,
  690. Requires<[HasFP16]>,
  691. Sched<[WriteFPCVT]>;
  692. def : FP16Pat<(insertelt (v8f16 MQPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_odd:$lane),
  693. (v8f16 (INSERT_SUBREG (v8f16 MQPR:$src1), (VCVTTSH SPR:$src2),
  694. (SSubReg_f16_reg imm:$lane)))>;
  695. def : FP16Pat<(insertelt (v4f16 DPR:$src1), (f16 (fpround (f32 SPR:$src2))), imm_odd:$lane),
  696. (v4f16 (INSERT_SUBREG (v4f16 DPR:$src1), (VCVTTSH SPR:$src2),
  697. (SSubReg_f16_reg imm:$lane)))>;
  698. def VCVTBHD : ADuI<0b11101, 0b11, 0b0010, 0b01, 0,
  699. (outs DPR:$Dd), (ins SPR:$Sm),
  700. NoItinerary, "vcvtb", ".f64.f16\t$Dd, $Sm",
  701. [/* Intentionally left blank, see patterns below */]>,
  702. Requires<[HasFPARMv8, HasDPVFP]>,
  703. Sched<[WriteFPCVT]> {
  704. // Instruction operands.
  705. bits<5> Sm;
  706. // Encode instruction operands.
  707. let Inst{3-0} = Sm{4-1};
  708. let Inst{5} = Sm{0};
  709. let hasSideEffects = 0;
  710. }
  711. def : FullFP16Pat<(f64 (fpextend (f16 HPR:$Sm))),
  712. (VCVTBHD (COPY_TO_REGCLASS (f16 HPR:$Sm), SPR))>,
  713. Requires<[HasFPARMv8, HasDPVFP]>;
  714. def : FP16Pat<(f64 (f16_to_fp GPR:$a)),
  715. (VCVTBHD (COPY_TO_REGCLASS GPR:$a, SPR))>,
  716. Requires<[HasFPARMv8, HasDPVFP]>;
  717. def VCVTBDH : ADuI<0b11101, 0b11, 0b0011, 0b01, 0,
  718. (outs SPR:$Sd), (ins DPR:$Dm),
  719. NoItinerary, "vcvtb", ".f16.f64\t$Sd, $Dm",
  720. [/* Intentionally left blank, see patterns below */]>,
  721. Requires<[HasFPARMv8, HasDPVFP]> {
  722. // Instruction operands.
  723. bits<5> Sd;
  724. bits<5> Dm;
  725. // Encode instruction operands.
  726. let Inst{3-0} = Dm{3-0};
  727. let Inst{5} = Dm{4};
  728. let Inst{15-12} = Sd{4-1};
  729. let Inst{22} = Sd{0};
  730. let hasSideEffects = 0;
  731. }
  732. def : FullFP16Pat<(f16 (fpround DPR:$Dm)),
  733. (COPY_TO_REGCLASS (VCVTBDH DPR:$Dm), HPR)>,
  734. Requires<[HasFPARMv8, HasDPVFP]>;
  735. def : FP16Pat<(fp_to_f16 (f64 DPR:$a)),
  736. (i32 (COPY_TO_REGCLASS (VCVTBDH DPR:$a), GPR))>,
  737. Requires<[HasFPARMv8, HasDPVFP]>;
  738. def VCVTTHD : ADuI<0b11101, 0b11, 0b0010, 0b11, 0,
  739. (outs DPR:$Dd), (ins SPR:$Sm),
  740. NoItinerary, "vcvtt", ".f64.f16\t$Dd, $Sm",
  741. []>, Requires<[HasFPARMv8, HasDPVFP]> {
  742. // Instruction operands.
  743. bits<5> Sm;
  744. // Encode instruction operands.
  745. let Inst{3-0} = Sm{4-1};
  746. let Inst{5} = Sm{0};
  747. let hasSideEffects = 0;
  748. }
  749. def VCVTTDH : ADuI<0b11101, 0b11, 0b0011, 0b11, 0,
  750. (outs SPR:$Sd), (ins DPR:$Dm),
  751. NoItinerary, "vcvtt", ".f16.f64\t$Sd, $Dm",
  752. []>, Requires<[HasFPARMv8, HasDPVFP]> {
  753. // Instruction operands.
  754. bits<5> Sd;
  755. bits<5> Dm;
  756. // Encode instruction operands.
  757. let Inst{15-12} = Sd{4-1};
  758. let Inst{22} = Sd{0};
  759. let Inst{3-0} = Dm{3-0};
  760. let Inst{5} = Dm{4};
  761. let hasSideEffects = 0;
  762. }
  763. multiclass vcvt_inst<string opc, bits<2> rm,
  764. SDPatternOperator node = null_frag> {
  765. let PostEncoderMethod = "", DecoderNamespace = "VFPV8", hasSideEffects = 0 in {
  766. def SH : AHuInp<0b11101, 0b11, 0b1100, 0b11, 0,
  767. (outs SPR:$Sd), (ins HPR:$Sm),
  768. NoItinerary, !strconcat("vcvt", opc, ".s32.f16\t$Sd, $Sm"),
  769. []>,
  770. Requires<[HasFullFP16]> {
  771. let Inst{17-16} = rm;
  772. }
  773. def UH : AHuInp<0b11101, 0b11, 0b1100, 0b01, 0,
  774. (outs SPR:$Sd), (ins HPR:$Sm),
  775. NoItinerary, !strconcat("vcvt", opc, ".u32.f16\t$Sd, $Sm"),
  776. []>,
  777. Requires<[HasFullFP16]> {
  778. let Inst{17-16} = rm;
  779. }
  780. def SS : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
  781. (outs SPR:$Sd), (ins SPR:$Sm),
  782. NoItinerary, !strconcat("vcvt", opc, ".s32.f32\t$Sd, $Sm"),
  783. []>,
  784. Requires<[HasFPARMv8]> {
  785. let Inst{17-16} = rm;
  786. }
  787. def US : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
  788. (outs SPR:$Sd), (ins SPR:$Sm),
  789. NoItinerary, !strconcat("vcvt", opc, ".u32.f32\t$Sd, $Sm"),
  790. []>,
  791. Requires<[HasFPARMv8]> {
  792. let Inst{17-16} = rm;
  793. }
  794. def SD : ASuInp<0b11101, 0b11, 0b1100, 0b11, 0,
  795. (outs SPR:$Sd), (ins DPR:$Dm),
  796. NoItinerary, !strconcat("vcvt", opc, ".s32.f64\t$Sd, $Dm"),
  797. []>,
  798. Requires<[HasFPARMv8, HasDPVFP]> {
  799. bits<5> Dm;
  800. let Inst{17-16} = rm;
  801. // Encode instruction operands.
  802. let Inst{3-0} = Dm{3-0};
  803. let Inst{5} = Dm{4};
  804. let Inst{8} = 1;
  805. }
  806. def UD : ASuInp<0b11101, 0b11, 0b1100, 0b01, 0,
  807. (outs SPR:$Sd), (ins DPR:$Dm),
  808. NoItinerary, !strconcat("vcvt", opc, ".u32.f64\t$Sd, $Dm"),
  809. []>,
  810. Requires<[HasFPARMv8, HasDPVFP]> {
  811. bits<5> Dm;
  812. let Inst{17-16} = rm;
  813. // Encode instruction operands
  814. let Inst{3-0} = Dm{3-0};
  815. let Inst{5} = Dm{4};
  816. let Inst{8} = 1;
  817. }
  818. }
  819. let Predicates = [HasFPARMv8] in {
  820. let Predicates = [HasFullFP16] in {
  821. def : Pat<(i32 (fp_to_sint (node (f16 HPR:$a)))),
  822. (COPY_TO_REGCLASS
  823. (!cast<Instruction>(NAME#"SH") (f16 HPR:$a)),
  824. GPR)>;
  825. def : Pat<(i32 (fp_to_uint (node (f16 HPR:$a)))),
  826. (COPY_TO_REGCLASS
  827. (!cast<Instruction>(NAME#"UH") (f16 HPR:$a)),
  828. GPR)>;
  829. }
  830. def : Pat<(i32 (fp_to_sint (node SPR:$a))),
  831. (COPY_TO_REGCLASS
  832. (!cast<Instruction>(NAME#"SS") SPR:$a),
  833. GPR)>;
  834. def : Pat<(i32 (fp_to_uint (node SPR:$a))),
  835. (COPY_TO_REGCLASS
  836. (!cast<Instruction>(NAME#"US") SPR:$a),
  837. GPR)>;
  838. }
  839. let Predicates = [HasFPARMv8, HasDPVFP] in {
  840. def : Pat<(i32 (fp_to_sint (node (f64 DPR:$a)))),
  841. (COPY_TO_REGCLASS
  842. (!cast<Instruction>(NAME#"SD") DPR:$a),
  843. GPR)>;
  844. def : Pat<(i32 (fp_to_uint (node (f64 DPR:$a)))),
  845. (COPY_TO_REGCLASS
  846. (!cast<Instruction>(NAME#"UD") DPR:$a),
  847. GPR)>;
  848. }
  849. }
  850. defm VCVTA : vcvt_inst<"a", 0b00, fround>;
  851. defm VCVTN : vcvt_inst<"n", 0b01>;
  852. defm VCVTP : vcvt_inst<"p", 0b10, fceil>;
  853. defm VCVTM : vcvt_inst<"m", 0b11, ffloor>;
  854. def VNEGD : ADuI<0b11101, 0b11, 0b0001, 0b01, 0,
  855. (outs DPR:$Dd), (ins DPR:$Dm),
  856. IIC_fpUNA64, "vneg", ".f64\t$Dd, $Dm",
  857. [(set DPR:$Dd, (fneg (f64 DPR:$Dm)))]>;
  858. def VNEGS : ASuIn<0b11101, 0b11, 0b0001, 0b01, 0,
  859. (outs SPR:$Sd), (ins SPR:$Sm),
  860. IIC_fpUNA32, "vneg", ".f32\t$Sd, $Sm",
  861. [(set SPR:$Sd, (fneg SPR:$Sm))]> {
  862. // Some single precision VFP instructions may be executed on both NEON and
  863. // VFP pipelines on A8.
  864. let D = VFPNeonA8Domain;
  865. }
  866. def VNEGH : AHuI<0b11101, 0b11, 0b0001, 0b01, 0,
  867. (outs HPR:$Sd), (ins HPR:$Sm),
  868. IIC_fpUNA16, "vneg", ".f16\t$Sd, $Sm",
  869. [(set (f16 HPR:$Sd), (fneg (f16 HPR:$Sm)))]>;
  870. multiclass vrint_inst_zrx<string opc, bit op, bit op2, SDPatternOperator node> {
  871. def H : AHuI<0b11101, 0b11, 0b0110, 0b11, 0,
  872. (outs HPR:$Sd), (ins HPR:$Sm),
  873. NoItinerary, !strconcat("vrint", opc), ".f16\t$Sd, $Sm",
  874. [(set (f16 HPR:$Sd), (node (f16 HPR:$Sm)))]>,
  875. Requires<[HasFullFP16]> {
  876. let Inst{7} = op2;
  877. let Inst{16} = op;
  878. }
  879. def S : ASuI<0b11101, 0b11, 0b0110, 0b11, 0,
  880. (outs SPR:$Sd), (ins SPR:$Sm),
  881. NoItinerary, !strconcat("vrint", opc), ".f32\t$Sd, $Sm",
  882. [(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>,
  883. Requires<[HasFPARMv8]> {
  884. let Inst{7} = op2;
  885. let Inst{16} = op;
  886. }
  887. def D : ADuI<0b11101, 0b11, 0b0110, 0b11, 0,
  888. (outs DPR:$Dd), (ins DPR:$Dm),
  889. NoItinerary, !strconcat("vrint", opc), ".f64\t$Dd, $Dm",
  890. [(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>,
  891. Requires<[HasFPARMv8, HasDPVFP]> {
  892. let Inst{7} = op2;
  893. let Inst{16} = op;
  894. }
  895. def : InstAlias<!strconcat("vrint", opc, "$p.f16.f16\t$Sd, $Sm"),
  896. (!cast<Instruction>(NAME#"H") SPR:$Sd, SPR:$Sm, pred:$p), 0>,
  897. Requires<[HasFullFP16]>;
  898. def : InstAlias<!strconcat("vrint", opc, "$p.f32.f32\t$Sd, $Sm"),
  899. (!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm, pred:$p), 0>,
  900. Requires<[HasFPARMv8]>;
  901. def : InstAlias<!strconcat("vrint", opc, "$p.f64.f64\t$Dd, $Dm"),
  902. (!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm, pred:$p), 0>,
  903. Requires<[HasFPARMv8,HasDPVFP]>;
  904. }
  905. defm VRINTZ : vrint_inst_zrx<"z", 0, 1, ftrunc>;
  906. defm VRINTR : vrint_inst_zrx<"r", 0, 0, fnearbyint>;
  907. defm VRINTX : vrint_inst_zrx<"x", 1, 0, frint>;
  908. multiclass vrint_inst_anpm<string opc, bits<2> rm,
  909. SDPatternOperator node = null_frag> {
  910. let PostEncoderMethod = "", DecoderNamespace = "VFPV8",
  911. isUnpredicable = 1 in {
  912. def H : AHuInp<0b11101, 0b11, 0b1000, 0b01, 0,
  913. (outs HPR:$Sd), (ins HPR:$Sm),
  914. NoItinerary, !strconcat("vrint", opc, ".f16\t$Sd, $Sm"),
  915. [(set (f16 HPR:$Sd), (node (f16 HPR:$Sm)))]>,
  916. Requires<[HasFullFP16]> {
  917. let Inst{17-16} = rm;
  918. }
  919. def S : ASuInp<0b11101, 0b11, 0b1000, 0b01, 0,
  920. (outs SPR:$Sd), (ins SPR:$Sm),
  921. NoItinerary, !strconcat("vrint", opc, ".f32\t$Sd, $Sm"),
  922. [(set (f32 SPR:$Sd), (node (f32 SPR:$Sm)))]>,
  923. Requires<[HasFPARMv8]> {
  924. let Inst{17-16} = rm;
  925. }
  926. def D : ADuInp<0b11101, 0b11, 0b1000, 0b01, 0,
  927. (outs DPR:$Dd), (ins DPR:$Dm),
  928. NoItinerary, !strconcat("vrint", opc, ".f64\t$Dd, $Dm"),
  929. [(set (f64 DPR:$Dd), (node (f64 DPR:$Dm)))]>,
  930. Requires<[HasFPARMv8, HasDPVFP]> {
  931. let Inst{17-16} = rm;
  932. }
  933. }
  934. def : InstAlias<!strconcat("vrint", opc, ".f32.f32\t$Sd, $Sm"),
  935. (!cast<Instruction>(NAME#"S") SPR:$Sd, SPR:$Sm), 0>,
  936. Requires<[HasFPARMv8]>;
  937. def : InstAlias<!strconcat("vrint", opc, ".f64.f64\t$Dd, $Dm"),
  938. (!cast<Instruction>(NAME#"D") DPR:$Dd, DPR:$Dm), 0>,
  939. Requires<[HasFPARMv8,HasDPVFP]>;
  940. }
  941. defm VRINTA : vrint_inst_anpm<"a", 0b00, fround>;
  942. defm VRINTN : vrint_inst_anpm<"n", 0b01, int_arm_neon_vrintn>;
  943. defm VRINTP : vrint_inst_anpm<"p", 0b10, fceil>;
  944. defm VRINTM : vrint_inst_anpm<"m", 0b11, ffloor>;
  945. def VSQRTD : ADuI<0b11101, 0b11, 0b0001, 0b11, 0,
  946. (outs DPR:$Dd), (ins DPR:$Dm),
  947. IIC_fpSQRT64, "vsqrt", ".f64\t$Dd, $Dm",
  948. [(set DPR:$Dd, (fsqrt (f64 DPR:$Dm)))]>,
  949. Sched<[WriteFPSQRT64]>;
  950. def VSQRTS : ASuI<0b11101, 0b11, 0b0001, 0b11, 0,
  951. (outs SPR:$Sd), (ins SPR:$Sm),
  952. IIC_fpSQRT32, "vsqrt", ".f32\t$Sd, $Sm",
  953. [(set SPR:$Sd, (fsqrt SPR:$Sm))]>,
  954. Sched<[WriteFPSQRT32]>;
  955. def VSQRTH : AHuI<0b11101, 0b11, 0b0001, 0b11, 0,
  956. (outs HPR:$Sd), (ins HPR:$Sm),
  957. IIC_fpSQRT16, "vsqrt", ".f16\t$Sd, $Sm",
  958. [(set (f16 HPR:$Sd), (fsqrt (f16 HPR:$Sm)))]>;
  959. let hasSideEffects = 0 in {
  960. let isMoveReg = 1 in {
  961. def VMOVD : ADuI<0b11101, 0b11, 0b0000, 0b01, 0,
  962. (outs DPR:$Dd), (ins DPR:$Dm),
  963. IIC_fpUNA64, "vmov", ".f64\t$Dd, $Dm", []>,
  964. Requires<[HasFPRegs64]>;
  965. def VMOVS : ASuI<0b11101, 0b11, 0b0000, 0b01, 0,
  966. (outs SPR:$Sd), (ins SPR:$Sm),
  967. IIC_fpUNA32, "vmov", ".f32\t$Sd, $Sm", []>,
  968. Requires<[HasFPRegs]>;
  969. } // isMoveReg
  970. let PostEncoderMethod = "", DecoderNamespace = "VFPV8", isUnpredicable = 1 in {
  971. def VMOVH : ASuInp<0b11101, 0b11, 0b0000, 0b01, 0,
  972. (outs SPR:$Sd), (ins SPR:$Sm),
  973. IIC_fpUNA16, "vmovx.f16\t$Sd, $Sm", []>,
  974. Requires<[HasFullFP16]>;
  975. def VINSH : ASuInp<0b11101, 0b11, 0b0000, 0b11, 0,
  976. (outs SPR:$Sd), (ins SPR:$Sm),
  977. IIC_fpUNA16, "vins.f16\t$Sd, $Sm", []>,
  978. Requires<[HasFullFP16]>;
  979. } // PostEncoderMethod
  980. } // hasSideEffects
  981. //===----------------------------------------------------------------------===//
  982. // FP <-> GPR Copies. Int <-> FP Conversions.
  983. //
  984. let isMoveReg = 1 in {
  985. def VMOVRS : AVConv2I<0b11100001, 0b1010,
  986. (outs GPR:$Rt), (ins SPR:$Sn),
  987. IIC_fpMOVSI, "vmov", "\t$Rt, $Sn",
  988. [(set GPR:$Rt, (bitconvert SPR:$Sn))]>,
  989. Requires<[HasFPRegs]>,
  990. Sched<[WriteFPMOV]> {
  991. // Instruction operands.
  992. bits<4> Rt;
  993. bits<5> Sn;
  994. // Encode instruction operands.
  995. let Inst{19-16} = Sn{4-1};
  996. let Inst{7} = Sn{0};
  997. let Inst{15-12} = Rt;
  998. let Inst{6-5} = 0b00;
  999. let Inst{3-0} = 0b0000;
  1000. // Some single precision VFP instructions may be executed on both NEON and VFP
  1001. // pipelines.
  1002. let D = VFPNeonDomain;
  1003. }
  1004. // Bitcast i32 -> f32. NEON prefers to use VMOVDRR.
  1005. def VMOVSR : AVConv4I<0b11100000, 0b1010,
  1006. (outs SPR:$Sn), (ins GPR:$Rt),
  1007. IIC_fpMOVIS, "vmov", "\t$Sn, $Rt",
  1008. [(set SPR:$Sn, (bitconvert GPR:$Rt))]>,
  1009. Requires<[HasFPRegs, UseVMOVSR]>,
  1010. Sched<[WriteFPMOV]> {
  1011. // Instruction operands.
  1012. bits<5> Sn;
  1013. bits<4> Rt;
  1014. // Encode instruction operands.
  1015. let Inst{19-16} = Sn{4-1};
  1016. let Inst{7} = Sn{0};
  1017. let Inst{15-12} = Rt;
  1018. let Inst{6-5} = 0b00;
  1019. let Inst{3-0} = 0b0000;
  1020. // Some single precision VFP instructions may be executed on both NEON and VFP
  1021. // pipelines.
  1022. let D = VFPNeonDomain;
  1023. }
  1024. } // isMoveReg
  1025. def : Pat<(arm_vmovsr GPR:$Rt), (VMOVSR GPR:$Rt)>, Requires<[HasVFP2, UseVMOVSR]>;
  1026. let hasSideEffects = 0 in {
  1027. def VMOVRRD : AVConv3I<0b11000101, 0b1011,
  1028. (outs GPR:$Rt, GPR:$Rt2), (ins DPR:$Dm),
  1029. IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $Dm",
  1030. [(set GPR:$Rt, GPR:$Rt2, (arm_fmrrd DPR:$Dm))]>,
  1031. Requires<[HasFPRegs]>,
  1032. Sched<[WriteFPMOV]> {
  1033. // Instruction operands.
  1034. bits<5> Dm;
  1035. bits<4> Rt;
  1036. bits<4> Rt2;
  1037. // Encode instruction operands.
  1038. let Inst{3-0} = Dm{3-0};
  1039. let Inst{5} = Dm{4};
  1040. let Inst{15-12} = Rt;
  1041. let Inst{19-16} = Rt2;
  1042. let Inst{7-6} = 0b00;
  1043. // Some single precision VFP instructions may be executed on both NEON and VFP
  1044. // pipelines.
  1045. let D = VFPNeonDomain;
  1046. // This instruction is equivalent to
  1047. // $Rt = EXTRACT_SUBREG $Dm, ssub_0
  1048. // $Rt2 = EXTRACT_SUBREG $Dm, ssub_1
  1049. let isExtractSubreg = 1;
  1050. }
  1051. def VMOVRRS : AVConv3I<0b11000101, 0b1010,
  1052. (outs GPR:$Rt, GPR:$Rt2), (ins SPR:$src1, SPR:$src2),
  1053. IIC_fpMOVDI, "vmov", "\t$Rt, $Rt2, $src1, $src2",
  1054. [/* For disassembly only; pattern left blank */]>,
  1055. Requires<[HasFPRegs]>,
  1056. Sched<[WriteFPMOV]> {
  1057. bits<5> src1;
  1058. bits<4> Rt;
  1059. bits<4> Rt2;
  1060. // Encode instruction operands.
  1061. let Inst{3-0} = src1{4-1};
  1062. let Inst{5} = src1{0};
  1063. let Inst{15-12} = Rt;
  1064. let Inst{19-16} = Rt2;
  1065. let Inst{7-6} = 0b00;
  1066. // Some single precision VFP instructions may be executed on both NEON and VFP
  1067. // pipelines.
  1068. let D = VFPNeonDomain;
  1069. let DecoderMethod = "DecodeVMOVRRS";
  1070. }
  1071. } // hasSideEffects
  1072. // FMDHR: GPR -> SPR
  1073. // FMDLR: GPR -> SPR
  1074. def VMOVDRR : AVConv5I<0b11000100, 0b1011,
  1075. (outs DPR:$Dm), (ins GPR:$Rt, GPR:$Rt2),
  1076. IIC_fpMOVID, "vmov", "\t$Dm, $Rt, $Rt2",
  1077. [(set DPR:$Dm, (arm_fmdrr GPR:$Rt, GPR:$Rt2))]>,
  1078. Requires<[HasFPRegs]>,
  1079. Sched<[WriteFPMOV]> {
  1080. // Instruction operands.
  1081. bits<5> Dm;
  1082. bits<4> Rt;
  1083. bits<4> Rt2;
  1084. // Encode instruction operands.
  1085. let Inst{3-0} = Dm{3-0};
  1086. let Inst{5} = Dm{4};
  1087. let Inst{15-12} = Rt;
  1088. let Inst{19-16} = Rt2;
  1089. let Inst{7-6} = 0b00;
  1090. // Some single precision VFP instructions may be executed on both NEON and VFP
  1091. // pipelines.
  1092. let D = VFPNeonDomain;
  1093. // This instruction is equivalent to
  1094. // $Dm = REG_SEQUENCE $Rt, ssub_0, $Rt2, ssub_1
  1095. let isRegSequence = 1;
  1096. }
  1097. // Hoist an fabs or a fneg of a value coming from integer registers
  1098. // and do the fabs/fneg on the integer value. This is never a lose
  1099. // and could enable the conversion to float to be removed completely.
  1100. def : Pat<(fabs (arm_fmdrr GPR:$Rl, GPR:$Rh)),
  1101. (VMOVDRR GPR:$Rl, (BFC GPR:$Rh, (i32 0x7FFFFFFF)))>,
  1102. Requires<[IsARM, HasV6T2]>;
  1103. def : Pat<(fabs (arm_fmdrr GPR:$Rl, GPR:$Rh)),
  1104. (VMOVDRR GPR:$Rl, (t2BFC GPR:$Rh, (i32 0x7FFFFFFF)))>,
  1105. Requires<[IsThumb2, HasV6T2]>;
  1106. def : Pat<(fneg (arm_fmdrr GPR:$Rl, GPR:$Rh)),
  1107. (VMOVDRR GPR:$Rl, (EORri GPR:$Rh, (i32 0x80000000)))>,
  1108. Requires<[IsARM]>;
  1109. def : Pat<(fneg (arm_fmdrr GPR:$Rl, GPR:$Rh)),
  1110. (VMOVDRR GPR:$Rl, (t2EORri GPR:$Rh, (i32 0x80000000)))>,
  1111. Requires<[IsThumb2]>;
  1112. let hasSideEffects = 0 in
  1113. def VMOVSRR : AVConv5I<0b11000100, 0b1010,
  1114. (outs SPR:$dst1, SPR:$dst2), (ins GPR:$src1, GPR:$src2),
  1115. IIC_fpMOVID, "vmov", "\t$dst1, $dst2, $src1, $src2",
  1116. [/* For disassembly only; pattern left blank */]>,
  1117. Requires<[HasFPRegs]>,
  1118. Sched<[WriteFPMOV]> {
  1119. // Instruction operands.
  1120. bits<5> dst1;
  1121. bits<4> src1;
  1122. bits<4> src2;
  1123. // Encode instruction operands.
  1124. let Inst{3-0} = dst1{4-1};
  1125. let Inst{5} = dst1{0};
  1126. let Inst{15-12} = src1;
  1127. let Inst{19-16} = src2;
  1128. let Inst{7-6} = 0b00;
  1129. // Some single precision VFP instructions may be executed on both NEON and VFP
  1130. // pipelines.
  1131. let D = VFPNeonDomain;
  1132. let DecoderMethod = "DecodeVMOVSRR";
  1133. }
  1134. // Move H->R, clearing top 16 bits
  1135. def VMOVRH : AVConv2I<0b11100001, 0b1001,
  1136. (outs rGPR:$Rt), (ins HPR:$Sn),
  1137. IIC_fpMOVSI, "vmov", ".f16\t$Rt, $Sn",
  1138. []>,
  1139. Requires<[HasFPRegs16]>,
  1140. Sched<[WriteFPMOV]> {
  1141. // Instruction operands.
  1142. bits<4> Rt;
  1143. bits<5> Sn;
  1144. // Encode instruction operands.
  1145. let Inst{19-16} = Sn{4-1};
  1146. let Inst{7} = Sn{0};
  1147. let Inst{15-12} = Rt;
  1148. let Inst{6-5} = 0b00;
  1149. let Inst{3-0} = 0b0000;
  1150. let isUnpredicable = 1;
  1151. }
  1152. // Move R->H, clearing top 16 bits
  1153. def VMOVHR : AVConv4I<0b11100000, 0b1001,
  1154. (outs HPR:$Sn), (ins rGPR:$Rt),
  1155. IIC_fpMOVIS, "vmov", ".f16\t$Sn, $Rt",
  1156. []>,
  1157. Requires<[HasFPRegs16]>,
  1158. Sched<[WriteFPMOV]> {
  1159. // Instruction operands.
  1160. bits<5> Sn;
  1161. bits<4> Rt;
  1162. // Encode instruction operands.
  1163. let Inst{19-16} = Sn{4-1};
  1164. let Inst{7} = Sn{0};
  1165. let Inst{15-12} = Rt;
  1166. let Inst{6-5} = 0b00;
  1167. let Inst{3-0} = 0b0000;
  1168. let isUnpredicable = 1;
  1169. }
  1170. def : FPRegs16Pat<(arm_vmovrh (f16 HPR:$Sn)), (VMOVRH (f16 HPR:$Sn))>;
  1171. def : FPRegs16Pat<(arm_vmovrh (bf16 HPR:$Sn)), (VMOVRH (bf16 HPR:$Sn))>;
  1172. def : FPRegs16Pat<(f16 (arm_vmovhr rGPR:$Rt)), (VMOVHR rGPR:$Rt)>;
  1173. def : FPRegs16Pat<(bf16 (arm_vmovhr rGPR:$Rt)), (VMOVHR rGPR:$Rt)>;
  1174. // FMRDH: SPR -> GPR
  1175. // FMRDL: SPR -> GPR
  1176. // FMRRS: SPR -> GPR
  1177. // FMRX: SPR system reg -> GPR
  1178. // FMSRR: GPR -> SPR
  1179. // FMXR: GPR -> VFP system reg
  1180. // Int -> FP:
  1181. class AVConv1IDs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
  1182. bits<4> opcod4, dag oops, dag iops,
  1183. InstrItinClass itin, string opc, string asm,
  1184. list<dag> pattern>
  1185. : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
  1186. pattern> {
  1187. // Instruction operands.
  1188. bits<5> Dd;
  1189. bits<5> Sm;
  1190. // Encode instruction operands.
  1191. let Inst{3-0} = Sm{4-1};
  1192. let Inst{5} = Sm{0};
  1193. let Inst{15-12} = Dd{3-0};
  1194. let Inst{22} = Dd{4};
  1195. let Predicates = [HasVFP2, HasDPVFP];
  1196. let hasSideEffects = 0;
  1197. }
  1198. class AVConv1InSs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
  1199. bits<4> opcod4, dag oops, dag iops,InstrItinClass itin,
  1200. string opc, string asm, list<dag> pattern>
  1201. : AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
  1202. pattern> {
  1203. // Instruction operands.
  1204. bits<5> Sd;
  1205. bits<5> Sm;
  1206. // Encode instruction operands.
  1207. let Inst{3-0} = Sm{4-1};
  1208. let Inst{5} = Sm{0};
  1209. let Inst{15-12} = Sd{4-1};
  1210. let Inst{22} = Sd{0};
  1211. let hasSideEffects = 0;
  1212. }
  1213. class AVConv1IHs_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
  1214. bits<4> opcod4, dag oops, dag iops,
  1215. InstrItinClass itin, string opc, string asm,
  1216. list<dag> pattern>
  1217. : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
  1218. pattern> {
  1219. // Instruction operands.
  1220. bits<5> Sd;
  1221. bits<5> Sm;
  1222. // Encode instruction operands.
  1223. let Inst{3-0} = Sm{4-1};
  1224. let Inst{5} = Sm{0};
  1225. let Inst{15-12} = Sd{4-1};
  1226. let Inst{22} = Sd{0};
  1227. let Predicates = [HasFullFP16];
  1228. let hasSideEffects = 0;
  1229. }
  1230. def VSITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
  1231. (outs DPR:$Dd), (ins SPR:$Sm),
  1232. IIC_fpCVTID, "vcvt", ".f64.s32\t$Dd, $Sm",
  1233. []>,
  1234. Sched<[WriteFPCVT]> {
  1235. let Inst{7} = 1; // s32
  1236. }
  1237. let Predicates=[HasVFP2, HasDPVFP] in {
  1238. def : VFPPat<(f64 (sint_to_fp GPR:$a)),
  1239. (VSITOD (COPY_TO_REGCLASS GPR:$a, SPR))>;
  1240. def : VFPPat<(f64 (sint_to_fp (i32 (alignedload32 addrmode5:$a)))),
  1241. (VSITOD (VLDRS addrmode5:$a))>;
  1242. }
  1243. def VSITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
  1244. (outs SPR:$Sd),(ins SPR:$Sm),
  1245. IIC_fpCVTIS, "vcvt", ".f32.s32\t$Sd, $Sm",
  1246. []>,
  1247. Sched<[WriteFPCVT]> {
  1248. let Inst{7} = 1; // s32
  1249. // Some single precision VFP instructions may be executed on both NEON and
  1250. // VFP pipelines on A8.
  1251. let D = VFPNeonA8Domain;
  1252. }
  1253. def : VFPNoNEONPat<(f32 (sint_to_fp GPR:$a)),
  1254. (VSITOS (COPY_TO_REGCLASS GPR:$a, SPR))>;
  1255. def : VFPNoNEONPat<(f32 (sint_to_fp (i32 (alignedload32 addrmode5:$a)))),
  1256. (VSITOS (VLDRS addrmode5:$a))>;
  1257. def VSITOH : AVConv1IHs_Encode<0b11101, 0b11, 0b1000, 0b1001,
  1258. (outs HPR:$Sd), (ins SPR:$Sm),
  1259. IIC_fpCVTIH, "vcvt", ".f16.s32\t$Sd, $Sm",
  1260. []>,
  1261. Sched<[WriteFPCVT]> {
  1262. let Inst{7} = 1; // s32
  1263. let isUnpredicable = 1;
  1264. }
  1265. def : VFPNoNEONPat<(f16 (sint_to_fp GPR:$a)),
  1266. (VSITOH (COPY_TO_REGCLASS GPR:$a, SPR))>;
  1267. def VUITOD : AVConv1IDs_Encode<0b11101, 0b11, 0b1000, 0b1011,
  1268. (outs DPR:$Dd), (ins SPR:$Sm),
  1269. IIC_fpCVTID, "vcvt", ".f64.u32\t$Dd, $Sm",
  1270. []>,
  1271. Sched<[WriteFPCVT]> {
  1272. let Inst{7} = 0; // u32
  1273. }
  1274. let Predicates=[HasVFP2, HasDPVFP] in {
  1275. def : VFPPat<(f64 (uint_to_fp GPR:$a)),
  1276. (VUITOD (COPY_TO_REGCLASS GPR:$a, SPR))>;
  1277. def : VFPPat<(f64 (uint_to_fp (i32 (alignedload32 addrmode5:$a)))),
  1278. (VUITOD (VLDRS addrmode5:$a))>;
  1279. }
  1280. def VUITOS : AVConv1InSs_Encode<0b11101, 0b11, 0b1000, 0b1010,
  1281. (outs SPR:$Sd), (ins SPR:$Sm),
  1282. IIC_fpCVTIS, "vcvt", ".f32.u32\t$Sd, $Sm",
  1283. []>,
  1284. Sched<[WriteFPCVT]> {
  1285. let Inst{7} = 0; // u32
  1286. // Some single precision VFP instructions may be executed on both NEON and
  1287. // VFP pipelines on A8.
  1288. let D = VFPNeonA8Domain;
  1289. }
  1290. def : VFPNoNEONPat<(f32 (uint_to_fp GPR:$a)),
  1291. (VUITOS (COPY_TO_REGCLASS GPR:$a, SPR))>;
  1292. def : VFPNoNEONPat<(f32 (uint_to_fp (i32 (alignedload32 addrmode5:$a)))),
  1293. (VUITOS (VLDRS addrmode5:$a))>;
  1294. def VUITOH : AVConv1IHs_Encode<0b11101, 0b11, 0b1000, 0b1001,
  1295. (outs HPR:$Sd), (ins SPR:$Sm),
  1296. IIC_fpCVTIH, "vcvt", ".f16.u32\t$Sd, $Sm",
  1297. []>,
  1298. Sched<[WriteFPCVT]> {
  1299. let Inst{7} = 0; // u32
  1300. let isUnpredicable = 1;
  1301. }
  1302. def : VFPNoNEONPat<(f16 (uint_to_fp GPR:$a)),
  1303. (VUITOH (COPY_TO_REGCLASS GPR:$a, SPR))>;
  1304. // FP -> Int:
  1305. class AVConv1IsD_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
  1306. bits<4> opcod4, dag oops, dag iops,
  1307. InstrItinClass itin, string opc, string asm,
  1308. list<dag> pattern>
  1309. : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
  1310. pattern> {
  1311. // Instruction operands.
  1312. bits<5> Sd;
  1313. bits<5> Dm;
  1314. // Encode instruction operands.
  1315. let Inst{3-0} = Dm{3-0};
  1316. let Inst{5} = Dm{4};
  1317. let Inst{15-12} = Sd{4-1};
  1318. let Inst{22} = Sd{0};
  1319. let Predicates = [HasVFP2, HasDPVFP];
  1320. let hasSideEffects = 0;
  1321. }
  1322. class AVConv1InsS_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
  1323. bits<4> opcod4, dag oops, dag iops,
  1324. InstrItinClass itin, string opc, string asm,
  1325. list<dag> pattern>
  1326. : AVConv1In<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
  1327. pattern> {
  1328. // Instruction operands.
  1329. bits<5> Sd;
  1330. bits<5> Sm;
  1331. // Encode instruction operands.
  1332. let Inst{3-0} = Sm{4-1};
  1333. let Inst{5} = Sm{0};
  1334. let Inst{15-12} = Sd{4-1};
  1335. let Inst{22} = Sd{0};
  1336. let hasSideEffects = 0;
  1337. }
  1338. class AVConv1IsH_Encode<bits<5> opcod1, bits<2> opcod2, bits<4> opcod3,
  1339. bits<4> opcod4, dag oops, dag iops,
  1340. InstrItinClass itin, string opc, string asm,
  1341. list<dag> pattern>
  1342. : AVConv1I<opcod1, opcod2, opcod3, opcod4, oops, iops, itin, opc, asm,
  1343. pattern> {
  1344. // Instruction operands.
  1345. bits<5> Sd;
  1346. bits<5> Sm;
  1347. // Encode instruction operands.
  1348. let Inst{3-0} = Sm{4-1};
  1349. let Inst{5} = Sm{0};
  1350. let Inst{15-12} = Sd{4-1};
  1351. let Inst{22} = Sd{0};
  1352. let Predicates = [HasFullFP16];
  1353. let hasSideEffects = 0;
  1354. }
  1355. // Always set Z bit in the instruction, i.e. "round towards zero" variants.
  1356. def VTOSIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
  1357. (outs SPR:$Sd), (ins DPR:$Dm),
  1358. IIC_fpCVTDI, "vcvt", ".s32.f64\t$Sd, $Dm",
  1359. []>,
  1360. Sched<[WriteFPCVT]> {
  1361. let Inst{7} = 1; // Z bit
  1362. }
  1363. let Predicates=[HasVFP2, HasDPVFP] in {
  1364. def : VFPPat<(i32 (fp_to_sint (f64 DPR:$a))),
  1365. (COPY_TO_REGCLASS (VTOSIZD DPR:$a), GPR)>;
  1366. def : VFPPat<(alignedstore32 (i32 (fp_to_sint (f64 DPR:$a))), addrmode5:$ptr),
  1367. (VSTRS (VTOSIZD DPR:$a), addrmode5:$ptr)>;
  1368. }
  1369. def VTOSIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
  1370. (outs SPR:$Sd), (ins SPR:$Sm),
  1371. IIC_fpCVTSI, "vcvt", ".s32.f32\t$Sd, $Sm",
  1372. []>,
  1373. Sched<[WriteFPCVT]> {
  1374. let Inst{7} = 1; // Z bit
  1375. // Some single precision VFP instructions may be executed on both NEON and
  1376. // VFP pipelines on A8.
  1377. let D = VFPNeonA8Domain;
  1378. }
  1379. def : VFPNoNEONPat<(i32 (fp_to_sint SPR:$a)),
  1380. (COPY_TO_REGCLASS (VTOSIZS SPR:$a), GPR)>;
  1381. def : VFPNoNEONPat<(alignedstore32 (i32 (fp_to_sint (f32 SPR:$a))),
  1382. addrmode5:$ptr),
  1383. (VSTRS (VTOSIZS SPR:$a), addrmode5:$ptr)>;
  1384. def VTOSIZH : AVConv1IsH_Encode<0b11101, 0b11, 0b1101, 0b1001,
  1385. (outs SPR:$Sd), (ins HPR:$Sm),
  1386. IIC_fpCVTHI, "vcvt", ".s32.f16\t$Sd, $Sm",
  1387. []>,
  1388. Sched<[WriteFPCVT]> {
  1389. let Inst{7} = 1; // Z bit
  1390. let isUnpredicable = 1;
  1391. }
  1392. def : VFPNoNEONPat<(i32 (fp_to_sint (f16 HPR:$a))),
  1393. (COPY_TO_REGCLASS (VTOSIZH (f16 HPR:$a)), GPR)>;
  1394. def VTOUIZD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
  1395. (outs SPR:$Sd), (ins DPR:$Dm),
  1396. IIC_fpCVTDI, "vcvt", ".u32.f64\t$Sd, $Dm",
  1397. []>,
  1398. Sched<[WriteFPCVT]> {
  1399. let Inst{7} = 1; // Z bit
  1400. }
  1401. let Predicates=[HasVFP2, HasDPVFP] in {
  1402. def : VFPPat<(i32 (fp_to_uint (f64 DPR:$a))),
  1403. (COPY_TO_REGCLASS (VTOUIZD DPR:$a), GPR)>;
  1404. def : VFPPat<(alignedstore32 (i32 (fp_to_uint (f64 DPR:$a))), addrmode5:$ptr),
  1405. (VSTRS (VTOUIZD DPR:$a), addrmode5:$ptr)>;
  1406. }
  1407. def VTOUIZS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
  1408. (outs SPR:$Sd), (ins SPR:$Sm),
  1409. IIC_fpCVTSI, "vcvt", ".u32.f32\t$Sd, $Sm",
  1410. []>,
  1411. Sched<[WriteFPCVT]> {
  1412. let Inst{7} = 1; // Z bit
  1413. // Some single precision VFP instructions may be executed on both NEON and
  1414. // VFP pipelines on A8.
  1415. let D = VFPNeonA8Domain;
  1416. }
  1417. def : VFPNoNEONPat<(i32 (fp_to_uint SPR:$a)),
  1418. (COPY_TO_REGCLASS (VTOUIZS SPR:$a), GPR)>;
  1419. def : VFPNoNEONPat<(alignedstore32 (i32 (fp_to_uint (f32 SPR:$a))),
  1420. addrmode5:$ptr),
  1421. (VSTRS (VTOUIZS SPR:$a), addrmode5:$ptr)>;
  1422. def VTOUIZH : AVConv1IsH_Encode<0b11101, 0b11, 0b1100, 0b1001,
  1423. (outs SPR:$Sd), (ins HPR:$Sm),
  1424. IIC_fpCVTHI, "vcvt", ".u32.f16\t$Sd, $Sm",
  1425. []>,
  1426. Sched<[WriteFPCVT]> {
  1427. let Inst{7} = 1; // Z bit
  1428. let isUnpredicable = 1;
  1429. }
  1430. def : VFPNoNEONPat<(i32 (fp_to_uint (f16 HPR:$a))),
  1431. (COPY_TO_REGCLASS (VTOUIZH (f16 HPR:$a)), GPR)>;
  1432. // And the Z bit '0' variants, i.e. use the rounding mode specified by FPSCR.
  1433. let Uses = [FPSCR] in {
  1434. def VTOSIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1101, 0b1011,
  1435. (outs SPR:$Sd), (ins DPR:$Dm),
  1436. IIC_fpCVTDI, "vcvtr", ".s32.f64\t$Sd, $Dm",
  1437. [(set SPR:$Sd, (int_arm_vcvtr (f64 DPR:$Dm)))]>,
  1438. Sched<[WriteFPCVT]> {
  1439. let Inst{7} = 0; // Z bit
  1440. }
  1441. def VTOSIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1101, 0b1010,
  1442. (outs SPR:$Sd), (ins SPR:$Sm),
  1443. IIC_fpCVTSI, "vcvtr", ".s32.f32\t$Sd, $Sm",
  1444. [(set SPR:$Sd, (int_arm_vcvtr SPR:$Sm))]>,
  1445. Sched<[WriteFPCVT]> {
  1446. let Inst{7} = 0; // Z bit
  1447. }
  1448. def VTOSIRH : AVConv1IsH_Encode<0b11101, 0b11, 0b1101, 0b1001,
  1449. (outs SPR:$Sd), (ins SPR:$Sm),
  1450. IIC_fpCVTHI, "vcvtr", ".s32.f16\t$Sd, $Sm",
  1451. []>,
  1452. Sched<[WriteFPCVT]> {
  1453. let Inst{7} = 0; // Z bit
  1454. let isUnpredicable = 1;
  1455. }
  1456. def VTOUIRD : AVConv1IsD_Encode<0b11101, 0b11, 0b1100, 0b1011,
  1457. (outs SPR:$Sd), (ins DPR:$Dm),
  1458. IIC_fpCVTDI, "vcvtr", ".u32.f64\t$Sd, $Dm",
  1459. [(set SPR:$Sd, (int_arm_vcvtru(f64 DPR:$Dm)))]>,
  1460. Sched<[WriteFPCVT]> {
  1461. let Inst{7} = 0; // Z bit
  1462. }
  1463. def VTOUIRS : AVConv1InsS_Encode<0b11101, 0b11, 0b1100, 0b1010,
  1464. (outs SPR:$Sd), (ins SPR:$Sm),
  1465. IIC_fpCVTSI, "vcvtr", ".u32.f32\t$Sd, $Sm",
  1466. [(set SPR:$Sd, (int_arm_vcvtru SPR:$Sm))]>,
  1467. Sched<[WriteFPCVT]> {
  1468. let Inst{7} = 0; // Z bit
  1469. }
  1470. def VTOUIRH : AVConv1IsH_Encode<0b11101, 0b11, 0b1100, 0b1001,
  1471. (outs SPR:$Sd), (ins SPR:$Sm),
  1472. IIC_fpCVTHI, "vcvtr", ".u32.f16\t$Sd, $Sm",
  1473. []>,
  1474. Sched<[WriteFPCVT]> {
  1475. let Inst{7} = 0; // Z bit
  1476. let isUnpredicable = 1;
  1477. }
  1478. }
  1479. // v8.3-a Javascript Convert to Signed fixed-point
  1480. def VJCVT : AVConv1IsD_Encode<0b11101, 0b11, 0b1001, 0b1011,
  1481. (outs SPR:$Sd), (ins DPR:$Dm),
  1482. IIC_fpCVTDI, "vjcvt", ".s32.f64\t$Sd, $Dm",
  1483. []>,
  1484. Requires<[HasFPARMv8, HasV8_3a]> {
  1485. let Inst{7} = 1; // Z bit
  1486. }
  1487. // Convert between floating-point and fixed-point
  1488. // Data type for fixed-point naming convention:
  1489. // S16 (U=0, sx=0) -> SH
  1490. // U16 (U=1, sx=0) -> UH
  1491. // S32 (U=0, sx=1) -> SL
  1492. // U32 (U=1, sx=1) -> UL
  1493. let Constraints = "$a = $dst" in {
  1494. // FP to Fixed-Point:
  1495. // Single Precision register
  1496. class AVConv1XInsS_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,
  1497. bit op5, dag oops, dag iops, InstrItinClass itin,
  1498. string opc, string asm, list<dag> pattern>
  1499. : AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern> {
  1500. bits<5> dst;
  1501. // if dp_operation then UInt(D:Vd) else UInt(Vd:D);
  1502. let Inst{22} = dst{0};
  1503. let Inst{15-12} = dst{4-1};
  1504. let hasSideEffects = 0;
  1505. }
  1506. // Double Precision register
  1507. class AVConv1XInsD_Encode<bits<5> op1, bits<2> op2, bits<4> op3, bits<4> op4,
  1508. bit op5, dag oops, dag iops, InstrItinClass itin,
  1509. string opc, string asm, list<dag> pattern>
  1510. : AVConv1XI<op1, op2, op3, op4, op5, oops, iops, itin, opc, asm, pattern> {
  1511. bits<5> dst;
  1512. // if dp_operation then UInt(D:Vd) else UInt(Vd:D);
  1513. let Inst{22} = dst{4};
  1514. let Inst{15-12} = dst{3-0};
  1515. let hasSideEffects = 0;
  1516. let Predicates = [HasVFP2, HasDPVFP];
  1517. }
  1518. let isUnpredicable = 1 in {
  1519. def VTOSHH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1001, 0,
  1520. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1521. IIC_fpCVTHI, "vcvt", ".s16.f16\t$dst, $a, $fbits", []>,
  1522. Requires<[HasFullFP16]>,
  1523. Sched<[WriteFPCVT]>;
  1524. def VTOUHH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1001, 0,
  1525. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1526. IIC_fpCVTHI, "vcvt", ".u16.f16\t$dst, $a, $fbits", []>,
  1527. Requires<[HasFullFP16]>,
  1528. Sched<[WriteFPCVT]>;
  1529. def VTOSLH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1001, 1,
  1530. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1531. IIC_fpCVTHI, "vcvt", ".s32.f16\t$dst, $a, $fbits", []>,
  1532. Requires<[HasFullFP16]>,
  1533. Sched<[WriteFPCVT]>;
  1534. def VTOULH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1001, 1,
  1535. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1536. IIC_fpCVTHI, "vcvt", ".u32.f16\t$dst, $a, $fbits", []>,
  1537. Requires<[HasFullFP16]>,
  1538. Sched<[WriteFPCVT]>;
  1539. } // End of 'let isUnpredicable = 1 in'
  1540. def VTOSHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 0,
  1541. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1542. IIC_fpCVTSI, "vcvt", ".s16.f32\t$dst, $a, $fbits", []>,
  1543. Sched<[WriteFPCVT]> {
  1544. // Some single precision VFP instructions may be executed on both NEON and
  1545. // VFP pipelines on A8.
  1546. let D = VFPNeonA8Domain;
  1547. }
  1548. def VTOUHS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 0,
  1549. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1550. IIC_fpCVTSI, "vcvt", ".u16.f32\t$dst, $a, $fbits", []>,
  1551. Sched<[WriteFPCVT]> {
  1552. // Some single precision VFP instructions may be executed on both NEON and
  1553. // VFP pipelines on A8.
  1554. let D = VFPNeonA8Domain;
  1555. }
  1556. def VTOSLS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1110, 0b1010, 1,
  1557. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1558. IIC_fpCVTSI, "vcvt", ".s32.f32\t$dst, $a, $fbits", []>,
  1559. Sched<[WriteFPCVT]> {
  1560. // Some single precision VFP instructions may be executed on both NEON and
  1561. // VFP pipelines on A8.
  1562. let D = VFPNeonA8Domain;
  1563. }
  1564. def VTOULS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1111, 0b1010, 1,
  1565. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1566. IIC_fpCVTSI, "vcvt", ".u32.f32\t$dst, $a, $fbits", []>,
  1567. Sched<[WriteFPCVT]> {
  1568. // Some single precision VFP instructions may be executed on both NEON and
  1569. // VFP pipelines on A8.
  1570. let D = VFPNeonA8Domain;
  1571. }
  1572. def VTOSHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 0,
  1573. (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
  1574. IIC_fpCVTDI, "vcvt", ".s16.f64\t$dst, $a, $fbits", []>,
  1575. Sched<[WriteFPCVT]>;
  1576. def VTOUHD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 0,
  1577. (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
  1578. IIC_fpCVTDI, "vcvt", ".u16.f64\t$dst, $a, $fbits", []>,
  1579. Sched<[WriteFPCVT]>;
  1580. def VTOSLD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1110, 0b1011, 1,
  1581. (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
  1582. IIC_fpCVTDI, "vcvt", ".s32.f64\t$dst, $a, $fbits", []>,
  1583. Sched<[WriteFPCVT]>;
  1584. def VTOULD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1111, 0b1011, 1,
  1585. (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
  1586. IIC_fpCVTDI, "vcvt", ".u32.f64\t$dst, $a, $fbits", []>,
  1587. Sched<[WriteFPCVT]>;
  1588. // Fixed-Point to FP:
  1589. let isUnpredicable = 1 in {
  1590. def VSHTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1001, 0,
  1591. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1592. IIC_fpCVTIH, "vcvt", ".f16.s16\t$dst, $a, $fbits", []>,
  1593. Requires<[HasFullFP16]>,
  1594. Sched<[WriteFPCVT]>;
  1595. def VUHTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1001, 0,
  1596. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1597. IIC_fpCVTIH, "vcvt", ".f16.u16\t$dst, $a, $fbits", []>,
  1598. Requires<[HasFullFP16]>,
  1599. Sched<[WriteFPCVT]>;
  1600. def VSLTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1001, 1,
  1601. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1602. IIC_fpCVTIH, "vcvt", ".f16.s32\t$dst, $a, $fbits", []>,
  1603. Requires<[HasFullFP16]>,
  1604. Sched<[WriteFPCVT]>;
  1605. def VULTOH : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1001, 1,
  1606. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1607. IIC_fpCVTIH, "vcvt", ".f16.u32\t$dst, $a, $fbits", []>,
  1608. Requires<[HasFullFP16]>,
  1609. Sched<[WriteFPCVT]>;
  1610. } // End of 'let isUnpredicable = 1 in'
  1611. def VSHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 0,
  1612. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1613. IIC_fpCVTIS, "vcvt", ".f32.s16\t$dst, $a, $fbits", []>,
  1614. Sched<[WriteFPCVT]> {
  1615. // Some single precision VFP instructions may be executed on both NEON and
  1616. // VFP pipelines on A8.
  1617. let D = VFPNeonA8Domain;
  1618. }
  1619. def VUHTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 0,
  1620. (outs SPR:$dst), (ins SPR:$a, fbits16:$fbits),
  1621. IIC_fpCVTIS, "vcvt", ".f32.u16\t$dst, $a, $fbits", []>,
  1622. Sched<[WriteFPCVT]> {
  1623. // Some single precision VFP instructions may be executed on both NEON and
  1624. // VFP pipelines on A8.
  1625. let D = VFPNeonA8Domain;
  1626. }
  1627. def VSLTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1010, 0b1010, 1,
  1628. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1629. IIC_fpCVTIS, "vcvt", ".f32.s32\t$dst, $a, $fbits", []>,
  1630. Sched<[WriteFPCVT]> {
  1631. // Some single precision VFP instructions may be executed on both NEON and
  1632. // VFP pipelines on A8.
  1633. let D = VFPNeonA8Domain;
  1634. }
  1635. def VULTOS : AVConv1XInsS_Encode<0b11101, 0b11, 0b1011, 0b1010, 1,
  1636. (outs SPR:$dst), (ins SPR:$a, fbits32:$fbits),
  1637. IIC_fpCVTIS, "vcvt", ".f32.u32\t$dst, $a, $fbits", []>,
  1638. Sched<[WriteFPCVT]> {
  1639. // Some single precision VFP instructions may be executed on both NEON and
  1640. // VFP pipelines on A8.
  1641. let D = VFPNeonA8Domain;
  1642. }
  1643. def VSHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 0,
  1644. (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
  1645. IIC_fpCVTID, "vcvt", ".f64.s16\t$dst, $a, $fbits", []>,
  1646. Sched<[WriteFPCVT]>;
  1647. def VUHTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 0,
  1648. (outs DPR:$dst), (ins DPR:$a, fbits16:$fbits),
  1649. IIC_fpCVTID, "vcvt", ".f64.u16\t$dst, $a, $fbits", []>,
  1650. Sched<[WriteFPCVT]>;
  1651. def VSLTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1010, 0b1011, 1,
  1652. (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
  1653. IIC_fpCVTID, "vcvt", ".f64.s32\t$dst, $a, $fbits", []>,
  1654. Sched<[WriteFPCVT]>;
  1655. def VULTOD : AVConv1XInsD_Encode<0b11101, 0b11, 0b1011, 0b1011, 1,
  1656. (outs DPR:$dst), (ins DPR:$a, fbits32:$fbits),
  1657. IIC_fpCVTID, "vcvt", ".f64.u32\t$dst, $a, $fbits", []>,
  1658. Sched<[WriteFPCVT]>;
  1659. } // End of 'let Constraints = "$a = $dst" in'
  1660. // BFloat16 - Single precision, unary, predicated
  1661. class BF16_VCVT<string opc, bits<2> op7_6>
  1662. : VFPAI<(outs SPR:$Sd), (ins SPR:$dst, SPR:$Sm),
  1663. VFPUnaryFrm, NoItinerary,
  1664. opc, ".bf16.f32\t$Sd, $Sm", []>,
  1665. RegConstraint<"$dst = $Sd">,
  1666. Requires<[HasBF16]>,
  1667. Sched<[]> {
  1668. bits<5> Sd;
  1669. bits<5> Sm;
  1670. // Encode instruction operands.
  1671. let Inst{3-0} = Sm{4-1};
  1672. let Inst{5} = Sm{0};
  1673. let Inst{15-12} = Sd{4-1};
  1674. let Inst{22} = Sd{0};
  1675. let Inst{27-23} = 0b11101; // opcode1
  1676. let Inst{21-20} = 0b11; // opcode2
  1677. let Inst{19-16} = 0b0011; // opcode3
  1678. let Inst{11-8} = 0b1001;
  1679. let Inst{7-6} = op7_6;
  1680. let Inst{4} = 0;
  1681. let DecoderNamespace = "VFPV8";
  1682. let hasSideEffects = 0;
  1683. }
  1684. def BF16_VCVTB : BF16_VCVT<"vcvtb", 0b01>;
  1685. def BF16_VCVTT : BF16_VCVT<"vcvtt", 0b11>;
  1686. //===----------------------------------------------------------------------===//
  1687. // FP Multiply-Accumulate Operations.
  1688. //
  1689. def VMLAD : ADbI<0b11100, 0b00, 0, 0,
  1690. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1691. IIC_fpMAC64, "vmla", ".f64\t$Dd, $Dn, $Dm",
  1692. [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
  1693. (f64 DPR:$Ddin)))]>,
  1694. RegConstraint<"$Ddin = $Dd">,
  1695. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>,
  1696. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1697. def VMLAS : ASbIn<0b11100, 0b00, 0, 0,
  1698. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1699. IIC_fpMAC32, "vmla", ".f32\t$Sd, $Sn, $Sm",
  1700. [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
  1701. SPR:$Sdin))]>,
  1702. RegConstraint<"$Sdin = $Sd">,
  1703. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>,
  1704. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1705. // Some single precision VFP instructions may be executed on both NEON and
  1706. // VFP pipelines on A8.
  1707. let D = VFPNeonA8Domain;
  1708. }
  1709. def VMLAH : AHbI<0b11100, 0b00, 0, 0,
  1710. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1711. IIC_fpMAC16, "vmla", ".f16\t$Sd, $Sn, $Sm",
  1712. [(set (f16 HPR:$Sd), (fadd_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)),
  1713. (f16 HPR:$Sdin)))]>,
  1714. RegConstraint<"$Sdin = $Sd">,
  1715. Requires<[HasFullFP16,UseFPVMLx]>;
  1716. def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
  1717. (VMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
  1718. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>;
  1719. def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
  1720. (VMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
  1721. Requires<[HasVFP2,DontUseNEONForFP, UseFPVMLx]>;
  1722. def : Pat<(fadd_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)),
  1723. (VMLAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1724. Requires<[HasFullFP16,DontUseNEONForFP, UseFPVMLx]>;
  1725. def VMLSD : ADbI<0b11100, 0b00, 1, 0,
  1726. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1727. IIC_fpMAC64, "vmls", ".f64\t$Dd, $Dn, $Dm",
  1728. [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
  1729. (f64 DPR:$Ddin)))]>,
  1730. RegConstraint<"$Ddin = $Dd">,
  1731. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>,
  1732. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1733. def VMLSS : ASbIn<0b11100, 0b00, 1, 0,
  1734. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1735. IIC_fpMAC32, "vmls", ".f32\t$Sd, $Sn, $Sm",
  1736. [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
  1737. SPR:$Sdin))]>,
  1738. RegConstraint<"$Sdin = $Sd">,
  1739. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>,
  1740. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1741. // Some single precision VFP instructions may be executed on both NEON and
  1742. // VFP pipelines on A8.
  1743. let D = VFPNeonA8Domain;
  1744. }
  1745. def VMLSH : AHbI<0b11100, 0b00, 1, 0,
  1746. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1747. IIC_fpMAC16, "vmls", ".f16\t$Sd, $Sn, $Sm",
  1748. [(set (f16 HPR:$Sd), (fadd_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))),
  1749. (f16 HPR:$Sdin)))]>,
  1750. RegConstraint<"$Sdin = $Sd">,
  1751. Requires<[HasFullFP16,UseFPVMLx]>;
  1752. def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
  1753. (VMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
  1754. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>;
  1755. def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
  1756. (VMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
  1757. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
  1758. def : Pat<(fsub_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)),
  1759. (VMLSH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1760. Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>;
  1761. def VNMLAD : ADbI<0b11100, 0b01, 1, 0,
  1762. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1763. IIC_fpMAC64, "vnmla", ".f64\t$Dd, $Dn, $Dm",
  1764. [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
  1765. (f64 DPR:$Ddin)))]>,
  1766. RegConstraint<"$Ddin = $Dd">,
  1767. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>,
  1768. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1769. def VNMLAS : ASbI<0b11100, 0b01, 1, 0,
  1770. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1771. IIC_fpMAC32, "vnmla", ".f32\t$Sd, $Sn, $Sm",
  1772. [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
  1773. SPR:$Sdin))]>,
  1774. RegConstraint<"$Sdin = $Sd">,
  1775. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>,
  1776. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1777. // Some single precision VFP instructions may be executed on both NEON and
  1778. // VFP pipelines on A8.
  1779. let D = VFPNeonA8Domain;
  1780. }
  1781. def VNMLAH : AHbI<0b11100, 0b01, 1, 0,
  1782. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1783. IIC_fpMAC16, "vnmla", ".f16\t$Sd, $Sn, $Sm",
  1784. [(set (f16 HPR:$Sd), (fsub_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))),
  1785. (f16 HPR:$Sdin)))]>,
  1786. RegConstraint<"$Sdin = $Sd">,
  1787. Requires<[HasFullFP16,UseFPVMLx]>;
  1788. // (-(a * b) - dst) -> -(dst + (a * b))
  1789. def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
  1790. (VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
  1791. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>;
  1792. def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
  1793. (VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
  1794. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
  1795. def : Pat<(fsub_mlx (fneg (fmul_su (f16 HPR:$a), HPR:$b)), HPR:$dstin),
  1796. (VNMLAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1797. Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>;
  1798. // (-dst - (a * b)) -> -(dst + (a * b))
  1799. def : Pat<(fsub_mlx (fneg DPR:$dstin), (fmul_su DPR:$a, (f64 DPR:$b))),
  1800. (VNMLAD DPR:$dstin, DPR:$a, DPR:$b)>,
  1801. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>;
  1802. def : Pat<(fsub_mlx (fneg SPR:$dstin), (fmul_su SPR:$a, SPR:$b)),
  1803. (VNMLAS SPR:$dstin, SPR:$a, SPR:$b)>,
  1804. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
  1805. def : Pat<(fsub_mlx (fneg HPR:$dstin), (fmul_su (f16 HPR:$a), HPR:$b)),
  1806. (VNMLAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1807. Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>;
  1808. def VNMLSD : ADbI<0b11100, 0b01, 0, 0,
  1809. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1810. IIC_fpMAC64, "vnmls", ".f64\t$Dd, $Dn, $Dm",
  1811. [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
  1812. (f64 DPR:$Ddin)))]>,
  1813. RegConstraint<"$Ddin = $Dd">,
  1814. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>,
  1815. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1816. def VNMLSS : ASbI<0b11100, 0b01, 0, 0,
  1817. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1818. IIC_fpMAC32, "vnmls", ".f32\t$Sd, $Sn, $Sm",
  1819. [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
  1820. RegConstraint<"$Sdin = $Sd">,
  1821. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>,
  1822. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1823. // Some single precision VFP instructions may be executed on both NEON and
  1824. // VFP pipelines on A8.
  1825. let D = VFPNeonA8Domain;
  1826. }
  1827. def VNMLSH : AHbI<0b11100, 0b01, 0, 0,
  1828. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1829. IIC_fpMAC16, "vnmls", ".f16\t$Sd, $Sn, $Sm",
  1830. [(set (f16 HPR:$Sd), (fsub_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)), (f16 HPR:$Sdin)))]>,
  1831. RegConstraint<"$Sdin = $Sd">,
  1832. Requires<[HasFullFP16,UseFPVMLx]>;
  1833. def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
  1834. (VNMLSD DPR:$dstin, DPR:$a, DPR:$b)>,
  1835. Requires<[HasVFP2,HasDPVFP,UseFPVMLx]>;
  1836. def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
  1837. (VNMLSS SPR:$dstin, SPR:$a, SPR:$b)>,
  1838. Requires<[HasVFP2,DontUseNEONForFP,UseFPVMLx]>;
  1839. def : Pat<(fsub_mlx (fmul_su (f16 HPR:$a), HPR:$b), HPR:$dstin),
  1840. (VNMLSH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1841. Requires<[HasFullFP16,DontUseNEONForFP,UseFPVMLx]>;
  1842. //===----------------------------------------------------------------------===//
  1843. // Fused FP Multiply-Accumulate Operations.
  1844. //
  1845. def VFMAD : ADbI<0b11101, 0b10, 0, 0,
  1846. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1847. IIC_fpFMAC64, "vfma", ".f64\t$Dd, $Dn, $Dm",
  1848. [(set DPR:$Dd, (fadd_mlx (fmul_su DPR:$Dn, DPR:$Dm),
  1849. (f64 DPR:$Ddin)))]>,
  1850. RegConstraint<"$Ddin = $Dd">,
  1851. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>,
  1852. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1853. def VFMAS : ASbIn<0b11101, 0b10, 0, 0,
  1854. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1855. IIC_fpFMAC32, "vfma", ".f32\t$Sd, $Sn, $Sm",
  1856. [(set SPR:$Sd, (fadd_mlx (fmul_su SPR:$Sn, SPR:$Sm),
  1857. SPR:$Sdin))]>,
  1858. RegConstraint<"$Sdin = $Sd">,
  1859. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>,
  1860. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1861. // Some single precision VFP instructions may be executed on both NEON and
  1862. // VFP pipelines.
  1863. }
  1864. def VFMAH : AHbI<0b11101, 0b10, 0, 0,
  1865. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1866. IIC_fpFMAC16, "vfma", ".f16\t$Sd, $Sn, $Sm",
  1867. [(set (f16 HPR:$Sd), (fadd_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)),
  1868. (f16 HPR:$Sdin)))]>,
  1869. RegConstraint<"$Sdin = $Sd">,
  1870. Requires<[HasFullFP16,UseFusedMAC]>,
  1871. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1872. def : Pat<(fadd_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
  1873. (VFMAD DPR:$dstin, DPR:$a, DPR:$b)>,
  1874. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
  1875. def : Pat<(fadd_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
  1876. (VFMAS SPR:$dstin, SPR:$a, SPR:$b)>,
  1877. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
  1878. def : Pat<(fadd_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)),
  1879. (VFMAH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1880. Requires<[HasFullFP16,DontUseNEONForFP,UseFusedMAC]>;
  1881. // Match @llvm.fma.* intrinsics
  1882. // (fma x, y, z) -> (vfms z, x, y)
  1883. def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, DPR:$Ddin)),
  1884. (VFMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
  1885. Requires<[HasVFP4,HasDPVFP]>;
  1886. def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, SPR:$Sdin)),
  1887. (VFMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
  1888. Requires<[HasVFP4]>;
  1889. def : Pat<(f16 (fma HPR:$Sn, HPR:$Sm, (f16 HPR:$Sdin))),
  1890. (VFMAH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>,
  1891. Requires<[HasFullFP16]>;
  1892. def VFMSD : ADbI<0b11101, 0b10, 1, 0,
  1893. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1894. IIC_fpFMAC64, "vfms", ".f64\t$Dd, $Dn, $Dm",
  1895. [(set DPR:$Dd, (fadd_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
  1896. (f64 DPR:$Ddin)))]>,
  1897. RegConstraint<"$Ddin = $Dd">,
  1898. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>,
  1899. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1900. def VFMSS : ASbIn<0b11101, 0b10, 1, 0,
  1901. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1902. IIC_fpFMAC32, "vfms", ".f32\t$Sd, $Sn, $Sm",
  1903. [(set SPR:$Sd, (fadd_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
  1904. SPR:$Sdin))]>,
  1905. RegConstraint<"$Sdin = $Sd">,
  1906. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>,
  1907. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1908. // Some single precision VFP instructions may be executed on both NEON and
  1909. // VFP pipelines.
  1910. }
  1911. def VFMSH : AHbI<0b11101, 0b10, 1, 0,
  1912. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1913. IIC_fpFMAC16, "vfms", ".f16\t$Sd, $Sn, $Sm",
  1914. [(set (f16 HPR:$Sd), (fadd_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))),
  1915. (f16 HPR:$Sdin)))]>,
  1916. RegConstraint<"$Sdin = $Sd">,
  1917. Requires<[HasFullFP16,UseFusedMAC]>,
  1918. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1919. def : Pat<(fsub_mlx DPR:$dstin, (fmul_su DPR:$a, (f64 DPR:$b))),
  1920. (VFMSD DPR:$dstin, DPR:$a, DPR:$b)>,
  1921. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
  1922. def : Pat<(fsub_mlx SPR:$dstin, (fmul_su SPR:$a, SPR:$b)),
  1923. (VFMSS SPR:$dstin, SPR:$a, SPR:$b)>,
  1924. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
  1925. def : Pat<(fsub_mlx HPR:$dstin, (fmul_su (f16 HPR:$a), HPR:$b)),
  1926. (VFMSH HPR:$dstin, (f16 HPR:$a), HPR:$b)>,
  1927. Requires<[HasFullFP16,DontUseNEONForFP,UseFusedMAC]>;
  1928. // Match @llvm.fma.* intrinsics
  1929. // (fma (fneg x), y, z) -> (vfms z, x, y)
  1930. def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin)),
  1931. (VFMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
  1932. Requires<[HasVFP4,HasDPVFP]>;
  1933. def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin)),
  1934. (VFMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
  1935. Requires<[HasVFP4]>;
  1936. def : Pat<(f16 (fma (fneg (f16 HPR:$Sn)), (f16 HPR:$Sm), (f16 HPR:$Sdin))),
  1937. (VFMSH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>,
  1938. Requires<[HasFullFP16]>;
  1939. def VFNMAD : ADbI<0b11101, 0b01, 1, 0,
  1940. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1941. IIC_fpFMAC64, "vfnma", ".f64\t$Dd, $Dn, $Dm",
  1942. [(set DPR:$Dd,(fsub_mlx (fneg (fmul_su DPR:$Dn,DPR:$Dm)),
  1943. (f64 DPR:$Ddin)))]>,
  1944. RegConstraint<"$Ddin = $Dd">,
  1945. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>,
  1946. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1947. def VFNMAS : ASbI<0b11101, 0b01, 1, 0,
  1948. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  1949. IIC_fpFMAC32, "vfnma", ".f32\t$Sd, $Sn, $Sm",
  1950. [(set SPR:$Sd, (fsub_mlx (fneg (fmul_su SPR:$Sn, SPR:$Sm)),
  1951. SPR:$Sdin))]>,
  1952. RegConstraint<"$Sdin = $Sd">,
  1953. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>,
  1954. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  1955. // Some single precision VFP instructions may be executed on both NEON and
  1956. // VFP pipelines.
  1957. }
  1958. def VFNMAH : AHbI<0b11101, 0b01, 1, 0,
  1959. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  1960. IIC_fpFMAC16, "vfnma", ".f16\t$Sd, $Sn, $Sm",
  1961. [(set (f16 HPR:$Sd), (fsub_mlx (fneg (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm))),
  1962. (f16 HPR:$Sdin)))]>,
  1963. RegConstraint<"$Sdin = $Sd">,
  1964. Requires<[HasFullFP16,UseFusedMAC]>,
  1965. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  1966. def : Pat<(fsub_mlx (fneg (fmul_su DPR:$a, (f64 DPR:$b))), DPR:$dstin),
  1967. (VFNMAD DPR:$dstin, DPR:$a, DPR:$b)>,
  1968. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
  1969. def : Pat<(fsub_mlx (fneg (fmul_su SPR:$a, SPR:$b)), SPR:$dstin),
  1970. (VFNMAS SPR:$dstin, SPR:$a, SPR:$b)>,
  1971. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
  1972. // Match @llvm.fma.* intrinsics
  1973. // (fneg (fma x, y, z)) -> (vfnma z, x, y)
  1974. def : Pat<(fneg (fma (f64 DPR:$Dn), (f64 DPR:$Dm), (f64 DPR:$Ddin))),
  1975. (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
  1976. Requires<[HasVFP4,HasDPVFP]>;
  1977. def : Pat<(fneg (fma (f32 SPR:$Sn), (f32 SPR:$Sm), (f32 SPR:$Sdin))),
  1978. (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
  1979. Requires<[HasVFP4]>;
  1980. def : Pat<(fneg (fma (f16 HPR:$Sn), (f16 HPR:$Sm), (f16 (f16 HPR:$Sdin)))),
  1981. (VFNMAH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>,
  1982. Requires<[HasFullFP16]>;
  1983. // (fma (fneg x), y, (fneg z)) -> (vfnma z, x, y)
  1984. def : Pat<(f64 (fma (fneg DPR:$Dn), DPR:$Dm, (fneg DPR:$Ddin))),
  1985. (VFNMAD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
  1986. Requires<[HasVFP4,HasDPVFP]>;
  1987. def : Pat<(f32 (fma (fneg SPR:$Sn), SPR:$Sm, (fneg SPR:$Sdin))),
  1988. (VFNMAS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
  1989. Requires<[HasVFP4]>;
  1990. def : Pat<(f16 (fma (fneg (f16 HPR:$Sn)), (f16 HPR:$Sm), (fneg (f16 HPR:$Sdin)))),
  1991. (VFNMAH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>,
  1992. Requires<[HasFullFP16]>;
  1993. def VFNMSD : ADbI<0b11101, 0b01, 0, 0,
  1994. (outs DPR:$Dd), (ins DPR:$Ddin, DPR:$Dn, DPR:$Dm),
  1995. IIC_fpFMAC64, "vfnms", ".f64\t$Dd, $Dn, $Dm",
  1996. [(set DPR:$Dd, (fsub_mlx (fmul_su DPR:$Dn, DPR:$Dm),
  1997. (f64 DPR:$Ddin)))]>,
  1998. RegConstraint<"$Ddin = $Dd">,
  1999. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>,
  2000. Sched<[WriteFPMAC64, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  2001. def VFNMSS : ASbI<0b11101, 0b01, 0, 0,
  2002. (outs SPR:$Sd), (ins SPR:$Sdin, SPR:$Sn, SPR:$Sm),
  2003. IIC_fpFMAC32, "vfnms", ".f32\t$Sd, $Sn, $Sm",
  2004. [(set SPR:$Sd, (fsub_mlx (fmul_su SPR:$Sn, SPR:$Sm), SPR:$Sdin))]>,
  2005. RegConstraint<"$Sdin = $Sd">,
  2006. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>,
  2007. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]> {
  2008. // Some single precision VFP instructions may be executed on both NEON and
  2009. // VFP pipelines.
  2010. }
  2011. def VFNMSH : AHbI<0b11101, 0b01, 0, 0,
  2012. (outs HPR:$Sd), (ins HPR:$Sdin, HPR:$Sn, HPR:$Sm),
  2013. IIC_fpFMAC16, "vfnms", ".f16\t$Sd, $Sn, $Sm",
  2014. [(set (f16 HPR:$Sd), (fsub_mlx (fmul_su (f16 HPR:$Sn), (f16 HPR:$Sm)), (f16 HPR:$Sdin)))]>,
  2015. RegConstraint<"$Sdin = $Sd">,
  2016. Requires<[HasFullFP16,UseFusedMAC]>,
  2017. Sched<[WriteFPMAC32, ReadFPMAC, ReadFPMUL, ReadFPMUL]>;
  2018. def : Pat<(fsub_mlx (fmul_su DPR:$a, (f64 DPR:$b)), DPR:$dstin),
  2019. (VFNMSD DPR:$dstin, DPR:$a, DPR:$b)>,
  2020. Requires<[HasVFP4,HasDPVFP,UseFusedMAC]>;
  2021. def : Pat<(fsub_mlx (fmul_su SPR:$a, SPR:$b), SPR:$dstin),
  2022. (VFNMSS SPR:$dstin, SPR:$a, SPR:$b)>,
  2023. Requires<[HasVFP4,DontUseNEONForFP,UseFusedMAC]>;
  2024. // Match @llvm.fma.* intrinsics
  2025. // (fma x, y, (fneg z)) -> (vfnms z, x, y))
  2026. def : Pat<(f64 (fma DPR:$Dn, DPR:$Dm, (fneg DPR:$Ddin))),
  2027. (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
  2028. Requires<[HasVFP4,HasDPVFP]>;
  2029. def : Pat<(f32 (fma SPR:$Sn, SPR:$Sm, (fneg SPR:$Sdin))),
  2030. (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
  2031. Requires<[HasVFP4]>;
  2032. def : Pat<(f16 (fma (f16 HPR:$Sn), (f16 HPR:$Sm), (fneg (f16 HPR:$Sdin)))),
  2033. (VFNMSH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>,
  2034. Requires<[HasFullFP16]>;
  2035. // (fneg (fma (fneg x), y, z)) -> (vfnms z, x, y)
  2036. def : Pat<(fneg (f64 (fma (fneg DPR:$Dn), DPR:$Dm, DPR:$Ddin))),
  2037. (VFNMSD DPR:$Ddin, DPR:$Dn, DPR:$Dm)>,
  2038. Requires<[HasVFP4,HasDPVFP]>;
  2039. def : Pat<(fneg (f32 (fma (fneg SPR:$Sn), SPR:$Sm, SPR:$Sdin))),
  2040. (VFNMSS SPR:$Sdin, SPR:$Sn, SPR:$Sm)>,
  2041. Requires<[HasVFP4]>;
  2042. def : Pat<(fneg (f16 (fma (fneg (f16 HPR:$Sn)), (f16 HPR:$Sm), (f16 HPR:$Sdin)))),
  2043. (VFNMSH (f16 HPR:$Sdin), (f16 HPR:$Sn), (f16 HPR:$Sm))>,
  2044. Requires<[HasFullFP16]>;
  2045. //===----------------------------------------------------------------------===//
  2046. // FP Conditional moves.
  2047. //
  2048. let hasSideEffects = 0 in {
  2049. def VMOVDcc : PseudoInst<(outs DPR:$Dd), (ins DPR:$Dn, DPR:$Dm, cmovpred:$p),
  2050. IIC_fpUNA64,
  2051. [(set (f64 DPR:$Dd),
  2052. (ARMcmov DPR:$Dn, DPR:$Dm, cmovpred:$p))]>,
  2053. RegConstraint<"$Dn = $Dd">, Requires<[HasFPRegs64]>;
  2054. def VMOVScc : PseudoInst<(outs SPR:$Sd), (ins SPR:$Sn, SPR:$Sm, cmovpred:$p),
  2055. IIC_fpUNA32,
  2056. [(set (f32 SPR:$Sd),
  2057. (ARMcmov SPR:$Sn, SPR:$Sm, cmovpred:$p))]>,
  2058. RegConstraint<"$Sn = $Sd">, Requires<[HasFPRegs]>;
  2059. def VMOVHcc : PseudoInst<(outs HPR:$Sd), (ins HPR:$Sn, HPR:$Sm, cmovpred:$p),
  2060. IIC_fpUNA16,
  2061. [(set (f16 HPR:$Sd),
  2062. (ARMcmov (f16 HPR:$Sn), (f16 HPR:$Sm), cmovpred:$p))]>,
  2063. RegConstraint<"$Sd = $Sn">, Requires<[HasFPRegs]>;
  2064. } // hasSideEffects
  2065. //===----------------------------------------------------------------------===//
  2066. // Move from VFP System Register to ARM core register.
  2067. //
  2068. class MovFromVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
  2069. list<dag> pattern>:
  2070. VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
  2071. // Instruction operand.
  2072. bits<4> Rt;
  2073. let Inst{27-20} = 0b11101111;
  2074. let Inst{19-16} = opc19_16;
  2075. let Inst{15-12} = Rt;
  2076. let Inst{11-8} = 0b1010;
  2077. let Inst{7} = 0;
  2078. let Inst{6-5} = 0b00;
  2079. let Inst{4} = 1;
  2080. let Inst{3-0} = 0b0000;
  2081. let Unpredictable{7-5} = 0b111;
  2082. let Unpredictable{3-0} = 0b1111;
  2083. }
  2084. let DecoderMethod = "DecodeForVMRSandVMSR" in {
  2085. // APSR is the application level alias of CPSR. This FPSCR N, Z, C, V flags
  2086. // to APSR.
  2087. let Defs = [CPSR], Uses = [FPSCR_NZCV], Predicates = [HasFPRegs],
  2088. Rt = 0b1111 /* apsr_nzcv */ in
  2089. def FMSTAT : MovFromVFP<0b0001 /* fpscr */, (outs), (ins),
  2090. "vmrs", "\tAPSR_nzcv, fpscr", [(arm_fmstat)]>;
  2091. // Application level FPSCR -> GPR
  2092. let hasSideEffects = 1, Uses = [FPSCR], Predicates = [HasFPRegs] in
  2093. def VMRS : MovFromVFP<0b0001 /* fpscr */, (outs GPRnopc:$Rt), (ins),
  2094. "vmrs", "\t$Rt, fpscr",
  2095. [(set GPRnopc:$Rt, (int_arm_get_fpscr))]>;
  2096. // System level FPEXC, FPSID -> GPR
  2097. let Uses = [FPSCR] in {
  2098. def VMRS_FPEXC : MovFromVFP<0b1000 /* fpexc */, (outs GPRnopc:$Rt), (ins),
  2099. "vmrs", "\t$Rt, fpexc", []>;
  2100. def VMRS_FPSID : MovFromVFP<0b0000 /* fpsid */, (outs GPRnopc:$Rt), (ins),
  2101. "vmrs", "\t$Rt, fpsid", []>;
  2102. def VMRS_MVFR0 : MovFromVFP<0b0111 /* mvfr0 */, (outs GPRnopc:$Rt), (ins),
  2103. "vmrs", "\t$Rt, mvfr0", []>;
  2104. def VMRS_MVFR1 : MovFromVFP<0b0110 /* mvfr1 */, (outs GPRnopc:$Rt), (ins),
  2105. "vmrs", "\t$Rt, mvfr1", []>;
  2106. let Predicates = [HasFPARMv8] in {
  2107. def VMRS_MVFR2 : MovFromVFP<0b0101 /* mvfr2 */, (outs GPRnopc:$Rt), (ins),
  2108. "vmrs", "\t$Rt, mvfr2", []>;
  2109. }
  2110. def VMRS_FPINST : MovFromVFP<0b1001 /* fpinst */, (outs GPRnopc:$Rt), (ins),
  2111. "vmrs", "\t$Rt, fpinst", []>;
  2112. def VMRS_FPINST2 : MovFromVFP<0b1010 /* fpinst2 */, (outs GPRnopc:$Rt),
  2113. (ins), "vmrs", "\t$Rt, fpinst2", []>;
  2114. let Predicates = [HasV8_1MMainline, HasFPRegs] in {
  2115. // System level FPSCR_NZCVQC -> GPR
  2116. def VMRS_FPSCR_NZCVQC
  2117. : MovFromVFP<0b0010 /* fpscr_nzcvqc */,
  2118. (outs GPR:$Rt), (ins cl_FPSCR_NZCV:$fpscr_in),
  2119. "vmrs", "\t$Rt, fpscr_nzcvqc", []>;
  2120. }
  2121. }
  2122. let Predicates = [HasV8_1MMainline, Has8MSecExt] in {
  2123. // System level FPSCR -> GPR, with context saving for security extensions
  2124. def VMRS_FPCXTNS : MovFromVFP<0b1110 /* fpcxtns */, (outs GPR:$Rt), (ins),
  2125. "vmrs", "\t$Rt, fpcxtns", []>;
  2126. }
  2127. let Predicates = [HasV8_1MMainline, Has8MSecExt] in {
  2128. // System level FPSCR -> GPR, with context saving for security extensions
  2129. def VMRS_FPCXTS : MovFromVFP<0b1111 /* fpcxts */, (outs GPR:$Rt), (ins),
  2130. "vmrs", "\t$Rt, fpcxts", []>;
  2131. }
  2132. let Predicates = [HasV8_1MMainline, HasMVEInt] in {
  2133. // System level VPR/P0 -> GPR
  2134. let Uses = [VPR] in
  2135. def VMRS_VPR : MovFromVFP<0b1100 /* vpr */, (outs GPR:$Rt), (ins),
  2136. "vmrs", "\t$Rt, vpr", []>;
  2137. def VMRS_P0 : MovFromVFP<0b1101 /* p0 */, (outs GPR:$Rt), (ins VCCR:$cond),
  2138. "vmrs", "\t$Rt, p0", []>;
  2139. }
  2140. }
  2141. //===----------------------------------------------------------------------===//
  2142. // Move from ARM core register to VFP System Register.
  2143. //
  2144. class MovToVFP<bits<4> opc19_16, dag oops, dag iops, string opc, string asm,
  2145. list<dag> pattern>:
  2146. VFPAI<oops, iops, VFPMiscFrm, IIC_fpSTAT, opc, asm, pattern> {
  2147. // Instruction operand.
  2148. bits<4> Rt;
  2149. let Inst{27-20} = 0b11101110;
  2150. let Inst{19-16} = opc19_16;
  2151. let Inst{15-12} = Rt;
  2152. let Inst{11-8} = 0b1010;
  2153. let Inst{7} = 0;
  2154. let Inst{6-5} = 0b00;
  2155. let Inst{4} = 1;
  2156. let Inst{3-0} = 0b0000;
  2157. let Predicates = [HasVFP2];
  2158. let Unpredictable{7-5} = 0b111;
  2159. let Unpredictable{3-0} = 0b1111;
  2160. }
  2161. let DecoderMethod = "DecodeForVMRSandVMSR" in {
  2162. let Defs = [FPSCR] in {
  2163. let Predicates = [HasFPRegs] in
  2164. // Application level GPR -> FPSCR
  2165. def VMSR : MovToVFP<0b0001 /* fpscr */, (outs), (ins GPRnopc:$Rt),
  2166. "vmsr", "\tfpscr, $Rt",
  2167. [(int_arm_set_fpscr GPRnopc:$Rt)]>;
  2168. // System level GPR -> FPEXC
  2169. def VMSR_FPEXC : MovToVFP<0b1000 /* fpexc */, (outs), (ins GPRnopc:$Rt),
  2170. "vmsr", "\tfpexc, $Rt", []>;
  2171. // System level GPR -> FPSID
  2172. def VMSR_FPSID : MovToVFP<0b0000 /* fpsid */, (outs), (ins GPRnopc:$Rt),
  2173. "vmsr", "\tfpsid, $Rt", []>;
  2174. def VMSR_FPINST : MovToVFP<0b1001 /* fpinst */, (outs), (ins GPRnopc:$Rt),
  2175. "vmsr", "\tfpinst, $Rt", []>;
  2176. def VMSR_FPINST2 : MovToVFP<0b1010 /* fpinst2 */, (outs), (ins GPRnopc:$Rt),
  2177. "vmsr", "\tfpinst2, $Rt", []>;
  2178. }
  2179. let Predicates = [HasV8_1MMainline, Has8MSecExt] in {
  2180. // System level GPR -> FPSCR with context saving for security extensions
  2181. def VMSR_FPCXTNS : MovToVFP<0b1110 /* fpcxtns */, (outs), (ins GPR:$Rt),
  2182. "vmsr", "\tfpcxtns, $Rt", []>;
  2183. }
  2184. let Predicates = [HasV8_1MMainline, Has8MSecExt] in {
  2185. // System level GPR -> FPSCR with context saving for security extensions
  2186. def VMSR_FPCXTS : MovToVFP<0b1111 /* fpcxts */, (outs), (ins GPR:$Rt),
  2187. "vmsr", "\tfpcxts, $Rt", []>;
  2188. }
  2189. let Predicates = [HasV8_1MMainline, HasFPRegs] in {
  2190. // System level GPR -> FPSCR_NZCVQC
  2191. def VMSR_FPSCR_NZCVQC
  2192. : MovToVFP<0b0010 /* fpscr_nzcvqc */,
  2193. (outs cl_FPSCR_NZCV:$fpscr_out), (ins GPR:$Rt),
  2194. "vmsr", "\tfpscr_nzcvqc, $Rt", []>;
  2195. }
  2196. let Predicates = [HasV8_1MMainline, HasMVEInt] in {
  2197. // System level GPR -> VPR/P0
  2198. let Defs = [VPR] in
  2199. def VMSR_VPR : MovToVFP<0b1100 /* vpr */, (outs), (ins GPR:$Rt),
  2200. "vmsr", "\tvpr, $Rt", []>;
  2201. def VMSR_P0 : MovToVFP<0b1101 /* p0 */, (outs VCCR:$cond), (ins GPR:$Rt),
  2202. "vmsr", "\tp0, $Rt", []>;
  2203. }
  2204. }
  2205. //===----------------------------------------------------------------------===//
  2206. // Misc.
  2207. //
  2208. // Materialize FP immediates. VFP3 only.
  2209. let isReMaterializable = 1 in {
  2210. def FCONSTD : VFPAI<(outs DPR:$Dd), (ins vfp_f64imm:$imm),
  2211. VFPMiscFrm, IIC_fpUNA64,
  2212. "vmov", ".f64\t$Dd, $imm",
  2213. [(set DPR:$Dd, vfp_f64imm:$imm)]>,
  2214. Requires<[HasVFP3,HasDPVFP]> {
  2215. bits<5> Dd;
  2216. bits<8> imm;
  2217. let Inst{27-23} = 0b11101;
  2218. let Inst{22} = Dd{4};
  2219. let Inst{21-20} = 0b11;
  2220. let Inst{19-16} = imm{7-4};
  2221. let Inst{15-12} = Dd{3-0};
  2222. let Inst{11-9} = 0b101;
  2223. let Inst{8} = 1; // Double precision.
  2224. let Inst{7-4} = 0b0000;
  2225. let Inst{3-0} = imm{3-0};
  2226. }
  2227. def FCONSTS : VFPAI<(outs SPR:$Sd), (ins vfp_f32imm:$imm),
  2228. VFPMiscFrm, IIC_fpUNA32,
  2229. "vmov", ".f32\t$Sd, $imm",
  2230. [(set SPR:$Sd, vfp_f32imm:$imm)]>, Requires<[HasVFP3]> {
  2231. bits<5> Sd;
  2232. bits<8> imm;
  2233. let Inst{27-23} = 0b11101;
  2234. let Inst{22} = Sd{0};
  2235. let Inst{21-20} = 0b11;
  2236. let Inst{19-16} = imm{7-4};
  2237. let Inst{15-12} = Sd{4-1};
  2238. let Inst{11-9} = 0b101;
  2239. let Inst{8} = 0; // Single precision.
  2240. let Inst{7-4} = 0b0000;
  2241. let Inst{3-0} = imm{3-0};
  2242. }
  2243. def FCONSTH : VFPAI<(outs HPR:$Sd), (ins vfp_f16imm:$imm),
  2244. VFPMiscFrm, IIC_fpUNA16,
  2245. "vmov", ".f16\t$Sd, $imm",
  2246. [(set (f16 HPR:$Sd), vfp_f16imm:$imm)]>,
  2247. Requires<[HasFullFP16]> {
  2248. bits<5> Sd;
  2249. bits<8> imm;
  2250. let Inst{27-23} = 0b11101;
  2251. let Inst{22} = Sd{0};
  2252. let Inst{21-20} = 0b11;
  2253. let Inst{19-16} = imm{7-4};
  2254. let Inst{15-12} = Sd{4-1};
  2255. let Inst{11-8} = 0b1001; // Half precision
  2256. let Inst{7-4} = 0b0000;
  2257. let Inst{3-0} = imm{3-0};
  2258. let isUnpredicable = 1;
  2259. }
  2260. }
  2261. def : Pat<(f32 (vfp_f32f16imm:$imm)),
  2262. (f32 (COPY_TO_REGCLASS (f16 (FCONSTH (vfp_f32f16imm_xform (f32 $imm)))), SPR))> {
  2263. let Predicates = [HasFullFP16];
  2264. }
  2265. //===----------------------------------------------------------------------===//
  2266. // Assembler aliases.
  2267. //
  2268. // A few mnemonic aliases for pre-unifixed syntax. We don't guarantee to
  2269. // support them all, but supporting at least some of the basics is
  2270. // good to be friendly.
  2271. def : VFP2MnemonicAlias<"flds", "vldr">;
  2272. def : VFP2MnemonicAlias<"fldd", "vldr">;
  2273. def : VFP2MnemonicAlias<"fmrs", "vmov">;
  2274. def : VFP2MnemonicAlias<"fmsr", "vmov">;
  2275. def : VFP2MnemonicAlias<"fsqrts", "vsqrt">;
  2276. def : VFP2MnemonicAlias<"fsqrtd", "vsqrt">;
  2277. def : VFP2MnemonicAlias<"fadds", "vadd.f32">;
  2278. def : VFP2MnemonicAlias<"faddd", "vadd.f64">;
  2279. def : VFP2MnemonicAlias<"fmrdd", "vmov">;
  2280. def : VFP2MnemonicAlias<"fmrds", "vmov">;
  2281. def : VFP2MnemonicAlias<"fmrrd", "vmov">;
  2282. def : VFP2MnemonicAlias<"fmdrr", "vmov">;
  2283. def : VFP2MnemonicAlias<"fmuls", "vmul.f32">;
  2284. def : VFP2MnemonicAlias<"fmuld", "vmul.f64">;
  2285. def : VFP2MnemonicAlias<"fnegs", "vneg.f32">;
  2286. def : VFP2MnemonicAlias<"fnegd", "vneg.f64">;
  2287. def : VFP2MnemonicAlias<"ftosizd", "vcvt.s32.f64">;
  2288. def : VFP2MnemonicAlias<"ftosid", "vcvtr.s32.f64">;
  2289. def : VFP2MnemonicAlias<"ftosizs", "vcvt.s32.f32">;
  2290. def : VFP2MnemonicAlias<"ftosis", "vcvtr.s32.f32">;
  2291. def : VFP2MnemonicAlias<"ftouizd", "vcvt.u32.f64">;
  2292. def : VFP2MnemonicAlias<"ftouid", "vcvtr.u32.f64">;
  2293. def : VFP2MnemonicAlias<"ftouizs", "vcvt.u32.f32">;
  2294. def : VFP2MnemonicAlias<"ftouis", "vcvtr.u32.f32">;
  2295. def : VFP2MnemonicAlias<"fsitod", "vcvt.f64.s32">;
  2296. def : VFP2MnemonicAlias<"fsitos", "vcvt.f32.s32">;
  2297. def : VFP2MnemonicAlias<"fuitod", "vcvt.f64.u32">;
  2298. def : VFP2MnemonicAlias<"fuitos", "vcvt.f32.u32">;
  2299. def : VFP2MnemonicAlias<"fsts", "vstr">;
  2300. def : VFP2MnemonicAlias<"fstd", "vstr">;
  2301. def : VFP2MnemonicAlias<"fmacd", "vmla.f64">;
  2302. def : VFP2MnemonicAlias<"fmacs", "vmla.f32">;
  2303. def : VFP2MnemonicAlias<"fcpys", "vmov.f32">;
  2304. def : VFP2MnemonicAlias<"fcpyd", "vmov.f64">;
  2305. def : VFP2MnemonicAlias<"fcmps", "vcmp.f32">;
  2306. def : VFP2MnemonicAlias<"fcmpd", "vcmp.f64">;
  2307. def : VFP2MnemonicAlias<"fdivs", "vdiv.f32">;
  2308. def : VFP2MnemonicAlias<"fdivd", "vdiv.f64">;
  2309. def : VFP2MnemonicAlias<"fmrx", "vmrs">;
  2310. def : VFP2MnemonicAlias<"fmxr", "vmsr">;
  2311. // Be friendly and accept the old form of zero-compare
  2312. def : VFP2DPInstAlias<"fcmpzd${p} $val", (VCMPZD DPR:$val, pred:$p)>;
  2313. def : VFP2InstAlias<"fcmpzs${p} $val", (VCMPZS SPR:$val, pred:$p)>;
  2314. def : InstAlias<"fmstat${p}", (FMSTAT pred:$p), 0>, Requires<[HasFPRegs]>;
  2315. def : VFP2InstAlias<"fadds${p} $Sd, $Sn, $Sm",
  2316. (VADDS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>;
  2317. def : VFP2DPInstAlias<"faddd${p} $Dd, $Dn, $Dm",
  2318. (VADDD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>;
  2319. def : VFP2InstAlias<"fsubs${p} $Sd, $Sn, $Sm",
  2320. (VSUBS SPR:$Sd, SPR:$Sn, SPR:$Sm, pred:$p)>;
  2321. def : VFP2DPInstAlias<"fsubd${p} $Dd, $Dn, $Dm",
  2322. (VSUBD DPR:$Dd, DPR:$Dn, DPR:$Dm, pred:$p)>;
  2323. // No need for the size suffix on VSQRT. It's implied by the register classes.
  2324. def : VFP2InstAlias<"vsqrt${p} $Sd, $Sm", (VSQRTS SPR:$Sd, SPR:$Sm, pred:$p)>;
  2325. def : VFP2DPInstAlias<"vsqrt${p} $Dd, $Dm", (VSQRTD DPR:$Dd, DPR:$Dm, pred:$p)>;
  2326. // VLDR/VSTR accept an optional type suffix.
  2327. def : VFP2InstAlias<"vldr${p}.32 $Sd, $addr",
  2328. (VLDRS SPR:$Sd, addrmode5:$addr, pred:$p)>;
  2329. def : VFP2InstAlias<"vstr${p}.32 $Sd, $addr",
  2330. (VSTRS SPR:$Sd, addrmode5:$addr, pred:$p)>;
  2331. def : VFP2InstAlias<"vldr${p}.64 $Dd, $addr",
  2332. (VLDRD DPR:$Dd, addrmode5:$addr, pred:$p)>;
  2333. def : VFP2InstAlias<"vstr${p}.64 $Dd, $addr",
  2334. (VSTRD DPR:$Dd, addrmode5:$addr, pred:$p)>;
  2335. // VMOV can accept optional 32-bit or less data type suffix suffix.
  2336. def : VFP2InstAlias<"vmov${p}.8 $Rt, $Sn",
  2337. (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
  2338. def : VFP2InstAlias<"vmov${p}.16 $Rt, $Sn",
  2339. (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
  2340. def : VFP2InstAlias<"vmov${p}.32 $Rt, $Sn",
  2341. (VMOVRS GPR:$Rt, SPR:$Sn, pred:$p)>;
  2342. def : VFP2InstAlias<"vmov${p}.8 $Sn, $Rt",
  2343. (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
  2344. def : VFP2InstAlias<"vmov${p}.16 $Sn, $Rt",
  2345. (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
  2346. def : VFP2InstAlias<"vmov${p}.32 $Sn, $Rt",
  2347. (VMOVSR SPR:$Sn, GPR:$Rt, pred:$p)>;
  2348. def : VFP2InstAlias<"vmov${p}.f64 $Rt, $Rt2, $Dn",
  2349. (VMOVRRD GPR:$Rt, GPR:$Rt2, DPR:$Dn, pred:$p)>;
  2350. def : VFP2InstAlias<"vmov${p}.f64 $Dn, $Rt, $Rt2",
  2351. (VMOVDRR DPR:$Dn, GPR:$Rt, GPR:$Rt2, pred:$p)>;
  2352. // VMOVS doesn't need the .f32 to disambiguate from the NEON encoding the way
  2353. // VMOVD does.
  2354. def : VFP2InstAlias<"vmov${p} $Sd, $Sm",
  2355. (VMOVS SPR:$Sd, SPR:$Sm, pred:$p)>;
  2356. // FCONSTD/FCONSTS alias for vmov.f64/vmov.f32
  2357. // These aliases provide added functionality over vmov.f instructions by
  2358. // allowing users to write assembly containing encoded floating point constants
  2359. // (e.g. #0x70 vs #1.0). Without these alises there is no way for the
  2360. // assembler to accept encoded fp constants (but the equivalent fp-literal is
  2361. // accepted directly by vmovf).
  2362. def : VFP3InstAlias<"fconstd${p} $Dd, $val",
  2363. (FCONSTD DPR:$Dd, vfp_f64imm:$val, pred:$p)>;
  2364. def : VFP3InstAlias<"fconsts${p} $Sd, $val",
  2365. (FCONSTS SPR:$Sd, vfp_f32imm:$val, pred:$p)>;
  2366. def VSCCLRMD : VFPXI<(outs), (ins pred:$p, fp_dreglist_with_vpr:$regs, variable_ops),
  2367. AddrModeNone, 4, IndexModeNone, VFPMiscFrm, NoItinerary,
  2368. "vscclrm{$p}\t$regs", "", []>, Sched<[]> {
  2369. bits<13> regs;
  2370. let Inst{31-23} = 0b111011001;
  2371. let Inst{22} = regs{12};
  2372. let Inst{21-16} = 0b011111;
  2373. let Inst{15-12} = regs{11-8};
  2374. let Inst{11-8} = 0b1011;
  2375. let Inst{7-1} = regs{7-1};
  2376. let Inst{0} = 0;
  2377. let DecoderMethod = "DecodeVSCCLRM";
  2378. list<Predicate> Predicates = [HasV8_1MMainline, Has8MSecExt];
  2379. }
  2380. def VSCCLRMS : VFPXI<(outs), (ins pred:$p, fp_sreglist_with_vpr:$regs, variable_ops),
  2381. AddrModeNone, 4, IndexModeNone, VFPMiscFrm, NoItinerary,
  2382. "vscclrm{$p}\t$regs", "", []>, Sched<[]> {
  2383. bits<13> regs;
  2384. let Inst{31-23} = 0b111011001;
  2385. let Inst{22} = regs{8};
  2386. let Inst{21-16} = 0b011111;
  2387. let Inst{15-12} = regs{12-9};
  2388. let Inst{11-8} = 0b1010;
  2389. let Inst{7-0} = regs{7-0};
  2390. let DecoderMethod = "DecodeVSCCLRM";
  2391. list<Predicate> Predicates = [HasV8_1MMainline, Has8MSecExt];
  2392. }
  2393. //===----------------------------------------------------------------------===//
  2394. // Store VFP System Register to memory.
  2395. //
  2396. class vfp_vstrldr<bit opc, bit P, bit W, bits<4> SysReg, string sysreg,
  2397. dag oops, dag iops, IndexMode im, string Dest, string cstr>
  2398. : VFPI<oops, iops, AddrModeT2_i7s4, 4, im, VFPLdStFrm, IIC_fpSTAT,
  2399. !if(opc,"vldr","vstr"), !strconcat("\t", sysreg, ", ", Dest), cstr, []>,
  2400. Sched<[]> {
  2401. bits<12> addr;
  2402. let Inst{27-25} = 0b110;
  2403. let Inst{24} = P;
  2404. let Inst{23} = addr{7};
  2405. let Inst{22} = SysReg{3};
  2406. let Inst{21} = W;
  2407. let Inst{20} = opc;
  2408. let Inst{19-16} = addr{11-8};
  2409. let Inst{15-13} = SysReg{2-0};
  2410. let Inst{12-7} = 0b011111;
  2411. let Inst{6-0} = addr{6-0};
  2412. list<Predicate> Predicates = [HasFPRegs, HasV8_1MMainline];
  2413. let mayLoad = opc;
  2414. let mayStore = !if(opc, 0b0, 0b1);
  2415. let hasSideEffects = 1;
  2416. }
  2417. multiclass vfp_vstrldr_sysreg<bit opc, bits<4> SysReg, string sysreg,
  2418. dag oops=(outs), dag iops=(ins)> {
  2419. def _off :
  2420. vfp_vstrldr<opc, 1, 0, SysReg, sysreg,
  2421. oops, !con(iops, (ins t2addrmode_imm7s4:$addr)),
  2422. IndexModePost, "$addr", "" > {
  2423. let DecoderMethod = "DecodeVSTRVLDR_SYSREG<false>";
  2424. }
  2425. def _pre :
  2426. vfp_vstrldr<opc, 1, 1, SysReg, sysreg,
  2427. !con(oops, (outs GPRnopc:$wb)),
  2428. !con(iops, (ins t2addrmode_imm7s4_pre:$addr)),
  2429. IndexModePre, "$addr!", "$addr.base = $wb"> {
  2430. let DecoderMethod = "DecodeVSTRVLDR_SYSREG<true>";
  2431. }
  2432. def _post :
  2433. vfp_vstrldr<opc, 0, 1, SysReg, sysreg,
  2434. !con(oops, (outs GPRnopc:$wb)),
  2435. !con(iops, (ins t2_addr_offset_none:$Rn,
  2436. t2am_imm7s4_offset:$addr)),
  2437. IndexModePost, "$Rn$addr", "$Rn.base = $wb"> {
  2438. bits<4> Rn;
  2439. let Inst{19-16} = Rn{3-0};
  2440. let DecoderMethod = "DecodeVSTRVLDR_SYSREG<true>";
  2441. }
  2442. }
  2443. let Defs = [FPSCR] in {
  2444. defm VSTR_FPSCR : vfp_vstrldr_sysreg<0b0,0b0001, "fpscr">;
  2445. defm VSTR_FPSCR_NZCVQC : vfp_vstrldr_sysreg<0b0,0b0010, "fpscr_nzcvqc">;
  2446. let Predicates = [HasV8_1MMainline, Has8MSecExt] in {
  2447. defm VSTR_FPCXTNS : vfp_vstrldr_sysreg<0b0,0b1110, "fpcxtns">;
  2448. defm VSTR_FPCXTS : vfp_vstrldr_sysreg<0b0,0b1111, "fpcxts">;
  2449. }
  2450. }
  2451. let Predicates = [HasV8_1MMainline, HasMVEInt] in {
  2452. let Uses = [VPR] in {
  2453. defm VSTR_VPR : vfp_vstrldr_sysreg<0b0,0b1100, "vpr">;
  2454. }
  2455. defm VSTR_P0 : vfp_vstrldr_sysreg<0b0,0b1101, "p0",
  2456. (outs), (ins VCCR:$P0)>;
  2457. let Defs = [VPR] in {
  2458. defm VLDR_VPR : vfp_vstrldr_sysreg<0b1,0b1100, "vpr">;
  2459. }
  2460. defm VLDR_P0 : vfp_vstrldr_sysreg<0b1,0b1101, "p0",
  2461. (outs VCCR:$P0), (ins)>;
  2462. }
  2463. let Uses = [FPSCR] in {
  2464. defm VLDR_FPSCR : vfp_vstrldr_sysreg<0b1,0b0001, "fpscr">;
  2465. defm VLDR_FPSCR_NZCVQC : vfp_vstrldr_sysreg<0b1,0b0010, "fpscr_nzcvqc">;
  2466. let Predicates = [HasV8_1MMainline, Has8MSecExt] in {
  2467. defm VLDR_FPCXTNS : vfp_vstrldr_sysreg<0b1,0b1110, "fpcxtns">;
  2468. defm VLDR_FPCXTS : vfp_vstrldr_sysreg<0b1,0b1111, "fpcxts">;
  2469. }
  2470. }