12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160 |
- /* Math module -- standard C math library functions, pi and e */
- /* Here are some comments from Tim Peters, extracted from the
- discussion attached to http://bugs.python.org/issue1640. They
- describe the general aims of the math module with respect to
- special values, IEEE-754 floating-point exceptions, and Python
- exceptions.
- These are the "spirit of 754" rules:
- 1. If the mathematical result is a real number, but of magnitude too
- large to approximate by a machine float, overflow is signaled and the
- result is an infinity (with the appropriate sign).
- 2. If the mathematical result is a real number, but of magnitude too
- small to approximate by a machine float, underflow is signaled and the
- result is a zero (with the appropriate sign).
- 3. At a singularity (a value x such that the limit of f(y) as y
- approaches x exists and is an infinity), "divide by zero" is signaled
- and the result is an infinity (with the appropriate sign). This is
- complicated a little by that the left-side and right-side limits may
- not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
- from the positive or negative directions. In that specific case, the
- sign of the zero determines the result of 1/0.
- 4. At a point where a function has no defined result in the extended
- reals (i.e., the reals plus an infinity or two), invalid operation is
- signaled and a NaN is returned.
- And these are what Python has historically /tried/ to do (but not
- always successfully, as platform libm behavior varies a lot):
- For #1, raise OverflowError.
- For #2, return a zero (with the appropriate sign if that happens by
- accident ;-)).
- For #3 and #4, raise ValueError. It may have made sense to raise
- Python's ZeroDivisionError in #3, but historically that's only been
- raised for division by zero and mod by zero.
- */
- /*
- In general, on an IEEE-754 platform the aim is to follow the C99
- standard, including Annex 'F', whenever possible. Where the
- standard recommends raising the 'divide-by-zero' or 'invalid'
- floating-point exceptions, Python should raise a ValueError. Where
- the standard recommends raising 'overflow', Python should raise an
- OverflowError. In all other circumstances a value should be
- returned.
- */
- #ifndef Py_BUILD_CORE_BUILTIN
- # define Py_BUILD_CORE_MODULE 1
- #endif
- #include "Python.h"
- #include "pycore_bitutils.h" // _Py_bit_length()
- #include "pycore_call.h" // _PyObject_CallNoArgs()
- #include "pycore_long.h" // _PyLong_GetZero()
- #include "pycore_moduleobject.h" // _PyModule_GetState()
- #include "pycore_object.h" // _PyObject_LookupSpecial()
- #include "pycore_pymath.h" // _PY_SHORT_FLOAT_REPR
- /* For DBL_EPSILON in _math.h */
- #include <float.h>
- /* For _Py_log1p with workarounds for buggy handling of zeros. */
- #include "_math.h"
- #include <stdbool.h>
- #include "clinic/mathmodule.c.h"
- /*[clinic input]
- module math
- [clinic start generated code]*/
- /*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
- typedef struct {
- PyObject *str___ceil__;
- PyObject *str___floor__;
- PyObject *str___trunc__;
- } math_module_state;
- static inline math_module_state*
- get_math_module_state(PyObject *module)
- {
- void *state = _PyModule_GetState(module);
- assert(state != NULL);
- return (math_module_state *)state;
- }
- /*
- Double and triple length extended precision algorithms from:
- Accurate Sum and Dot Product
- by Takeshi Ogita, Siegfried M. Rump, and Shin’Ichi Oishi
- https://doi.org/10.1137/030601818
- https://www.tuhh.de/ti3/paper/rump/OgRuOi05.pdf
- */
- typedef struct{ double hi; double lo; } DoubleLength;
- static DoubleLength
- dl_fast_sum(double a, double b)
- {
- /* Algorithm 1.1. Compensated summation of two floating point numbers. */
- assert(fabs(a) >= fabs(b));
- double x = a + b;
- double y = (a - x) + b;
- return (DoubleLength) {x, y};
- }
- static DoubleLength
- dl_sum(double a, double b)
- {
- /* Algorithm 3.1 Error-free transformation of the sum */
- double x = a + b;
- double z = x - a;
- double y = (a - (x - z)) + (b - z);
- return (DoubleLength) {x, y};
- }
- #ifndef UNRELIABLE_FMA
- static DoubleLength
- dl_mul(double x, double y)
- {
- /* Algorithm 3.5. Error-free transformation of a product */
- double z = x * y;
- double zz = fma(x, y, -z);
- return (DoubleLength) {z, zz};
- }
- #else
- /*
- The default implementation of dl_mul() depends on the C math library
- having an accurate fma() function as required by § 7.12.13.1 of the
- C99 standard.
- The UNRELIABLE_FMA option is provided as a slower but accurate
- alternative for builds where the fma() function is found wanting.
- The speed penalty may be modest (17% slower on an Apple M1 Max),
- so don't hesitate to enable this build option.
- The algorithms are from the T. J. Dekker paper:
- A Floating-Point Technique for Extending the Available Precision
- https://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
- */
- static DoubleLength
- dl_split(double x) {
- // Dekker (5.5) and (5.6).
- double t = x * 134217729.0; // Veltkamp constant = 2.0 ** 27 + 1
- double hi = t - (t - x);
- double lo = x - hi;
- return (DoubleLength) {hi, lo};
- }
- static DoubleLength
- dl_mul(double x, double y)
- {
- // Dekker (5.12) and mul12()
- DoubleLength xx = dl_split(x);
- DoubleLength yy = dl_split(y);
- double p = xx.hi * yy.hi;
- double q = xx.hi * yy.lo + xx.lo * yy.hi;
- double z = p + q;
- double zz = p - z + q + xx.lo * yy.lo;
- return (DoubleLength) {z, zz};
- }
- #endif
- typedef struct { double hi; double lo; double tiny; } TripleLength;
- static const TripleLength tl_zero = {0.0, 0.0, 0.0};
- static TripleLength
- tl_fma(double x, double y, TripleLength total)
- {
- /* Algorithm 5.10 with SumKVert for K=3 */
- DoubleLength pr = dl_mul(x, y);
- DoubleLength sm = dl_sum(total.hi, pr.hi);
- DoubleLength r1 = dl_sum(total.lo, pr.lo);
- DoubleLength r2 = dl_sum(r1.hi, sm.lo);
- return (TripleLength) {sm.hi, r2.hi, total.tiny + r1.lo + r2.lo};
- }
- static double
- tl_to_d(TripleLength total)
- {
- DoubleLength last = dl_sum(total.lo, total.hi);
- return total.tiny + last.lo + last.hi;
- }
- /*
- sin(pi*x), giving accurate results for all finite x (especially x
- integral or close to an integer). This is here for use in the
- reflection formula for the gamma function. It conforms to IEEE
- 754-2008 for finite arguments, but not for infinities or nans.
- */
- static const double pi = 3.141592653589793238462643383279502884197;
- static const double logpi = 1.144729885849400174143427351353058711647;
- /* Version of PyFloat_AsDouble() with in-line fast paths
- for exact floats and integers. Gives a substantial
- speed improvement for extracting float arguments.
- */
- #define ASSIGN_DOUBLE(target_var, obj, error_label) \
- if (PyFloat_CheckExact(obj)) { \
- target_var = PyFloat_AS_DOUBLE(obj); \
- } \
- else if (PyLong_CheckExact(obj)) { \
- target_var = PyLong_AsDouble(obj); \
- if (target_var == -1.0 && PyErr_Occurred()) { \
- goto error_label; \
- } \
- } \
- else { \
- target_var = PyFloat_AsDouble(obj); \
- if (target_var == -1.0 && PyErr_Occurred()) { \
- goto error_label; \
- } \
- }
- static double
- m_sinpi(double x)
- {
- double y, r;
- int n;
- /* this function should only ever be called for finite arguments */
- assert(Py_IS_FINITE(x));
- y = fmod(fabs(x), 2.0);
- n = (int)round(2.0*y);
- assert(0 <= n && n <= 4);
- switch (n) {
- case 0:
- r = sin(pi*y);
- break;
- case 1:
- r = cos(pi*(y-0.5));
- break;
- case 2:
- /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
- -0.0 instead of 0.0 when y == 1.0. */
- r = sin(pi*(1.0-y));
- break;
- case 3:
- r = -cos(pi*(y-1.5));
- break;
- case 4:
- r = sin(pi*(y-2.0));
- break;
- default:
- Py_UNREACHABLE();
- }
- return copysign(1.0, x)*r;
- }
- /* Implementation of the real gamma function. Kept here to work around
- issues (see e.g. gh-70309) with quality of libm's tgamma/lgamma implementations
- on various platforms (Windows, MacOS). In extensive but non-exhaustive
- random tests, this function proved accurate to within <= 10 ulps across the
- entire float domain. Note that accuracy may depend on the quality of the
- system math functions, the pow function in particular. Special cases
- follow C99 annex F. The parameters and method are tailored to platforms
- whose double format is the IEEE 754 binary64 format.
- Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
- and g=6.024680040776729583740234375; these parameters are amongst those
- used by the Boost library. Following Boost (again), we re-express the
- Lanczos sum as a rational function, and compute it that way. The
- coefficients below were computed independently using MPFR, and have been
- double-checked against the coefficients in the Boost source code.
- For x < 0.0 we use the reflection formula.
- There's one minor tweak that deserves explanation: Lanczos' formula for
- Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
- values, x+g-0.5 can be represented exactly. However, in cases where it
- can't be represented exactly the small error in x+g-0.5 can be magnified
- significantly by the pow and exp calls, especially for large x. A cheap
- correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
- involved in the computation of x+g-0.5 (that is, e = computed value of
- x+g-0.5 - exact value of x+g-0.5). Here's the proof:
- Correction factor
- -----------------
- Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
- double, and e is tiny. Then:
- pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
- = pow(y, x-0.5)/exp(y) * C,
- where the correction_factor C is given by
- C = pow(1-e/y, x-0.5) * exp(e)
- Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
- C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
- But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
- pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
- Note that for accuracy, when computing r*C it's better to do
- r + e*g/y*r;
- than
- r * (1 + e*g/y);
- since the addition in the latter throws away most of the bits of
- information in e*g/y.
- */
- #define LANCZOS_N 13
- static const double lanczos_g = 6.024680040776729583740234375;
- static const double lanczos_g_minus_half = 5.524680040776729583740234375;
- static const double lanczos_num_coeffs[LANCZOS_N] = {
- 23531376880.410759688572007674451636754734846804940,
- 42919803642.649098768957899047001988850926355848959,
- 35711959237.355668049440185451547166705960488635843,
- 17921034426.037209699919755754458931112671403265390,
- 6039542586.3520280050642916443072979210699388420708,
- 1439720407.3117216736632230727949123939715485786772,
- 248874557.86205415651146038641322942321632125127801,
- 31426415.585400194380614231628318205362874684987640,
- 2876370.6289353724412254090516208496135991145378768,
- 186056.26539522349504029498971604569928220784236328,
- 8071.6720023658162106380029022722506138218516325024,
- 210.82427775157934587250973392071336271166969580291,
- 2.5066282746310002701649081771338373386264310793408
- };
- /* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
- static const double lanczos_den_coeffs[LANCZOS_N] = {
- 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
- 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
- /* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
- #define NGAMMA_INTEGRAL 23
- static const double gamma_integral[NGAMMA_INTEGRAL] = {
- 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
- 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
- 1307674368000.0, 20922789888000.0, 355687428096000.0,
- 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
- 51090942171709440000.0, 1124000727777607680000.0,
- };
- /* Lanczos' sum L_g(x), for positive x */
- static double
- lanczos_sum(double x)
- {
- double num = 0.0, den = 0.0;
- int i;
- assert(x > 0.0);
- /* evaluate the rational function lanczos_sum(x). For large
- x, the obvious algorithm risks overflow, so we instead
- rescale the denominator and numerator of the rational
- function by x**(1-LANCZOS_N) and treat this as a
- rational function in 1/x. This also reduces the error for
- larger x values. The choice of cutoff point (5.0 below) is
- somewhat arbitrary; in tests, smaller cutoff values than
- this resulted in lower accuracy. */
- if (x < 5.0) {
- for (i = LANCZOS_N; --i >= 0; ) {
- num = num * x + lanczos_num_coeffs[i];
- den = den * x + lanczos_den_coeffs[i];
- }
- }
- else {
- for (i = 0; i < LANCZOS_N; i++) {
- num = num / x + lanczos_num_coeffs[i];
- den = den / x + lanczos_den_coeffs[i];
- }
- }
- return num/den;
- }
- static double
- m_tgamma(double x)
- {
- double absx, r, y, z, sqrtpow;
- /* special cases */
- if (!Py_IS_FINITE(x)) {
- if (Py_IS_NAN(x) || x > 0.0)
- return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
- else {
- errno = EDOM;
- return Py_NAN; /* tgamma(-inf) = nan, invalid */
- }
- }
- if (x == 0.0) {
- errno = EDOM;
- /* tgamma(+-0.0) = +-inf, divide-by-zero */
- return copysign(Py_INFINITY, x);
- }
- /* integer arguments */
- if (x == floor(x)) {
- if (x < 0.0) {
- errno = EDOM; /* tgamma(n) = nan, invalid for */
- return Py_NAN; /* negative integers n */
- }
- if (x <= NGAMMA_INTEGRAL)
- return gamma_integral[(int)x - 1];
- }
- absx = fabs(x);
- /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
- if (absx < 1e-20) {
- r = 1.0/x;
- if (Py_IS_INFINITY(r))
- errno = ERANGE;
- return r;
- }
- /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
- x > 200, and underflows to +-0.0 for x < -200, not a negative
- integer. */
- if (absx > 200.0) {
- if (x < 0.0) {
- return 0.0/m_sinpi(x);
- }
- else {
- errno = ERANGE;
- return Py_HUGE_VAL;
- }
- }
- y = absx + lanczos_g_minus_half;
- /* compute error in sum */
- if (absx > lanczos_g_minus_half) {
- /* note: the correction can be foiled by an optimizing
- compiler that (incorrectly) thinks that an expression like
- a + b - a - b can be optimized to 0.0. This shouldn't
- happen in a standards-conforming compiler. */
- double q = y - absx;
- z = q - lanczos_g_minus_half;
- }
- else {
- double q = y - lanczos_g_minus_half;
- z = q - absx;
- }
- z = z * lanczos_g / y;
- if (x < 0.0) {
- r = -pi / m_sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
- r -= z * r;
- if (absx < 140.0) {
- r /= pow(y, absx - 0.5);
- }
- else {
- sqrtpow = pow(y, absx / 2.0 - 0.25);
- r /= sqrtpow;
- r /= sqrtpow;
- }
- }
- else {
- r = lanczos_sum(absx) / exp(y);
- r += z * r;
- if (absx < 140.0) {
- r *= pow(y, absx - 0.5);
- }
- else {
- sqrtpow = pow(y, absx / 2.0 - 0.25);
- r *= sqrtpow;
- r *= sqrtpow;
- }
- }
- if (Py_IS_INFINITY(r))
- errno = ERANGE;
- return r;
- }
- /*
- lgamma: natural log of the absolute value of the Gamma function.
- For large arguments, Lanczos' formula works extremely well here.
- */
- static double
- m_lgamma(double x)
- {
- double r;
- double absx;
- /* special cases */
- if (!Py_IS_FINITE(x)) {
- if (Py_IS_NAN(x))
- return x; /* lgamma(nan) = nan */
- else
- return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
- }
- /* integer arguments */
- if (x == floor(x) && x <= 2.0) {
- if (x <= 0.0) {
- errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
- return Py_HUGE_VAL; /* integers n <= 0 */
- }
- else {
- return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
- }
- }
- absx = fabs(x);
- /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
- if (absx < 1e-20)
- return -log(absx);
- /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
- having a second set of numerator coefficients for lanczos_sum that
- absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
- subtraction below; it's probably not worth it. */
- r = log(lanczos_sum(absx)) - lanczos_g;
- r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
- if (x < 0.0)
- /* Use reflection formula to get value for negative x. */
- r = logpi - log(fabs(m_sinpi(absx))) - log(absx) - r;
- if (Py_IS_INFINITY(r))
- errno = ERANGE;
- return r;
- }
- /*
- wrapper for atan2 that deals directly with special cases before
- delegating to the platform libm for the remaining cases. This
- is necessary to get consistent behaviour across platforms.
- Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
- always follow C99.
- */
- static double
- m_atan2(double y, double x)
- {
- if (Py_IS_NAN(x) || Py_IS_NAN(y))
- return Py_NAN;
- if (Py_IS_INFINITY(y)) {
- if (Py_IS_INFINITY(x)) {
- if (copysign(1., x) == 1.)
- /* atan2(+-inf, +inf) == +-pi/4 */
- return copysign(0.25*Py_MATH_PI, y);
- else
- /* atan2(+-inf, -inf) == +-pi*3/4 */
- return copysign(0.75*Py_MATH_PI, y);
- }
- /* atan2(+-inf, x) == +-pi/2 for finite x */
- return copysign(0.5*Py_MATH_PI, y);
- }
- if (Py_IS_INFINITY(x) || y == 0.) {
- if (copysign(1., x) == 1.)
- /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
- return copysign(0., y);
- else
- /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
- return copysign(Py_MATH_PI, y);
- }
- return atan2(y, x);
- }
- /* IEEE 754-style remainder operation: x - n*y where n*y is the nearest
- multiple of y to x, taking n even in the case of a tie. Assuming an IEEE 754
- binary floating-point format, the result is always exact. */
- static double
- m_remainder(double x, double y)
- {
- /* Deal with most common case first. */
- if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) {
- double absx, absy, c, m, r;
- if (y == 0.0) {
- return Py_NAN;
- }
- absx = fabs(x);
- absy = fabs(y);
- m = fmod(absx, absy);
- /*
- Warning: some subtlety here. What we *want* to know at this point is
- whether the remainder m is less than, equal to, or greater than half
- of absy. However, we can't do that comparison directly because we
- can't be sure that 0.5*absy is representable (the multiplication
- might incur precision loss due to underflow). So instead we compare
- m with the complement c = absy - m: m < 0.5*absy if and only if m <
- c, and so on. The catch is that absy - m might also not be
- representable, but it turns out that it doesn't matter:
- - if m > 0.5*absy then absy - m is exactly representable, by
- Sterbenz's lemma, so m > c
- - if m == 0.5*absy then again absy - m is exactly representable
- and m == c
- - if m < 0.5*absy then either (i) 0.5*absy is exactly representable,
- in which case 0.5*absy < absy - m, so 0.5*absy <= c and hence m <
- c, or (ii) absy is tiny, either subnormal or in the lowest normal
- binade. Then absy - m is exactly representable and again m < c.
- */
- c = absy - m;
- if (m < c) {
- r = m;
- }
- else if (m > c) {
- r = -c;
- }
- else {
- /*
- Here absx is exactly halfway between two multiples of absy,
- and we need to choose the even multiple. x now has the form
- absx = n * absy + m
- for some integer n (recalling that m = 0.5*absy at this point).
- If n is even we want to return m; if n is odd, we need to
- return -m.
- So
- 0.5 * (absx - m) = (n/2) * absy
- and now reducing modulo absy gives us:
- | m, if n is odd
- fmod(0.5 * (absx - m), absy) = |
- | 0, if n is even
- Now m - 2.0 * fmod(...) gives the desired result: m
- if n is even, -m if m is odd.
- Note that all steps in fmod(0.5 * (absx - m), absy)
- will be computed exactly, with no rounding error
- introduced.
- */
- assert(m == c);
- r = m - 2.0 * fmod(0.5 * (absx - m), absy);
- }
- return copysign(1.0, x) * r;
- }
- /* Special values. */
- if (Py_IS_NAN(x)) {
- return x;
- }
- if (Py_IS_NAN(y)) {
- return y;
- }
- if (Py_IS_INFINITY(x)) {
- return Py_NAN;
- }
- assert(Py_IS_INFINITY(y));
- return x;
- }
- /*
- Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
- log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
- special values directly, passing positive non-special values through to
- the system log/log10.
- */
- static double
- m_log(double x)
- {
- if (Py_IS_FINITE(x)) {
- if (x > 0.0)
- return log(x);
- errno = EDOM;
- if (x == 0.0)
- return -Py_HUGE_VAL; /* log(0) = -inf */
- else
- return Py_NAN; /* log(-ve) = nan */
- }
- else if (Py_IS_NAN(x))
- return x; /* log(nan) = nan */
- else if (x > 0.0)
- return x; /* log(inf) = inf */
- else {
- errno = EDOM;
- return Py_NAN; /* log(-inf) = nan */
- }
- }
- /*
- log2: log to base 2.
- Uses an algorithm that should:
- (a) produce exact results for powers of 2, and
- (b) give a monotonic log2 (for positive finite floats),
- assuming that the system log is monotonic.
- */
- static double
- m_log2(double x)
- {
- if (!Py_IS_FINITE(x)) {
- if (Py_IS_NAN(x))
- return x; /* log2(nan) = nan */
- else if (x > 0.0)
- return x; /* log2(+inf) = +inf */
- else {
- errno = EDOM;
- return Py_NAN; /* log2(-inf) = nan, invalid-operation */
- }
- }
- if (x > 0.0) {
- return log2(x);
- }
- else if (x == 0.0) {
- errno = EDOM;
- return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
- }
- else {
- errno = EDOM;
- return Py_NAN; /* log2(-inf) = nan, invalid-operation */
- }
- }
- static double
- m_log10(double x)
- {
- if (Py_IS_FINITE(x)) {
- if (x > 0.0)
- return log10(x);
- errno = EDOM;
- if (x == 0.0)
- return -Py_HUGE_VAL; /* log10(0) = -inf */
- else
- return Py_NAN; /* log10(-ve) = nan */
- }
- else if (Py_IS_NAN(x))
- return x; /* log10(nan) = nan */
- else if (x > 0.0)
- return x; /* log10(inf) = inf */
- else {
- errno = EDOM;
- return Py_NAN; /* log10(-inf) = nan */
- }
- }
- static PyObject *
- math_gcd(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
- {
- PyObject *res, *x;
- Py_ssize_t i;
- if (nargs == 0) {
- return PyLong_FromLong(0);
- }
- res = PyNumber_Index(args[0]);
- if (res == NULL) {
- return NULL;
- }
- if (nargs == 1) {
- Py_SETREF(res, PyNumber_Absolute(res));
- return res;
- }
- PyObject *one = _PyLong_GetOne(); // borrowed ref
- for (i = 1; i < nargs; i++) {
- x = _PyNumber_Index(args[i]);
- if (x == NULL) {
- Py_DECREF(res);
- return NULL;
- }
- if (res == one) {
- /* Fast path: just check arguments.
- It is okay to use identity comparison here. */
- Py_DECREF(x);
- continue;
- }
- Py_SETREF(res, _PyLong_GCD(res, x));
- Py_DECREF(x);
- if (res == NULL) {
- return NULL;
- }
- }
- return res;
- }
- PyDoc_STRVAR(math_gcd_doc,
- "gcd($module, *integers)\n"
- "--\n"
- "\n"
- "Greatest Common Divisor.");
- static PyObject *
- long_lcm(PyObject *a, PyObject *b)
- {
- PyObject *g, *m, *f, *ab;
- if (_PyLong_IsZero((PyLongObject *)a) || _PyLong_IsZero((PyLongObject *)b)) {
- return PyLong_FromLong(0);
- }
- g = _PyLong_GCD(a, b);
- if (g == NULL) {
- return NULL;
- }
- f = PyNumber_FloorDivide(a, g);
- Py_DECREF(g);
- if (f == NULL) {
- return NULL;
- }
- m = PyNumber_Multiply(f, b);
- Py_DECREF(f);
- if (m == NULL) {
- return NULL;
- }
- ab = PyNumber_Absolute(m);
- Py_DECREF(m);
- return ab;
- }
- static PyObject *
- math_lcm(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
- {
- PyObject *res, *x;
- Py_ssize_t i;
- if (nargs == 0) {
- return PyLong_FromLong(1);
- }
- res = PyNumber_Index(args[0]);
- if (res == NULL) {
- return NULL;
- }
- if (nargs == 1) {
- Py_SETREF(res, PyNumber_Absolute(res));
- return res;
- }
- PyObject *zero = _PyLong_GetZero(); // borrowed ref
- for (i = 1; i < nargs; i++) {
- x = PyNumber_Index(args[i]);
- if (x == NULL) {
- Py_DECREF(res);
- return NULL;
- }
- if (res == zero) {
- /* Fast path: just check arguments.
- It is okay to use identity comparison here. */
- Py_DECREF(x);
- continue;
- }
- Py_SETREF(res, long_lcm(res, x));
- Py_DECREF(x);
- if (res == NULL) {
- return NULL;
- }
- }
- return res;
- }
- PyDoc_STRVAR(math_lcm_doc,
- "lcm($module, *integers)\n"
- "--\n"
- "\n"
- "Least Common Multiple.");
- /* Call is_error when errno != 0, and where x is the result libm
- * returned. is_error will usually set up an exception and return
- * true (1), but may return false (0) without setting up an exception.
- */
- static int
- is_error(double x)
- {
- int result = 1; /* presumption of guilt */
- assert(errno); /* non-zero errno is a precondition for calling */
- if (errno == EDOM)
- PyErr_SetString(PyExc_ValueError, "math domain error");
- else if (errno == ERANGE) {
- /* ANSI C generally requires libm functions to set ERANGE
- * on overflow, but also generally *allows* them to set
- * ERANGE on underflow too. There's no consistency about
- * the latter across platforms.
- * Alas, C99 never requires that errno be set.
- * Here we suppress the underflow errors (libm functions
- * should return a zero on underflow, and +- HUGE_VAL on
- * overflow, so testing the result for zero suffices to
- * distinguish the cases).
- *
- * On some platforms (Ubuntu/ia64) it seems that errno can be
- * set to ERANGE for subnormal results that do *not* underflow
- * to zero. So to be safe, we'll ignore ERANGE whenever the
- * function result is less than 1.5 in absolute value.
- *
- * bpo-46018: Changed to 1.5 to ensure underflows in expm1()
- * are correctly detected, since the function may underflow
- * toward -1.0 rather than 0.0.
- */
- if (fabs(x) < 1.5)
- result = 0;
- else
- PyErr_SetString(PyExc_OverflowError,
- "math range error");
- }
- else
- /* Unexpected math error */
- PyErr_SetFromErrno(PyExc_ValueError);
- return result;
- }
- /*
- math_1 is used to wrap a libm function f that takes a double
- argument and returns a double.
- The error reporting follows these rules, which are designed to do
- the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
- platforms.
- - a NaN result from non-NaN inputs causes ValueError to be raised
- - an infinite result from finite inputs causes OverflowError to be
- raised if can_overflow is 1, or raises ValueError if can_overflow
- is 0.
- - if the result is finite and errno == EDOM then ValueError is
- raised
- - if the result is finite and nonzero and errno == ERANGE then
- OverflowError is raised
- The last rule is used to catch overflow on platforms which follow
- C89 but for which HUGE_VAL is not an infinity.
- For the majority of one-argument functions these rules are enough
- to ensure that Python's functions behave as specified in 'Annex F'
- of the C99 standard, with the 'invalid' and 'divide-by-zero'
- floating-point exceptions mapping to Python's ValueError and the
- 'overflow' floating-point exception mapping to OverflowError.
- math_1 only works for functions that don't have singularities *and*
- the possibility of overflow; fortunately, that covers everything we
- care about right now.
- */
- static PyObject *
- math_1(PyObject *arg, double (*func) (double), int can_overflow)
- {
- double x, r;
- x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- errno = 0;
- r = (*func)(x);
- if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
- PyErr_SetString(PyExc_ValueError,
- "math domain error"); /* invalid arg */
- return NULL;
- }
- if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
- if (can_overflow)
- PyErr_SetString(PyExc_OverflowError,
- "math range error"); /* overflow */
- else
- PyErr_SetString(PyExc_ValueError,
- "math domain error"); /* singularity */
- return NULL;
- }
- if (Py_IS_FINITE(r) && errno && is_error(r))
- /* this branch unnecessary on most platforms */
- return NULL;
- return PyFloat_FromDouble(r);
- }
- /* variant of math_1, to be used when the function being wrapped is known to
- set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
- errno = ERANGE for overflow). */
- static PyObject *
- math_1a(PyObject *arg, double (*func) (double))
- {
- double x, r;
- x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- errno = 0;
- r = (*func)(x);
- if (errno && is_error(r))
- return NULL;
- return PyFloat_FromDouble(r);
- }
- /*
- math_2 is used to wrap a libm function f that takes two double
- arguments and returns a double.
- The error reporting follows these rules, which are designed to do
- the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
- platforms.
- - a NaN result from non-NaN inputs causes ValueError to be raised
- - an infinite result from finite inputs causes OverflowError to be
- raised.
- - if the result is finite and errno == EDOM then ValueError is
- raised
- - if the result is finite and nonzero and errno == ERANGE then
- OverflowError is raised
- The last rule is used to catch overflow on platforms which follow
- C89 but for which HUGE_VAL is not an infinity.
- For most two-argument functions (copysign, fmod, hypot, atan2)
- these rules are enough to ensure that Python's functions behave as
- specified in 'Annex F' of the C99 standard, with the 'invalid' and
- 'divide-by-zero' floating-point exceptions mapping to Python's
- ValueError and the 'overflow' floating-point exception mapping to
- OverflowError.
- */
- static PyObject *
- math_2(PyObject *const *args, Py_ssize_t nargs,
- double (*func) (double, double), const char *funcname)
- {
- double x, y, r;
- if (!_PyArg_CheckPositional(funcname, nargs, 2, 2))
- return NULL;
- x = PyFloat_AsDouble(args[0]);
- if (x == -1.0 && PyErr_Occurred()) {
- return NULL;
- }
- y = PyFloat_AsDouble(args[1]);
- if (y == -1.0 && PyErr_Occurred()) {
- return NULL;
- }
- errno = 0;
- r = (*func)(x, y);
- if (Py_IS_NAN(r)) {
- if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
- errno = EDOM;
- else
- errno = 0;
- }
- else if (Py_IS_INFINITY(r)) {
- if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
- errno = ERANGE;
- else
- errno = 0;
- }
- if (errno && is_error(r))
- return NULL;
- else
- return PyFloat_FromDouble(r);
- }
- #define FUNC1(funcname, func, can_overflow, docstring) \
- static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
- return math_1(args, func, can_overflow); \
- }\
- PyDoc_STRVAR(math_##funcname##_doc, docstring);
- #define FUNC1A(funcname, func, docstring) \
- static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
- return math_1a(args, func); \
- }\
- PyDoc_STRVAR(math_##funcname##_doc, docstring);
- #define FUNC2(funcname, func, docstring) \
- static PyObject * math_##funcname(PyObject *self, PyObject *const *args, Py_ssize_t nargs) { \
- return math_2(args, nargs, func, #funcname); \
- }\
- PyDoc_STRVAR(math_##funcname##_doc, docstring);
- FUNC1(acos, acos, 0,
- "acos($module, x, /)\n--\n\n"
- "Return the arc cosine (measured in radians) of x.\n\n"
- "The result is between 0 and pi.")
- FUNC1(acosh, acosh, 0,
- "acosh($module, x, /)\n--\n\n"
- "Return the inverse hyperbolic cosine of x.")
- FUNC1(asin, asin, 0,
- "asin($module, x, /)\n--\n\n"
- "Return the arc sine (measured in radians) of x.\n\n"
- "The result is between -pi/2 and pi/2.")
- FUNC1(asinh, asinh, 0,
- "asinh($module, x, /)\n--\n\n"
- "Return the inverse hyperbolic sine of x.")
- FUNC1(atan, atan, 0,
- "atan($module, x, /)\n--\n\n"
- "Return the arc tangent (measured in radians) of x.\n\n"
- "The result is between -pi/2 and pi/2.")
- FUNC2(atan2, m_atan2,
- "atan2($module, y, x, /)\n--\n\n"
- "Return the arc tangent (measured in radians) of y/x.\n\n"
- "Unlike atan(y/x), the signs of both x and y are considered.")
- FUNC1(atanh, atanh, 0,
- "atanh($module, x, /)\n--\n\n"
- "Return the inverse hyperbolic tangent of x.")
- FUNC1(cbrt, cbrt, 0,
- "cbrt($module, x, /)\n--\n\n"
- "Return the cube root of x.")
- /*[clinic input]
- math.ceil
- x as number: object
- /
- Return the ceiling of x as an Integral.
- This is the smallest integer >= x.
- [clinic start generated code]*/
- static PyObject *
- math_ceil(PyObject *module, PyObject *number)
- /*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
- {
- if (!PyFloat_CheckExact(number)) {
- math_module_state *state = get_math_module_state(module);
- PyObject *method = _PyObject_LookupSpecial(number, state->str___ceil__);
- if (method != NULL) {
- PyObject *result = _PyObject_CallNoArgs(method);
- Py_DECREF(method);
- return result;
- }
- if (PyErr_Occurred())
- return NULL;
- }
- double x = PyFloat_AsDouble(number);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- return PyLong_FromDouble(ceil(x));
- }
- FUNC2(copysign, copysign,
- "copysign($module, x, y, /)\n--\n\n"
- "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
- "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
- "returns -1.0.\n")
- FUNC1(cos, cos, 0,
- "cos($module, x, /)\n--\n\n"
- "Return the cosine of x (measured in radians).")
- FUNC1(cosh, cosh, 1,
- "cosh($module, x, /)\n--\n\n"
- "Return the hyperbolic cosine of x.")
- FUNC1A(erf, erf,
- "erf($module, x, /)\n--\n\n"
- "Error function at x.")
- FUNC1A(erfc, erfc,
- "erfc($module, x, /)\n--\n\n"
- "Complementary error function at x.")
- FUNC1(exp, exp, 1,
- "exp($module, x, /)\n--\n\n"
- "Return e raised to the power of x.")
- FUNC1(exp2, exp2, 1,
- "exp2($module, x, /)\n--\n\n"
- "Return 2 raised to the power of x.")
- FUNC1(expm1, expm1, 1,
- "expm1($module, x, /)\n--\n\n"
- "Return exp(x)-1.\n\n"
- "This function avoids the loss of precision involved in the direct "
- "evaluation of exp(x)-1 for small x.")
- FUNC1(fabs, fabs, 0,
- "fabs($module, x, /)\n--\n\n"
- "Return the absolute value of the float x.")
- /*[clinic input]
- math.floor
- x as number: object
- /
- Return the floor of x as an Integral.
- This is the largest integer <= x.
- [clinic start generated code]*/
- static PyObject *
- math_floor(PyObject *module, PyObject *number)
- /*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
- {
- double x;
- if (PyFloat_CheckExact(number)) {
- x = PyFloat_AS_DOUBLE(number);
- }
- else
- {
- math_module_state *state = get_math_module_state(module);
- PyObject *method = _PyObject_LookupSpecial(number, state->str___floor__);
- if (method != NULL) {
- PyObject *result = _PyObject_CallNoArgs(method);
- Py_DECREF(method);
- return result;
- }
- if (PyErr_Occurred())
- return NULL;
- x = PyFloat_AsDouble(number);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- }
- return PyLong_FromDouble(floor(x));
- }
- FUNC1A(gamma, m_tgamma,
- "gamma($module, x, /)\n--\n\n"
- "Gamma function at x.")
- FUNC1A(lgamma, m_lgamma,
- "lgamma($module, x, /)\n--\n\n"
- "Natural logarithm of absolute value of Gamma function at x.")
- FUNC1(log1p, m_log1p, 0,
- "log1p($module, x, /)\n--\n\n"
- "Return the natural logarithm of 1+x (base e).\n\n"
- "The result is computed in a way which is accurate for x near zero.")
- FUNC2(remainder, m_remainder,
- "remainder($module, x, y, /)\n--\n\n"
- "Difference between x and the closest integer multiple of y.\n\n"
- "Return x - n*y where n*y is the closest integer multiple of y.\n"
- "In the case where x is exactly halfway between two multiples of\n"
- "y, the nearest even value of n is used. The result is always exact.")
- FUNC1(sin, sin, 0,
- "sin($module, x, /)\n--\n\n"
- "Return the sine of x (measured in radians).")
- FUNC1(sinh, sinh, 1,
- "sinh($module, x, /)\n--\n\n"
- "Return the hyperbolic sine of x.")
- FUNC1(sqrt, sqrt, 0,
- "sqrt($module, x, /)\n--\n\n"
- "Return the square root of x.")
- FUNC1(tan, tan, 0,
- "tan($module, x, /)\n--\n\n"
- "Return the tangent of x (measured in radians).")
- FUNC1(tanh, tanh, 0,
- "tanh($module, x, /)\n--\n\n"
- "Return the hyperbolic tangent of x.")
- /* Precision summation function as msum() by Raymond Hettinger in
- <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
- enhanced with the exact partials sum and roundoff from Mark
- Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
- See those links for more details, proofs and other references.
- Note 1: IEEE 754 floating-point semantics with a rounding mode of
- roundTiesToEven are assumed.
- Note 2: No provision is made for intermediate overflow handling;
- therefore, fsum([1e+308, -1e+308, 1e+308]) returns 1e+308 while
- fsum([1e+308, 1e+308, -1e+308]) raises an OverflowError due to the
- overflow of the first partial sum.
- Note 3: The algorithm has two potential sources of fragility. First, C
- permits arithmetic operations on `double`s to be performed in an
- intermediate format whose range and precision may be greater than those of
- `double` (see for example C99 §5.2.4.2.2, paragraph 8). This can happen for
- example on machines using the now largely historical x87 FPUs. In this case,
- `fsum` can produce incorrect results. If `FLT_EVAL_METHOD` is `0` or `1`, or
- `FLT_EVAL_METHOD` is `2` and `long double` is identical to `double`, then we
- should be safe from this source of errors. Second, an aggressively
- optimizing compiler can re-associate operations so that (for example) the
- statement `yr = hi - x;` is treated as `yr = (x + y) - x` and then
- re-associated as `yr = y + (x - x)`, giving `y = yr` and `lo = 0.0`. That
- re-association would be in violation of the C standard, and should not occur
- except possibly in the presence of unsafe optimizations (e.g., -ffast-math,
- -fassociative-math). Such optimizations should be avoided for this module.
- Note 4: The signature of math.fsum() differs from builtins.sum()
- because the start argument doesn't make sense in the context of
- accurate summation. Since the partials table is collapsed before
- returning a result, sum(seq2, start=sum(seq1)) may not equal the
- accurate result returned by sum(itertools.chain(seq1, seq2)).
- */
- #define NUM_PARTIALS 32 /* initial partials array size, on stack */
- /* Extend the partials array p[] by doubling its size. */
- static int /* non-zero on error */
- _fsum_realloc(double **p_ptr, Py_ssize_t n,
- double *ps, Py_ssize_t *m_ptr)
- {
- void *v = NULL;
- Py_ssize_t m = *m_ptr;
- m += m; /* double */
- if (n < m && (size_t)m < ((size_t)PY_SSIZE_T_MAX / sizeof(double))) {
- double *p = *p_ptr;
- if (p == ps) {
- v = PyMem_Malloc(sizeof(double) * m);
- if (v != NULL)
- memcpy(v, ps, sizeof(double) * n);
- }
- else
- v = PyMem_Realloc(p, sizeof(double) * m);
- }
- if (v == NULL) { /* size overflow or no memory */
- PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
- return 1;
- }
- *p_ptr = (double*) v;
- *m_ptr = m;
- return 0;
- }
- /* Full precision summation of a sequence of floats.
- def msum(iterable):
- partials = [] # sorted, non-overlapping partial sums
- for x in iterable:
- i = 0
- for y in partials:
- if abs(x) < abs(y):
- x, y = y, x
- hi = x + y
- lo = y - (hi - x)
- if lo:
- partials[i] = lo
- i += 1
- x = hi
- partials[i:] = [x]
- return sum_exact(partials)
- Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
- are exactly equal to x+y. The inner loop applies hi/lo summation to each
- partial so that the list of partial sums remains exact.
- Sum_exact() adds the partial sums exactly and correctly rounds the final
- result (using the round-half-to-even rule). The items in partials remain
- non-zero, non-special, non-overlapping and strictly increasing in
- magnitude, but possibly not all having the same sign.
- Depends on IEEE 754 arithmetic guarantees and half-even rounding.
- */
- /*[clinic input]
- math.fsum
- seq: object
- /
- Return an accurate floating point sum of values in the iterable seq.
- Assumes IEEE-754 floating point arithmetic.
- [clinic start generated code]*/
- static PyObject *
- math_fsum(PyObject *module, PyObject *seq)
- /*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
- {
- PyObject *item, *iter, *sum = NULL;
- Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
- double x, y, t, ps[NUM_PARTIALS], *p = ps;
- double xsave, special_sum = 0.0, inf_sum = 0.0;
- double hi, yr, lo = 0.0;
- iter = PyObject_GetIter(seq);
- if (iter == NULL)
- return NULL;
- for(;;) { /* for x in iterable */
- assert(0 <= n && n <= m);
- assert((m == NUM_PARTIALS && p == ps) ||
- (m > NUM_PARTIALS && p != NULL));
- item = PyIter_Next(iter);
- if (item == NULL) {
- if (PyErr_Occurred())
- goto _fsum_error;
- break;
- }
- ASSIGN_DOUBLE(x, item, error_with_item);
- Py_DECREF(item);
- xsave = x;
- for (i = j = 0; j < n; j++) { /* for y in partials */
- y = p[j];
- if (fabs(x) < fabs(y)) {
- t = x; x = y; y = t;
- }
- hi = x + y;
- yr = hi - x;
- lo = y - yr;
- if (lo != 0.0)
- p[i++] = lo;
- x = hi;
- }
- n = i; /* ps[i:] = [x] */
- if (x != 0.0) {
- if (! Py_IS_FINITE(x)) {
- /* a nonfinite x could arise either as
- a result of intermediate overflow, or
- as a result of a nan or inf in the
- summands */
- if (Py_IS_FINITE(xsave)) {
- PyErr_SetString(PyExc_OverflowError,
- "intermediate overflow in fsum");
- goto _fsum_error;
- }
- if (Py_IS_INFINITY(xsave))
- inf_sum += xsave;
- special_sum += xsave;
- /* reset partials */
- n = 0;
- }
- else if (n >= m && _fsum_realloc(&p, n, ps, &m))
- goto _fsum_error;
- else
- p[n++] = x;
- }
- }
- if (special_sum != 0.0) {
- if (Py_IS_NAN(inf_sum))
- PyErr_SetString(PyExc_ValueError,
- "-inf + inf in fsum");
- else
- sum = PyFloat_FromDouble(special_sum);
- goto _fsum_error;
- }
- hi = 0.0;
- if (n > 0) {
- hi = p[--n];
- /* sum_exact(ps, hi) from the top, stop when the sum becomes
- inexact. */
- while (n > 0) {
- x = hi;
- y = p[--n];
- assert(fabs(y) < fabs(x));
- hi = x + y;
- yr = hi - x;
- lo = y - yr;
- if (lo != 0.0)
- break;
- }
- /* Make half-even rounding work across multiple partials.
- Needed so that sum([1e-16, 1, 1e16]) will round-up the last
- digit to two instead of down to zero (the 1e-16 makes the 1
- slightly closer to two). With a potential 1 ULP rounding
- error fixed-up, math.fsum() can guarantee commutativity. */
- if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
- (lo > 0.0 && p[n-1] > 0.0))) {
- y = lo * 2.0;
- x = hi + y;
- yr = x - hi;
- if (y == yr)
- hi = x;
- }
- }
- sum = PyFloat_FromDouble(hi);
- _fsum_error:
- Py_DECREF(iter);
- if (p != ps)
- PyMem_Free(p);
- return sum;
- error_with_item:
- Py_DECREF(item);
- goto _fsum_error;
- }
- #undef NUM_PARTIALS
- static unsigned long
- count_set_bits(unsigned long n)
- {
- unsigned long count = 0;
- while (n != 0) {
- ++count;
- n &= n - 1; /* clear least significant bit */
- }
- return count;
- }
- /* Integer square root
- Given a nonnegative integer `n`, we want to compute the largest integer
- `a` for which `a * a <= n`, or equivalently the integer part of the exact
- square root of `n`.
- We use an adaptive-precision pure-integer version of Newton's iteration. Given
- a positive integer `n`, the algorithm produces at each iteration an integer
- approximation `a` to the square root of `n >> s` for some even integer `s`,
- with `s` decreasing as the iterations progress. On the final iteration, `s` is
- zero and we have an approximation to the square root of `n` itself.
- At every step, the approximation `a` is strictly within 1.0 of the true square
- root, so we have
- (a - 1)**2 < (n >> s) < (a + 1)**2
- After the final iteration, a check-and-correct step is needed to determine
- whether `a` or `a - 1` gives the desired integer square root of `n`.
- The algorithm is remarkable in its simplicity. There's no need for a
- per-iteration check-and-correct step, and termination is straightforward: the
- number of iterations is known in advance (it's exactly `floor(log2(log2(n)))`
- for `n > 1`). The only tricky part of the correctness proof is in establishing
- that the bound `(a - 1)**2 < (n >> s) < (a + 1)**2` is maintained from one
- iteration to the next. A sketch of the proof of this is given below.
- In addition to the proof sketch, a formal, computer-verified proof
- of correctness (using Lean) of an equivalent recursive algorithm can be found
- here:
- https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean
- Here's Python code equivalent to the C implementation below:
- def isqrt(n):
- """
- Return the integer part of the square root of the input.
- """
- n = operator.index(n)
- if n < 0:
- raise ValueError("isqrt() argument must be nonnegative")
- if n == 0:
- return 0
- c = (n.bit_length() - 1) // 2
- a = 1
- d = 0
- for s in reversed(range(c.bit_length())):
- # Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
- e = d
- d = c >> s
- a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
- return a - (a*a > n)
- Sketch of proof of correctness
- ------------------------------
- The delicate part of the correctness proof is showing that the loop invariant
- is preserved from one iteration to the next. That is, just before the line
- a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
- is executed in the above code, we know that
- (1) (a - 1)**2 < (n >> 2*(c - e)) < (a + 1)**2.
- (since `e` is always the value of `d` from the previous iteration). We must
- prove that after that line is executed, we have
- (a - 1)**2 < (n >> 2*(c - d)) < (a + 1)**2
- To facilitate the proof, we make some changes of notation. Write `m` for
- `n >> 2*(c-d)`, and write `b` for the new value of `a`, so
- b = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
- or equivalently:
- (2) b = (a << d - e - 1) + (m >> d - e + 1) // a
- Then we can rewrite (1) as:
- (3) (a - 1)**2 < (m >> 2*(d - e)) < (a + 1)**2
- and we must show that (b - 1)**2 < m < (b + 1)**2.
- From this point on, we switch to mathematical notation, so `/` means exact
- division rather than integer division and `^` is used for exponentiation. We
- use the `√` symbol for the exact square root. In (3), we can remove the
- implicit floor operation to give:
- (4) (a - 1)^2 < m / 4^(d - e) < (a + 1)^2
- Taking square roots throughout (4), scaling by `2^(d-e)`, and rearranging gives
- (5) 0 <= | 2^(d-e)a - √m | < 2^(d-e)
- Squaring and dividing through by `2^(d-e+1) a` gives
- (6) 0 <= 2^(d-e-1) a + m / (2^(d-e+1) a) - √m < 2^(d-e-1) / a
- We'll show below that `2^(d-e-1) <= a`. Given that, we can replace the
- right-hand side of (6) with `1`, and now replacing the central
- term `m / (2^(d-e+1) a)` with its floor in (6) gives
- (7) -1 < 2^(d-e-1) a + m // 2^(d-e+1) a - √m < 1
- Or equivalently, from (2):
- (7) -1 < b - √m < 1
- and rearranging gives that `(b-1)^2 < m < (b+1)^2`, which is what we needed
- to prove.
- We're not quite done: we still have to prove the inequality `2^(d - e - 1) <=
- a` that was used to get line (7) above. From the definition of `c`, we have
- `4^c <= n`, which implies
- (8) 4^d <= m
- also, since `e == d >> 1`, `d` is at most `2e + 1`, from which it follows
- that `2d - 2e - 1 <= d` and hence that
- (9) 4^(2d - 2e - 1) <= m
- Dividing both sides by `4^(d - e)` gives
- (10) 4^(d - e - 1) <= m / 4^(d - e)
- But we know from (4) that `m / 4^(d-e) < (a + 1)^2`, hence
- (11) 4^(d - e - 1) < (a + 1)^2
- Now taking square roots of both sides and observing that both `2^(d-e-1)` and
- `a` are integers gives `2^(d - e - 1) <= a`, which is what we needed. This
- completes the proof sketch.
- */
- /*
- The _approximate_isqrt_tab table provides approximate square roots for
- 16-bit integers. For any n in the range 2**14 <= n < 2**16, the value
- a = _approximate_isqrt_tab[(n >> 8) - 64]
- is an approximate square root of n, satisfying (a - 1)**2 < n < (a + 1)**2.
- The table was computed in Python using the expression:
- [min(round(sqrt(256*n + 128)), 255) for n in range(64, 256)]
- */
- static const uint8_t _approximate_isqrt_tab[192] = {
- 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
- 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150,
- 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160,
- 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169,
- 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178,
- 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186,
- 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194,
- 195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202,
- 203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210,
- 210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217,
- 217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224,
- 224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230,
- 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237,
- 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243,
- 244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250,
- 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255,
- };
- /* Approximate square root of a large 64-bit integer.
- Given `n` satisfying `2**62 <= n < 2**64`, return `a`
- satisfying `(a - 1)**2 < n < (a + 1)**2`. */
- static inline uint32_t
- _approximate_isqrt(uint64_t n)
- {
- uint32_t u = _approximate_isqrt_tab[(n >> 56) - 64];
- u = (u << 7) + (uint32_t)(n >> 41) / u;
- return (u << 15) + (uint32_t)((n >> 17) / u);
- }
- /*[clinic input]
- math.isqrt
- n: object
- /
- Return the integer part of the square root of the input.
- [clinic start generated code]*/
- static PyObject *
- math_isqrt(PyObject *module, PyObject *n)
- /*[clinic end generated code: output=35a6f7f980beab26 input=5b6e7ae4fa6c43d6]*/
- {
- int a_too_large, c_bit_length;
- size_t c, d;
- uint64_t m;
- uint32_t u;
- PyObject *a = NULL, *b;
- n = _PyNumber_Index(n);
- if (n == NULL) {
- return NULL;
- }
- if (_PyLong_IsNegative((PyLongObject *)n)) {
- PyErr_SetString(
- PyExc_ValueError,
- "isqrt() argument must be nonnegative");
- goto error;
- }
- if (_PyLong_IsZero((PyLongObject *)n)) {
- Py_DECREF(n);
- return PyLong_FromLong(0);
- }
- /* c = (n.bit_length() - 1) // 2 */
- c = _PyLong_NumBits(n);
- if (c == (size_t)(-1)) {
- goto error;
- }
- c = (c - 1U) / 2U;
- /* Fast path: if c <= 31 then n < 2**64 and we can compute directly with a
- fast, almost branch-free algorithm. */
- if (c <= 31U) {
- int shift = 31 - (int)c;
- m = (uint64_t)PyLong_AsUnsignedLongLong(n);
- Py_DECREF(n);
- if (m == (uint64_t)(-1) && PyErr_Occurred()) {
- return NULL;
- }
- u = _approximate_isqrt(m << 2*shift) >> shift;
- u -= (uint64_t)u * u > m;
- return PyLong_FromUnsignedLong(u);
- }
- /* Slow path: n >= 2**64. We perform the first five iterations in C integer
- arithmetic, then switch to using Python long integers. */
- /* From n >= 2**64 it follows that c.bit_length() >= 6. */
- c_bit_length = 6;
- while ((c >> c_bit_length) > 0U) {
- ++c_bit_length;
- }
- /* Initialise d and a. */
- d = c >> (c_bit_length - 5);
- b = _PyLong_Rshift(n, 2U*c - 62U);
- if (b == NULL) {
- goto error;
- }
- m = (uint64_t)PyLong_AsUnsignedLongLong(b);
- Py_DECREF(b);
- if (m == (uint64_t)(-1) && PyErr_Occurred()) {
- goto error;
- }
- u = _approximate_isqrt(m) >> (31U - d);
- a = PyLong_FromUnsignedLong(u);
- if (a == NULL) {
- goto error;
- }
- for (int s = c_bit_length - 6; s >= 0; --s) {
- PyObject *q;
- size_t e = d;
- d = c >> s;
- /* q = (n >> 2*c - e - d + 1) // a */
- q = _PyLong_Rshift(n, 2U*c - d - e + 1U);
- if (q == NULL) {
- goto error;
- }
- Py_SETREF(q, PyNumber_FloorDivide(q, a));
- if (q == NULL) {
- goto error;
- }
- /* a = (a << d - 1 - e) + q */
- Py_SETREF(a, _PyLong_Lshift(a, d - 1U - e));
- if (a == NULL) {
- Py_DECREF(q);
- goto error;
- }
- Py_SETREF(a, PyNumber_Add(a, q));
- Py_DECREF(q);
- if (a == NULL) {
- goto error;
- }
- }
- /* The correct result is either a or a - 1. Figure out which, and
- decrement a if necessary. */
- /* a_too_large = n < a * a */
- b = PyNumber_Multiply(a, a);
- if (b == NULL) {
- goto error;
- }
- a_too_large = PyObject_RichCompareBool(n, b, Py_LT);
- Py_DECREF(b);
- if (a_too_large == -1) {
- goto error;
- }
- if (a_too_large) {
- Py_SETREF(a, PyNumber_Subtract(a, _PyLong_GetOne()));
- }
- Py_DECREF(n);
- return a;
- error:
- Py_XDECREF(a);
- Py_DECREF(n);
- return NULL;
- }
- /* Divide-and-conquer factorial algorithm
- *
- * Based on the formula and pseudo-code provided at:
- * http://www.luschny.de/math/factorial/binarysplitfact.html
- *
- * Faster algorithms exist, but they're more complicated and depend on
- * a fast prime factorization algorithm.
- *
- * Notes on the algorithm
- * ----------------------
- *
- * factorial(n) is written in the form 2**k * m, with m odd. k and m are
- * computed separately, and then combined using a left shift.
- *
- * The function factorial_odd_part computes the odd part m (i.e., the greatest
- * odd divisor) of factorial(n), using the formula:
- *
- * factorial_odd_part(n) =
- *
- * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
- *
- * Example: factorial_odd_part(20) =
- *
- * (1) *
- * (1) *
- * (1 * 3 * 5) *
- * (1 * 3 * 5 * 7 * 9) *
- * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
- *
- * Here i goes from large to small: the first term corresponds to i=4 (any
- * larger i gives an empty product), and the last term corresponds to i=0.
- * Each term can be computed from the last by multiplying by the extra odd
- * numbers required: e.g., to get from the penultimate term to the last one,
- * we multiply by (11 * 13 * 15 * 17 * 19).
- *
- * To see a hint of why this formula works, here are the same numbers as above
- * but with the even parts (i.e., the appropriate powers of 2) included. For
- * each subterm in the product for i, we multiply that subterm by 2**i:
- *
- * factorial(20) =
- *
- * (16) *
- * (8) *
- * (4 * 12 * 20) *
- * (2 * 6 * 10 * 14 * 18) *
- * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
- *
- * The factorial_partial_product function computes the product of all odd j in
- * range(start, stop) for given start and stop. It's used to compute the
- * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
- * operates recursively, repeatedly splitting the range into two roughly equal
- * pieces until the subranges are small enough to be computed using only C
- * integer arithmetic.
- *
- * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
- * the factorial) is computed independently in the main math_factorial
- * function. By standard results, its value is:
- *
- * two_valuation = n//2 + n//4 + n//8 + ....
- *
- * It can be shown (e.g., by complete induction on n) that two_valuation is
- * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
- * '1'-bits in the binary expansion of n.
- */
- /* factorial_partial_product: Compute product(range(start, stop, 2)) using
- * divide and conquer. Assumes start and stop are odd and stop > start.
- * max_bits must be >= bit_length(stop - 2). */
- static PyObject *
- factorial_partial_product(unsigned long start, unsigned long stop,
- unsigned long max_bits)
- {
- unsigned long midpoint, num_operands;
- PyObject *left = NULL, *right = NULL, *result = NULL;
- /* If the return value will fit an unsigned long, then we can
- * multiply in a tight, fast loop where each multiply is O(1).
- * Compute an upper bound on the number of bits required to store
- * the answer.
- *
- * Storing some integer z requires floor(lg(z))+1 bits, which is
- * conveniently the value returned by bit_length(z). The
- * product x*y will require at most
- * bit_length(x) + bit_length(y) bits to store, based
- * on the idea that lg product = lg x + lg y.
- *
- * We know that stop - 2 is the largest number to be multiplied. From
- * there, we have: bit_length(answer) <= num_operands *
- * bit_length(stop - 2)
- */
- num_operands = (stop - start) / 2;
- /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
- * unlikely case of an overflow in num_operands * max_bits. */
- if (num_operands <= 8 * SIZEOF_LONG &&
- num_operands * max_bits <= 8 * SIZEOF_LONG) {
- unsigned long j, total;
- for (total = start, j = start + 2; j < stop; j += 2)
- total *= j;
- return PyLong_FromUnsignedLong(total);
- }
- /* find midpoint of range(start, stop), rounded up to next odd number. */
- midpoint = (start + num_operands) | 1;
- left = factorial_partial_product(start, midpoint,
- _Py_bit_length(midpoint - 2));
- if (left == NULL)
- goto error;
- right = factorial_partial_product(midpoint, stop, max_bits);
- if (right == NULL)
- goto error;
- result = PyNumber_Multiply(left, right);
- error:
- Py_XDECREF(left);
- Py_XDECREF(right);
- return result;
- }
- /* factorial_odd_part: compute the odd part of factorial(n). */
- static PyObject *
- factorial_odd_part(unsigned long n)
- {
- long i;
- unsigned long v, lower, upper;
- PyObject *partial, *tmp, *inner, *outer;
- inner = PyLong_FromLong(1);
- if (inner == NULL)
- return NULL;
- outer = Py_NewRef(inner);
- upper = 3;
- for (i = _Py_bit_length(n) - 2; i >= 0; i--) {
- v = n >> i;
- if (v <= 2)
- continue;
- lower = upper;
- /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
- upper = (v + 1) | 1;
- /* Here inner is the product of all odd integers j in the range (0,
- n/2**(i+1)]. The factorial_partial_product call below gives the
- product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
- partial = factorial_partial_product(lower, upper, _Py_bit_length(upper-2));
- /* inner *= partial */
- if (partial == NULL)
- goto error;
- tmp = PyNumber_Multiply(inner, partial);
- Py_DECREF(partial);
- if (tmp == NULL)
- goto error;
- Py_SETREF(inner, tmp);
- /* Now inner is the product of all odd integers j in the range (0,
- n/2**i], giving the inner product in the formula above. */
- /* outer *= inner; */
- tmp = PyNumber_Multiply(outer, inner);
- if (tmp == NULL)
- goto error;
- Py_SETREF(outer, tmp);
- }
- Py_DECREF(inner);
- return outer;
- error:
- Py_DECREF(outer);
- Py_DECREF(inner);
- return NULL;
- }
- /* Lookup table for small factorial values */
- static const unsigned long SmallFactorials[] = {
- 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
- 362880, 3628800, 39916800, 479001600,
- #if SIZEOF_LONG >= 8
- 6227020800, 87178291200, 1307674368000,
- 20922789888000, 355687428096000, 6402373705728000,
- 121645100408832000, 2432902008176640000
- #endif
- };
- /*[clinic input]
- math.factorial
- n as arg: object
- /
- Find n!.
- Raise a ValueError if x is negative or non-integral.
- [clinic start generated code]*/
- static PyObject *
- math_factorial(PyObject *module, PyObject *arg)
- /*[clinic end generated code: output=6686f26fae00e9ca input=713fb771677e8c31]*/
- {
- long x, two_valuation;
- int overflow;
- PyObject *result, *odd_part;
- x = PyLong_AsLongAndOverflow(arg, &overflow);
- if (x == -1 && PyErr_Occurred()) {
- return NULL;
- }
- else if (overflow == 1) {
- PyErr_Format(PyExc_OverflowError,
- "factorial() argument should not exceed %ld",
- LONG_MAX);
- return NULL;
- }
- else if (overflow == -1 || x < 0) {
- PyErr_SetString(PyExc_ValueError,
- "factorial() not defined for negative values");
- return NULL;
- }
- /* use lookup table if x is small */
- if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
- return PyLong_FromUnsignedLong(SmallFactorials[x]);
- /* else express in the form odd_part * 2**two_valuation, and compute as
- odd_part << two_valuation. */
- odd_part = factorial_odd_part(x);
- if (odd_part == NULL)
- return NULL;
- two_valuation = x - count_set_bits(x);
- result = _PyLong_Lshift(odd_part, two_valuation);
- Py_DECREF(odd_part);
- return result;
- }
- /*[clinic input]
- math.trunc
- x: object
- /
- Truncates the Real x to the nearest Integral toward 0.
- Uses the __trunc__ magic method.
- [clinic start generated code]*/
- static PyObject *
- math_trunc(PyObject *module, PyObject *x)
- /*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
- {
- PyObject *trunc, *result;
- if (PyFloat_CheckExact(x)) {
- return PyFloat_Type.tp_as_number->nb_int(x);
- }
- if (!_PyType_IsReady(Py_TYPE(x))) {
- if (PyType_Ready(Py_TYPE(x)) < 0)
- return NULL;
- }
- math_module_state *state = get_math_module_state(module);
- trunc = _PyObject_LookupSpecial(x, state->str___trunc__);
- if (trunc == NULL) {
- if (!PyErr_Occurred())
- PyErr_Format(PyExc_TypeError,
- "type %.100s doesn't define __trunc__ method",
- Py_TYPE(x)->tp_name);
- return NULL;
- }
- result = _PyObject_CallNoArgs(trunc);
- Py_DECREF(trunc);
- return result;
- }
- /*[clinic input]
- math.frexp
- x: double
- /
- Return the mantissa and exponent of x, as pair (m, e).
- m is a float and e is an int, such that x = m * 2.**e.
- If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
- [clinic start generated code]*/
- static PyObject *
- math_frexp_impl(PyObject *module, double x)
- /*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
- {
- int i;
- /* deal with special cases directly, to sidestep platform
- differences */
- if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
- i = 0;
- }
- else {
- x = frexp(x, &i);
- }
- return Py_BuildValue("(di)", x, i);
- }
- /*[clinic input]
- math.ldexp
- x: double
- i: object
- /
- Return x * (2**i).
- This is essentially the inverse of frexp().
- [clinic start generated code]*/
- static PyObject *
- math_ldexp_impl(PyObject *module, double x, PyObject *i)
- /*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
- {
- double r;
- long exp;
- int overflow;
- if (PyLong_Check(i)) {
- /* on overflow, replace exponent with either LONG_MAX
- or LONG_MIN, depending on the sign. */
- exp = PyLong_AsLongAndOverflow(i, &overflow);
- if (exp == -1 && PyErr_Occurred())
- return NULL;
- if (overflow)
- exp = overflow < 0 ? LONG_MIN : LONG_MAX;
- }
- else {
- PyErr_SetString(PyExc_TypeError,
- "Expected an int as second argument to ldexp.");
- return NULL;
- }
- if (x == 0. || !Py_IS_FINITE(x)) {
- /* NaNs, zeros and infinities are returned unchanged */
- r = x;
- errno = 0;
- } else if (exp > INT_MAX) {
- /* overflow */
- r = copysign(Py_HUGE_VAL, x);
- errno = ERANGE;
- } else if (exp < INT_MIN) {
- /* underflow to +-0 */
- r = copysign(0., x);
- errno = 0;
- } else {
- errno = 0;
- r = ldexp(x, (int)exp);
- if (Py_IS_INFINITY(r))
- errno = ERANGE;
- }
- if (errno && is_error(r))
- return NULL;
- return PyFloat_FromDouble(r);
- }
- /*[clinic input]
- math.modf
- x: double
- /
- Return the fractional and integer parts of x.
- Both results carry the sign of x and are floats.
- [clinic start generated code]*/
- static PyObject *
- math_modf_impl(PyObject *module, double x)
- /*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
- {
- double y;
- /* some platforms don't do the right thing for NaNs and
- infinities, so we take care of special cases directly. */
- if (!Py_IS_FINITE(x)) {
- if (Py_IS_INFINITY(x))
- return Py_BuildValue("(dd)", copysign(0., x), x);
- else if (Py_IS_NAN(x))
- return Py_BuildValue("(dd)", x, x);
- }
- errno = 0;
- x = modf(x, &y);
- return Py_BuildValue("(dd)", x, y);
- }
- /* A decent logarithm is easy to compute even for huge ints, but libm can't
- do that by itself -- loghelper can. func is log or log10, and name is
- "log" or "log10". Note that overflow of the result isn't possible: an int
- can contain no more than INT_MAX * SHIFT bits, so has value certainly less
- than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
- small enough to fit in an IEEE single. log and log10 are even smaller.
- However, intermediate overflow is possible for an int if the number of bits
- in that int is larger than PY_SSIZE_T_MAX. */
- static PyObject*
- loghelper(PyObject* arg, double (*func)(double))
- {
- /* If it is int, do it ourselves. */
- if (PyLong_Check(arg)) {
- double x, result;
- Py_ssize_t e;
- /* Negative or zero inputs give a ValueError. */
- if (!_PyLong_IsPositive((PyLongObject *)arg)) {
- PyErr_SetString(PyExc_ValueError,
- "math domain error");
- return NULL;
- }
- x = PyLong_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred()) {
- if (!PyErr_ExceptionMatches(PyExc_OverflowError))
- return NULL;
- /* Here the conversion to double overflowed, but it's possible
- to compute the log anyway. Clear the exception and continue. */
- PyErr_Clear();
- x = _PyLong_Frexp((PyLongObject *)arg, &e);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
- result = func(x) + func(2.0) * e;
- }
- else
- /* Successfully converted x to a double. */
- result = func(x);
- return PyFloat_FromDouble(result);
- }
- /* Else let libm handle it by itself. */
- return math_1(arg, func, 0);
- }
- /* AC: cannot convert yet, see gh-102839 and gh-89381, waiting
- for support of multiple signatures */
- static PyObject *
- math_log(PyObject *module, PyObject * const *args, Py_ssize_t nargs)
- {
- PyObject *num, *den;
- PyObject *ans;
- if (!_PyArg_CheckPositional("log", nargs, 1, 2))
- return NULL;
- num = loghelper(args[0], m_log);
- if (num == NULL || nargs == 1)
- return num;
- den = loghelper(args[1], m_log);
- if (den == NULL) {
- Py_DECREF(num);
- return NULL;
- }
- ans = PyNumber_TrueDivide(num, den);
- Py_DECREF(num);
- Py_DECREF(den);
- return ans;
- }
- PyDoc_STRVAR(math_log_doc,
- "log(x, [base=math.e])\n\
- Return the logarithm of x to the given base.\n\n\
- If the base is not specified, returns the natural logarithm (base e) of x.");
- /*[clinic input]
- math.log2
- x: object
- /
- Return the base 2 logarithm of x.
- [clinic start generated code]*/
- static PyObject *
- math_log2(PyObject *module, PyObject *x)
- /*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
- {
- return loghelper(x, m_log2);
- }
- /*[clinic input]
- math.log10
- x: object
- /
- Return the base 10 logarithm of x.
- [clinic start generated code]*/
- static PyObject *
- math_log10(PyObject *module, PyObject *x)
- /*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
- {
- return loghelper(x, m_log10);
- }
- /*[clinic input]
- math.fmod
- x: double
- y: double
- /
- Return fmod(x, y), according to platform C.
- x % y may differ.
- [clinic start generated code]*/
- static PyObject *
- math_fmod_impl(PyObject *module, double x, double y)
- /*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
- {
- double r;
- /* fmod(x, +/-Inf) returns x for finite x. */
- if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
- return PyFloat_FromDouble(x);
- errno = 0;
- r = fmod(x, y);
- if (Py_IS_NAN(r)) {
- if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
- errno = EDOM;
- else
- errno = 0;
- }
- if (errno && is_error(r))
- return NULL;
- else
- return PyFloat_FromDouble(r);
- }
- /*
- Given a *vec* of values, compute the vector norm:
- sqrt(sum(x ** 2 for x in vec))
- The *max* variable should be equal to the largest fabs(x).
- The *n* variable is the length of *vec*.
- If n==0, then *max* should be 0.0.
- If an infinity is present in the vec, *max* should be INF.
- The *found_nan* variable indicates whether some member of
- the *vec* is a NaN.
- To avoid overflow/underflow and to achieve high accuracy giving results
- that are almost always correctly rounded, four techniques are used:
- * lossless scaling using a power-of-two scaling factor
- * accurate squaring using Veltkamp-Dekker splitting [1]
- or an equivalent with an fma() call
- * compensated summation using a variant of the Neumaier algorithm [2]
- * differential correction of the square root [3]
- The usual presentation of the Neumaier summation algorithm has an
- expensive branch depending on which operand has the larger
- magnitude. We avoid this cost by arranging the calculation so that
- fabs(csum) is always as large as fabs(x).
- To establish the invariant, *csum* is initialized to 1.0 which is
- always larger than x**2 after scaling or after division by *max*.
- After the loop is finished, the initial 1.0 is subtracted out for a
- net zero effect on the final sum. Since *csum* will be greater than
- 1.0, the subtraction of 1.0 will not cause fractional digits to be
- dropped from *csum*.
- To get the full benefit from compensated summation, the largest
- addend should be in the range: 0.5 <= |x| <= 1.0. Accordingly,
- scaling or division by *max* should not be skipped even if not
- otherwise needed to prevent overflow or loss of precision.
- The assertion that hi*hi <= 1.0 is a bit subtle. Each vector element
- gets scaled to a magnitude below 1.0. The Veltkamp-Dekker splitting
- algorithm gives a *hi* value that is correctly rounded to half
- precision. When a value at or below 1.0 is correctly rounded, it
- never goes above 1.0. And when values at or below 1.0 are squared,
- they remain at or below 1.0, thus preserving the summation invariant.
- Another interesting assertion is that csum+lo*lo == csum. In the loop,
- each scaled vector element has a magnitude less than 1.0. After the
- Veltkamp split, *lo* has a maximum value of 2**-27. So the maximum
- value of *lo* squared is 2**-54. The value of ulp(1.0)/2.0 is 2**-53.
- Given that csum >= 1.0, we have:
- lo**2 <= 2**-54 < 2**-53 == 1/2*ulp(1.0) <= ulp(csum)/2
- Since lo**2 is less than 1/2 ulp(csum), we have csum+lo*lo == csum.
- To minimize loss of information during the accumulation of fractional
- values, each term has a separate accumulator. This also breaks up
- sequential dependencies in the inner loop so the CPU can maximize
- floating point throughput. [4] On an Apple M1 Max, hypot(*vec)
- takes only 3.33 µsec when len(vec) == 1000.
- The square root differential correction is needed because a
- correctly rounded square root of a correctly rounded sum of
- squares can still be off by as much as one ulp.
- The differential correction starts with a value *x* that is
- the difference between the square of *h*, the possibly inaccurately
- rounded square root, and the accurately computed sum of squares.
- The correction is the first order term of the Maclaurin series
- expansion of sqrt(h**2 + x) == h + x/(2*h) + O(x**2). [5]
- Essentially, this differential correction is equivalent to one
- refinement step in Newton's divide-and-average square root
- algorithm, effectively doubling the number of accurate bits.
- This technique is used in Dekker's SQRT2 algorithm and again in
- Borges' ALGORITHM 4 and 5.
- The hypot() function is faithfully rounded (less than 1 ulp error)
- and usually correctly rounded (within 1/2 ulp). The squaring
- step is exact. The Neumaier summation computes as if in doubled
- precision (106 bits) and has the advantage that its input squares
- are non-negative so that the condition number of the sum is one.
- The square root with a differential correction is likewise computed
- as if in doubled precision.
- For n <= 1000, prior to the final addition that rounds the overall
- result, the internal accuracy of "h" together with its correction of
- "x / (2.0 * h)" is at least 100 bits. [6] Also, hypot() was tested
- against a Decimal implementation with prec=300. After 100 million
- trials, no incorrectly rounded examples were found. In addition,
- perfect commutativity (all permutations are exactly equal) was
- verified for 1 billion random inputs with n=5. [7]
- References:
- 1. Veltkamp-Dekker splitting: http://csclub.uwaterloo.ca/~pbarfuss/dekker1971.pdf
- 2. Compensated summation: http://www.ti3.tu-harburg.de/paper/rump/Ru08b.pdf
- 3. Square root differential correction: https://arxiv.org/pdf/1904.09481.pdf
- 4. Data dependency graph: https://bugs.python.org/file49439/hypot.png
- 5. https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
- 6. Analysis of internal accuracy: https://bugs.python.org/file49484/best_frac.py
- 7. Commutativity test: https://bugs.python.org/file49448/test_hypot_commutativity.py
- */
- static inline double
- vector_norm(Py_ssize_t n, double *vec, double max, int found_nan)
- {
- double x, h, scale, csum = 1.0, frac1 = 0.0, frac2 = 0.0;
- DoubleLength pr, sm;
- int max_e;
- Py_ssize_t i;
- if (Py_IS_INFINITY(max)) {
- return max;
- }
- if (found_nan) {
- return Py_NAN;
- }
- if (max == 0.0 || n <= 1) {
- return max;
- }
- frexp(max, &max_e);
- if (max_e < -1023) {
- /* When max_e < -1023, ldexp(1.0, -max_e) would overflow. */
- for (i=0 ; i < n ; i++) {
- vec[i] /= DBL_MIN; // convert subnormals to normals
- }
- return DBL_MIN * vector_norm(n, vec, max / DBL_MIN, found_nan);
- }
- scale = ldexp(1.0, -max_e);
- assert(max * scale >= 0.5);
- assert(max * scale < 1.0);
- for (i=0 ; i < n ; i++) {
- x = vec[i];
- assert(Py_IS_FINITE(x) && fabs(x) <= max);
- x *= scale; // lossless scaling
- assert(fabs(x) < 1.0);
- pr = dl_mul(x, x); // lossless squaring
- assert(pr.hi <= 1.0);
- sm = dl_fast_sum(csum, pr.hi); // lossless addition
- csum = sm.hi;
- frac1 += pr.lo; // lossy addition
- frac2 += sm.lo; // lossy addition
- }
- h = sqrt(csum - 1.0 + (frac1 + frac2));
- pr = dl_mul(-h, h);
- sm = dl_fast_sum(csum, pr.hi);
- csum = sm.hi;
- frac1 += pr.lo;
- frac2 += sm.lo;
- x = csum - 1.0 + (frac1 + frac2);
- h += x / (2.0 * h); // differential correction
- return h / scale;
- }
- #define NUM_STACK_ELEMS 16
- /*[clinic input]
- math.dist
- p: object
- q: object
- /
- Return the Euclidean distance between two points p and q.
- The points should be specified as sequences (or iterables) of
- coordinates. Both inputs must have the same dimension.
- Roughly equivalent to:
- sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
- [clinic start generated code]*/
- static PyObject *
- math_dist_impl(PyObject *module, PyObject *p, PyObject *q)
- /*[clinic end generated code: output=56bd9538d06bbcfe input=74e85e1b6092e68e]*/
- {
- PyObject *item;
- double max = 0.0;
- double x, px, qx, result;
- Py_ssize_t i, m, n;
- int found_nan = 0, p_allocated = 0, q_allocated = 0;
- double diffs_on_stack[NUM_STACK_ELEMS];
- double *diffs = diffs_on_stack;
- if (!PyTuple_Check(p)) {
- p = PySequence_Tuple(p);
- if (p == NULL) {
- return NULL;
- }
- p_allocated = 1;
- }
- if (!PyTuple_Check(q)) {
- q = PySequence_Tuple(q);
- if (q == NULL) {
- if (p_allocated) {
- Py_DECREF(p);
- }
- return NULL;
- }
- q_allocated = 1;
- }
- m = PyTuple_GET_SIZE(p);
- n = PyTuple_GET_SIZE(q);
- if (m != n) {
- PyErr_SetString(PyExc_ValueError,
- "both points must have the same number of dimensions");
- goto error_exit;
- }
- if (n > NUM_STACK_ELEMS) {
- diffs = (double *) PyObject_Malloc(n * sizeof(double));
- if (diffs == NULL) {
- PyErr_NoMemory();
- goto error_exit;
- }
- }
- for (i=0 ; i<n ; i++) {
- item = PyTuple_GET_ITEM(p, i);
- ASSIGN_DOUBLE(px, item, error_exit);
- item = PyTuple_GET_ITEM(q, i);
- ASSIGN_DOUBLE(qx, item, error_exit);
- x = fabs(px - qx);
- diffs[i] = x;
- found_nan |= Py_IS_NAN(x);
- if (x > max) {
- max = x;
- }
- }
- result = vector_norm(n, diffs, max, found_nan);
- if (diffs != diffs_on_stack) {
- PyObject_Free(diffs);
- }
- if (p_allocated) {
- Py_DECREF(p);
- }
- if (q_allocated) {
- Py_DECREF(q);
- }
- return PyFloat_FromDouble(result);
- error_exit:
- if (diffs != diffs_on_stack) {
- PyObject_Free(diffs);
- }
- if (p_allocated) {
- Py_DECREF(p);
- }
- if (q_allocated) {
- Py_DECREF(q);
- }
- return NULL;
- }
- /* AC: cannot convert yet, waiting for *args support */
- static PyObject *
- math_hypot(PyObject *self, PyObject *const *args, Py_ssize_t nargs)
- {
- Py_ssize_t i;
- PyObject *item;
- double max = 0.0;
- double x, result;
- int found_nan = 0;
- double coord_on_stack[NUM_STACK_ELEMS];
- double *coordinates = coord_on_stack;
- if (nargs > NUM_STACK_ELEMS) {
- coordinates = (double *) PyObject_Malloc(nargs * sizeof(double));
- if (coordinates == NULL) {
- return PyErr_NoMemory();
- }
- }
- for (i = 0; i < nargs; i++) {
- item = args[i];
- ASSIGN_DOUBLE(x, item, error_exit);
- x = fabs(x);
- coordinates[i] = x;
- found_nan |= Py_IS_NAN(x);
- if (x > max) {
- max = x;
- }
- }
- result = vector_norm(nargs, coordinates, max, found_nan);
- if (coordinates != coord_on_stack) {
- PyObject_Free(coordinates);
- }
- return PyFloat_FromDouble(result);
- error_exit:
- if (coordinates != coord_on_stack) {
- PyObject_Free(coordinates);
- }
- return NULL;
- }
- #undef NUM_STACK_ELEMS
- PyDoc_STRVAR(math_hypot_doc,
- "hypot(*coordinates) -> value\n\n\
- Multidimensional Euclidean distance from the origin to a point.\n\
- \n\
- Roughly equivalent to:\n\
- sqrt(sum(x**2 for x in coordinates))\n\
- \n\
- For a two dimensional point (x, y), gives the hypotenuse\n\
- using the Pythagorean theorem: sqrt(x*x + y*y).\n\
- \n\
- For example, the hypotenuse of a 3/4/5 right triangle is:\n\
- \n\
- >>> hypot(3.0, 4.0)\n\
- 5.0\n\
- ");
- /** sumprod() ***************************************************************/
- /* Forward declaration */
- static inline int _check_long_mult_overflow(long a, long b);
- static inline bool
- long_add_would_overflow(long a, long b)
- {
- return (a > 0) ? (b > LONG_MAX - a) : (b < LONG_MIN - a);
- }
- /*[clinic input]
- math.sumprod
- p: object
- q: object
- /
- Return the sum of products of values from two iterables p and q.
- Roughly equivalent to:
- sum(itertools.starmap(operator.mul, zip(p, q, strict=True)))
- For float and mixed int/float inputs, the intermediate products
- and sums are computed with extended precision.
- [clinic start generated code]*/
- static PyObject *
- math_sumprod_impl(PyObject *module, PyObject *p, PyObject *q)
- /*[clinic end generated code: output=6722dbfe60664554 input=82be54fe26f87e30]*/
- {
- PyObject *p_i = NULL, *q_i = NULL, *term_i = NULL, *new_total = NULL;
- PyObject *p_it, *q_it, *total;
- iternextfunc p_next, q_next;
- bool p_stopped = false, q_stopped = false;
- bool int_path_enabled = true, int_total_in_use = false;
- bool flt_path_enabled = true, flt_total_in_use = false;
- long int_total = 0;
- TripleLength flt_total = tl_zero;
- p_it = PyObject_GetIter(p);
- if (p_it == NULL) {
- return NULL;
- }
- q_it = PyObject_GetIter(q);
- if (q_it == NULL) {
- Py_DECREF(p_it);
- return NULL;
- }
- total = PyLong_FromLong(0);
- if (total == NULL) {
- Py_DECREF(p_it);
- Py_DECREF(q_it);
- return NULL;
- }
- p_next = *Py_TYPE(p_it)->tp_iternext;
- q_next = *Py_TYPE(q_it)->tp_iternext;
- while (1) {
- bool finished;
- assert (p_i == NULL);
- assert (q_i == NULL);
- assert (term_i == NULL);
- assert (new_total == NULL);
- assert (p_it != NULL);
- assert (q_it != NULL);
- assert (total != NULL);
- p_i = p_next(p_it);
- if (p_i == NULL) {
- if (PyErr_Occurred()) {
- if (!PyErr_ExceptionMatches(PyExc_StopIteration)) {
- goto err_exit;
- }
- PyErr_Clear();
- }
- p_stopped = true;
- }
- q_i = q_next(q_it);
- if (q_i == NULL) {
- if (PyErr_Occurred()) {
- if (!PyErr_ExceptionMatches(PyExc_StopIteration)) {
- goto err_exit;
- }
- PyErr_Clear();
- }
- q_stopped = true;
- }
- if (p_stopped != q_stopped) {
- PyErr_Format(PyExc_ValueError, "Inputs are not the same length");
- goto err_exit;
- }
- finished = p_stopped & q_stopped;
- if (int_path_enabled) {
- if (!finished && PyLong_CheckExact(p_i) & PyLong_CheckExact(q_i)) {
- int overflow;
- long int_p, int_q, int_prod;
- int_p = PyLong_AsLongAndOverflow(p_i, &overflow);
- if (overflow) {
- goto finalize_int_path;
- }
- int_q = PyLong_AsLongAndOverflow(q_i, &overflow);
- if (overflow) {
- goto finalize_int_path;
- }
- if (_check_long_mult_overflow(int_p, int_q)) {
- goto finalize_int_path;
- }
- int_prod = int_p * int_q;
- if (long_add_would_overflow(int_total, int_prod)) {
- goto finalize_int_path;
- }
- int_total += int_prod;
- int_total_in_use = true;
- Py_CLEAR(p_i);
- Py_CLEAR(q_i);
- continue;
- }
- finalize_int_path:
- // We're finished, overflowed, or have a non-int
- int_path_enabled = false;
- if (int_total_in_use) {
- term_i = PyLong_FromLong(int_total);
- if (term_i == NULL) {
- goto err_exit;
- }
- new_total = PyNumber_Add(total, term_i);
- if (new_total == NULL) {
- goto err_exit;
- }
- Py_SETREF(total, new_total);
- new_total = NULL;
- Py_CLEAR(term_i);
- int_total = 0; // An ounce of prevention, ...
- int_total_in_use = false;
- }
- }
- if (flt_path_enabled) {
- if (!finished) {
- double flt_p, flt_q;
- bool p_type_float = PyFloat_CheckExact(p_i);
- bool q_type_float = PyFloat_CheckExact(q_i);
- if (p_type_float && q_type_float) {
- flt_p = PyFloat_AS_DOUBLE(p_i);
- flt_q = PyFloat_AS_DOUBLE(q_i);
- } else if (p_type_float && (PyLong_CheckExact(q_i) || PyBool_Check(q_i))) {
- /* We care about float/int pairs and int/float pairs because
- they arise naturally in several use cases such as price
- times quantity, measurements with integer weights, or
- data selected by a vector of bools. */
- flt_p = PyFloat_AS_DOUBLE(p_i);
- flt_q = PyLong_AsDouble(q_i);
- if (flt_q == -1.0 && PyErr_Occurred()) {
- PyErr_Clear();
- goto finalize_flt_path;
- }
- } else if (q_type_float && (PyLong_CheckExact(p_i) || PyBool_Check(p_i))) {
- flt_q = PyFloat_AS_DOUBLE(q_i);
- flt_p = PyLong_AsDouble(p_i);
- if (flt_p == -1.0 && PyErr_Occurred()) {
- PyErr_Clear();
- goto finalize_flt_path;
- }
- } else {
- goto finalize_flt_path;
- }
- TripleLength new_flt_total = tl_fma(flt_p, flt_q, flt_total);
- if (isfinite(new_flt_total.hi)) {
- flt_total = new_flt_total;
- flt_total_in_use = true;
- Py_CLEAR(p_i);
- Py_CLEAR(q_i);
- continue;
- }
- }
- finalize_flt_path:
- // We're finished, overflowed, have a non-float, or got a non-finite value
- flt_path_enabled = false;
- if (flt_total_in_use) {
- term_i = PyFloat_FromDouble(tl_to_d(flt_total));
- if (term_i == NULL) {
- goto err_exit;
- }
- new_total = PyNumber_Add(total, term_i);
- if (new_total == NULL) {
- goto err_exit;
- }
- Py_SETREF(total, new_total);
- new_total = NULL;
- Py_CLEAR(term_i);
- flt_total = tl_zero;
- flt_total_in_use = false;
- }
- }
- assert(!int_total_in_use);
- assert(!flt_total_in_use);
- if (finished) {
- goto normal_exit;
- }
- term_i = PyNumber_Multiply(p_i, q_i);
- if (term_i == NULL) {
- goto err_exit;
- }
- new_total = PyNumber_Add(total, term_i);
- if (new_total == NULL) {
- goto err_exit;
- }
- Py_SETREF(total, new_total);
- new_total = NULL;
- Py_CLEAR(p_i);
- Py_CLEAR(q_i);
- Py_CLEAR(term_i);
- }
- normal_exit:
- Py_DECREF(p_it);
- Py_DECREF(q_it);
- return total;
- err_exit:
- Py_DECREF(p_it);
- Py_DECREF(q_it);
- Py_DECREF(total);
- Py_XDECREF(p_i);
- Py_XDECREF(q_i);
- Py_XDECREF(term_i);
- Py_XDECREF(new_total);
- return NULL;
- }
- /* pow can't use math_2, but needs its own wrapper: the problem is
- that an infinite result can arise either as a result of overflow
- (in which case OverflowError should be raised) or as a result of
- e.g. 0.**-5. (for which ValueError needs to be raised.)
- */
- /*[clinic input]
- math.pow
- x: double
- y: double
- /
- Return x**y (x to the power of y).
- [clinic start generated code]*/
- static PyObject *
- math_pow_impl(PyObject *module, double x, double y)
- /*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
- {
- double r;
- int odd_y;
- /* deal directly with IEEE specials, to cope with problems on various
- platforms whose semantics don't exactly match C99 */
- r = 0.; /* silence compiler warning */
- if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
- errno = 0;
- if (Py_IS_NAN(x))
- r = y == 0. ? 1. : x; /* NaN**0 = 1 */
- else if (Py_IS_NAN(y))
- r = x == 1. ? 1. : y; /* 1**NaN = 1 */
- else if (Py_IS_INFINITY(x)) {
- odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
- if (y > 0.)
- r = odd_y ? x : fabs(x);
- else if (y == 0.)
- r = 1.;
- else /* y < 0. */
- r = odd_y ? copysign(0., x) : 0.;
- }
- else if (Py_IS_INFINITY(y)) {
- if (fabs(x) == 1.0)
- r = 1.;
- else if (y > 0. && fabs(x) > 1.0)
- r = y;
- else if (y < 0. && fabs(x) < 1.0) {
- r = -y; /* result is +inf */
- }
- else
- r = 0.;
- }
- }
- else {
- /* let libm handle finite**finite */
- errno = 0;
- r = pow(x, y);
- /* a NaN result should arise only from (-ve)**(finite
- non-integer); in this case we want to raise ValueError. */
- if (!Py_IS_FINITE(r)) {
- if (Py_IS_NAN(r)) {
- errno = EDOM;
- }
- /*
- an infinite result here arises either from:
- (A) (+/-0.)**negative (-> divide-by-zero)
- (B) overflow of x**y with x and y finite
- */
- else if (Py_IS_INFINITY(r)) {
- if (x == 0.)
- errno = EDOM;
- else
- errno = ERANGE;
- }
- }
- }
- if (errno && is_error(r))
- return NULL;
- else
- return PyFloat_FromDouble(r);
- }
- static const double degToRad = Py_MATH_PI / 180.0;
- static const double radToDeg = 180.0 / Py_MATH_PI;
- /*[clinic input]
- math.degrees
- x: double
- /
- Convert angle x from radians to degrees.
- [clinic start generated code]*/
- static PyObject *
- math_degrees_impl(PyObject *module, double x)
- /*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
- {
- return PyFloat_FromDouble(x * radToDeg);
- }
- /*[clinic input]
- math.radians
- x: double
- /
- Convert angle x from degrees to radians.
- [clinic start generated code]*/
- static PyObject *
- math_radians_impl(PyObject *module, double x)
- /*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
- {
- return PyFloat_FromDouble(x * degToRad);
- }
- /*[clinic input]
- math.isfinite
- x: double
- /
- Return True if x is neither an infinity nor a NaN, and False otherwise.
- [clinic start generated code]*/
- static PyObject *
- math_isfinite_impl(PyObject *module, double x)
- /*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
- {
- return PyBool_FromLong((long)Py_IS_FINITE(x));
- }
- /*[clinic input]
- math.isnan
- x: double
- /
- Return True if x is a NaN (not a number), and False otherwise.
- [clinic start generated code]*/
- static PyObject *
- math_isnan_impl(PyObject *module, double x)
- /*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
- {
- return PyBool_FromLong((long)Py_IS_NAN(x));
- }
- /*[clinic input]
- math.isinf
- x: double
- /
- Return True if x is a positive or negative infinity, and False otherwise.
- [clinic start generated code]*/
- static PyObject *
- math_isinf_impl(PyObject *module, double x)
- /*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
- {
- return PyBool_FromLong((long)Py_IS_INFINITY(x));
- }
- /*[clinic input]
- math.isclose -> bool
- a: double
- b: double
- *
- rel_tol: double = 1e-09
- maximum difference for being considered "close", relative to the
- magnitude of the input values
- abs_tol: double = 0.0
- maximum difference for being considered "close", regardless of the
- magnitude of the input values
- Determine whether two floating point numbers are close in value.
- Return True if a is close in value to b, and False otherwise.
- For the values to be considered close, the difference between them
- must be smaller than at least one of the tolerances.
- -inf, inf and NaN behave similarly to the IEEE 754 Standard. That
- is, NaN is not close to anything, even itself. inf and -inf are
- only close to themselves.
- [clinic start generated code]*/
- static int
- math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
- double abs_tol)
- /*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
- {
- double diff = 0.0;
- /* sanity check on the inputs */
- if (rel_tol < 0.0 || abs_tol < 0.0 ) {
- PyErr_SetString(PyExc_ValueError,
- "tolerances must be non-negative");
- return -1;
- }
- if ( a == b ) {
- /* short circuit exact equality -- needed to catch two infinities of
- the same sign. And perhaps speeds things up a bit sometimes.
- */
- return 1;
- }
- /* This catches the case of two infinities of opposite sign, or
- one infinity and one finite number. Two infinities of opposite
- sign would otherwise have an infinite relative tolerance.
- Two infinities of the same sign are caught by the equality check
- above.
- */
- if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
- return 0;
- }
- /* now do the regular computation
- this is essentially the "weak" test from the Boost library
- */
- diff = fabs(b - a);
- return (((diff <= fabs(rel_tol * b)) ||
- (diff <= fabs(rel_tol * a))) ||
- (diff <= abs_tol));
- }
- static inline int
- _check_long_mult_overflow(long a, long b) {
- /* From Python2's int_mul code:
- Integer overflow checking for * is painful: Python tried a couple ways, but
- they didn't work on all platforms, or failed in endcases (a product of
- -sys.maxint-1 has been a particular pain).
- Here's another way:
- The native long product x*y is either exactly right or *way* off, being
- just the last n bits of the true product, where n is the number of bits
- in a long (the delivered product is the true product plus i*2**n for
- some integer i).
- The native double product (double)x * (double)y is subject to three
- rounding errors: on a sizeof(long)==8 box, each cast to double can lose
- info, and even on a sizeof(long)==4 box, the multiplication can lose info.
- But, unlike the native long product, it's not in *range* trouble: even
- if sizeof(long)==32 (256-bit longs), the product easily fits in the
- dynamic range of a double. So the leading 50 (or so) bits of the double
- product are correct.
- We check these two ways against each other, and declare victory if they're
- approximately the same. Else, because the native long product is the only
- one that can lose catastrophic amounts of information, it's the native long
- product that must have overflowed.
- */
- long longprod = (long)((unsigned long)a * b);
- double doubleprod = (double)a * (double)b;
- double doubled_longprod = (double)longprod;
- if (doubled_longprod == doubleprod) {
- return 0;
- }
- const double diff = doubled_longprod - doubleprod;
- const double absdiff = diff >= 0.0 ? diff : -diff;
- const double absprod = doubleprod >= 0.0 ? doubleprod : -doubleprod;
- if (32.0 * absdiff <= absprod) {
- return 0;
- }
- return 1;
- }
- /*[clinic input]
- math.prod
- iterable: object
- /
- *
- start: object(c_default="NULL") = 1
- Calculate the product of all the elements in the input iterable.
- The default start value for the product is 1.
- When the iterable is empty, return the start value. This function is
- intended specifically for use with numeric values and may reject
- non-numeric types.
- [clinic start generated code]*/
- static PyObject *
- math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start)
- /*[clinic end generated code: output=36153bedac74a198 input=4c5ab0682782ed54]*/
- {
- PyObject *result = start;
- PyObject *temp, *item, *iter;
- iter = PyObject_GetIter(iterable);
- if (iter == NULL) {
- return NULL;
- }
- if (result == NULL) {
- result = _PyLong_GetOne();
- }
- Py_INCREF(result);
- #ifndef SLOW_PROD
- /* Fast paths for integers keeping temporary products in C.
- * Assumes all inputs are the same type.
- * If the assumption fails, default to use PyObjects instead.
- */
- if (PyLong_CheckExact(result)) {
- int overflow;
- long i_result = PyLong_AsLongAndOverflow(result, &overflow);
- /* If this already overflowed, don't even enter the loop. */
- if (overflow == 0) {
- Py_SETREF(result, NULL);
- }
- /* Loop over all the items in the iterable until we finish, we overflow
- * or we found a non integer element */
- while (result == NULL) {
- item = PyIter_Next(iter);
- if (item == NULL) {
- Py_DECREF(iter);
- if (PyErr_Occurred()) {
- return NULL;
- }
- return PyLong_FromLong(i_result);
- }
- if (PyLong_CheckExact(item)) {
- long b = PyLong_AsLongAndOverflow(item, &overflow);
- if (overflow == 0 && !_check_long_mult_overflow(i_result, b)) {
- long x = i_result * b;
- i_result = x;
- Py_DECREF(item);
- continue;
- }
- }
- /* Either overflowed or is not an int.
- * Restore real objects and process normally */
- result = PyLong_FromLong(i_result);
- if (result == NULL) {
- Py_DECREF(item);
- Py_DECREF(iter);
- return NULL;
- }
- temp = PyNumber_Multiply(result, item);
- Py_DECREF(result);
- Py_DECREF(item);
- result = temp;
- if (result == NULL) {
- Py_DECREF(iter);
- return NULL;
- }
- }
- }
- /* Fast paths for floats keeping temporary products in C.
- * Assumes all inputs are the same type.
- * If the assumption fails, default to use PyObjects instead.
- */
- if (PyFloat_CheckExact(result)) {
- double f_result = PyFloat_AS_DOUBLE(result);
- Py_SETREF(result, NULL);
- while(result == NULL) {
- item = PyIter_Next(iter);
- if (item == NULL) {
- Py_DECREF(iter);
- if (PyErr_Occurred()) {
- return NULL;
- }
- return PyFloat_FromDouble(f_result);
- }
- if (PyFloat_CheckExact(item)) {
- f_result *= PyFloat_AS_DOUBLE(item);
- Py_DECREF(item);
- continue;
- }
- if (PyLong_CheckExact(item)) {
- long value;
- int overflow;
- value = PyLong_AsLongAndOverflow(item, &overflow);
- if (!overflow) {
- f_result *= (double)value;
- Py_DECREF(item);
- continue;
- }
- }
- result = PyFloat_FromDouble(f_result);
- if (result == NULL) {
- Py_DECREF(item);
- Py_DECREF(iter);
- return NULL;
- }
- temp = PyNumber_Multiply(result, item);
- Py_DECREF(result);
- Py_DECREF(item);
- result = temp;
- if (result == NULL) {
- Py_DECREF(iter);
- return NULL;
- }
- }
- }
- #endif
- /* Consume rest of the iterable (if any) that could not be handled
- * by specialized functions above.*/
- for(;;) {
- item = PyIter_Next(iter);
- if (item == NULL) {
- /* error, or end-of-sequence */
- if (PyErr_Occurred()) {
- Py_SETREF(result, NULL);
- }
- break;
- }
- temp = PyNumber_Multiply(result, item);
- Py_DECREF(result);
- Py_DECREF(item);
- result = temp;
- if (result == NULL)
- break;
- }
- Py_DECREF(iter);
- return result;
- }
- /* least significant 64 bits of the odd part of factorial(n), for n in range(128).
- Python code to generate the values:
- import math
- for n in range(128):
- fac = math.factorial(n)
- fac_odd_part = fac // (fac & -fac)
- reduced_fac_odd_part = fac_odd_part % (2**64)
- print(f"{reduced_fac_odd_part:#018x}u")
- */
- static const uint64_t reduced_factorial_odd_part[] = {
- 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000003u,
- 0x0000000000000003u, 0x000000000000000fu, 0x000000000000002du, 0x000000000000013bu,
- 0x000000000000013bu, 0x0000000000000b13u, 0x000000000000375fu, 0x0000000000026115u,
- 0x000000000007233fu, 0x00000000005cca33u, 0x0000000002898765u, 0x00000000260eeeebu,
- 0x00000000260eeeebu, 0x0000000286fddd9bu, 0x00000016beecca73u, 0x000001b02b930689u,
- 0x00000870d9df20adu, 0x0000b141df4dae31u, 0x00079dd498567c1bu, 0x00af2e19afc5266du,
- 0x020d8a4d0f4f7347u, 0x335281867ec241efu, 0x9b3093d46fdd5923u, 0x5e1f9767cc5866b1u,
- 0x92dd23d6966aced7u, 0xa30d0f4f0a196e5bu, 0x8dc3e5a1977d7755u, 0x2ab8ce915831734bu,
- 0x2ab8ce915831734bu, 0x81d2a0bc5e5fdcabu, 0x9efcac82445da75bu, 0xbc8b95cf58cde171u,
- 0xa0e8444a1f3cecf9u, 0x4191deb683ce3ffdu, 0xddd3878bc84ebfc7u, 0xcb39a64b83ff3751u,
- 0xf8203f7993fc1495u, 0xbd2a2a78b35f4bddu, 0x84757be6b6d13921u, 0x3fbbcfc0b524988bu,
- 0xbd11ed47c8928df9u, 0x3c26b59e41c2f4c5u, 0x677a5137e883fdb3u, 0xff74e943b03b93ddu,
- 0xfe5ebbcb10b2bb97u, 0xb021f1de3235e7e7u, 0x33509eb2e743a58fu, 0x390f9da41279fb7du,
- 0xe5cb0154f031c559u, 0x93074695ba4ddb6du, 0x81c471caa636247fu, 0xe1347289b5a1d749u,
- 0x286f21c3f76ce2ffu, 0x00be84a2173e8ac7u, 0x1595065ca215b88bu, 0xf95877595b018809u,
- 0x9c2efe3c5516f887u, 0x373294604679382bu, 0xaf1ff7a888adcd35u, 0x18ddf279a2c5800bu,
- 0x18ddf279a2c5800bu, 0x505a90e2542582cbu, 0x5bacad2cd8d5dc2bu, 0xfe3152bcbff89f41u,
- 0xe1467e88bf829351u, 0xb8001adb9e31b4d5u, 0x2803ac06a0cbb91fu, 0x1904b5d698805799u,
- 0xe12a648b5c831461u, 0x3516abbd6160cfa9u, 0xac46d25f12fe036du, 0x78bfa1da906b00efu,
- 0xf6390338b7f111bdu, 0x0f25f80f538255d9u, 0x4ec8ca55b8db140fu, 0x4ff670740b9b30a1u,
- 0x8fd032443a07f325u, 0x80dfe7965c83eeb5u, 0xa3dc1714d1213afdu, 0x205b7bbfcdc62007u,
- 0xa78126bbe140a093u, 0x9de1dc61ca7550cfu, 0x84f0046d01b492c5u, 0x2d91810b945de0f3u,
- 0xf5408b7f6008aa71u, 0x43707f4863034149u, 0xdac65fb9679279d5u, 0xc48406e7d1114eb7u,
- 0xa7dc9ed3c88e1271u, 0xfb25b2efdb9cb30du, 0x1bebda0951c4df63u, 0x5c85e975580ee5bdu,
- 0x1591bc60082cb137u, 0x2c38606318ef25d7u, 0x76ca72f7c5c63e27u, 0xf04a75d17baa0915u,
- 0x77458175139ae30du, 0x0e6c1330bc1b9421u, 0xdf87d2b5797e8293u, 0xefa5c703e1e68925u,
- 0x2b6b1b3278b4f6e1u, 0xceee27b382394249u, 0xd74e3829f5dab91du, 0xfdb17989c26b5f1fu,
- 0xc1b7d18781530845u, 0x7b4436b2105a8561u, 0x7ba7c0418372a7d7u, 0x9dbc5c67feb6c639u,
- 0x502686d7f6ff6b8fu, 0x6101855406be7a1fu, 0x9956afb5806930e7u, 0xe1f0ee88af40f7c5u,
- 0x984b057bda5c1151u, 0x9a49819acc13ea05u, 0x8ef0dead0896ef27u, 0x71f7826efe292b21u,
- 0xad80a480e46986efu, 0x01cdc0ebf5e0c6f7u, 0x6e06f839968f68dbu, 0xdd5943ab56e76139u,
- 0xcdcf31bf8604c5e7u, 0x7e2b4a847054a1cbu, 0x0ca75697a4d3d0f5u, 0x4703f53ac514a98bu,
- };
- /* inverses of reduced_factorial_odd_part values modulo 2**64.
- Python code to generate the values:
- import math
- for n in range(128):
- fac = math.factorial(n)
- fac_odd_part = fac // (fac & -fac)
- inverted_fac_odd_part = pow(fac_odd_part, -1, 2**64)
- print(f"{inverted_fac_odd_part:#018x}u")
- */
- static const uint64_t inverted_factorial_odd_part[] = {
- 0x0000000000000001u, 0x0000000000000001u, 0x0000000000000001u, 0xaaaaaaaaaaaaaaabu,
- 0xaaaaaaaaaaaaaaabu, 0xeeeeeeeeeeeeeeefu, 0x4fa4fa4fa4fa4fa5u, 0x2ff2ff2ff2ff2ff3u,
- 0x2ff2ff2ff2ff2ff3u, 0x938cc70553e3771bu, 0xb71c27cddd93e49fu, 0xb38e3229fcdee63du,
- 0xe684bb63544a4cbfu, 0xc2f684917ca340fbu, 0xf747c9cba417526du, 0xbb26eb51d7bd49c3u,
- 0xbb26eb51d7bd49c3u, 0xb0a7efb985294093u, 0xbe4b8c69f259eabbu, 0x6854d17ed6dc4fb9u,
- 0xe1aa904c915f4325u, 0x3b8206df131cead1u, 0x79c6009fea76fe13u, 0xd8c5d381633cd365u,
- 0x4841f12b21144677u, 0x4a91ff68200b0d0fu, 0x8f9513a58c4f9e8bu, 0x2b3e690621a42251u,
- 0x4f520f00e03c04e7u, 0x2edf84ee600211d3u, 0xadcaa2764aaacdfdu, 0x161f4f9033f4fe63u,
- 0x161f4f9033f4fe63u, 0xbada2932ea4d3e03u, 0xcec189f3efaa30d3u, 0xf7475bb68330bf91u,
- 0x37eb7bf7d5b01549u, 0x46b35660a4e91555u, 0xa567c12d81f151f7u, 0x4c724007bb2071b1u,
- 0x0f4a0cce58a016bdu, 0xfa21068e66106475u, 0x244ab72b5a318ae1u, 0x366ce67e080d0f23u,
- 0xd666fdae5dd2a449u, 0xd740ddd0acc06a0du, 0xb050bbbb28e6f97bu, 0x70b003fe890a5c75u,
- 0xd03aabff83037427u, 0x13ec4ca72c783bd7u, 0x90282c06afdbd96fu, 0x4414ddb9db4a95d5u,
- 0xa2c68735ae6832e9u, 0xbf72d71455676665u, 0xa8469fab6b759b7fu, 0xc1e55b56e606caf9u,
- 0x40455630fc4a1cffu, 0x0120a7b0046d16f7u, 0xa7c3553b08faef23u, 0x9f0bfd1b08d48639u,
- 0xa433ffce9a304d37u, 0xa22ad1d53915c683u, 0xcb6cbc723ba5dd1du, 0x547fb1b8ab9d0ba3u,
- 0x547fb1b8ab9d0ba3u, 0x8f15a826498852e3u, 0x32e1a03f38880283u, 0x3de4cce63283f0c1u,
- 0x5dfe6667e4da95b1u, 0xfda6eeeef479e47du, 0xf14de991cc7882dfu, 0xe68db79247630ca9u,
- 0xa7d6db8207ee8fa1u, 0x255e1f0fcf034499u, 0xc9a8990e43dd7e65u, 0x3279b6f289702e0fu,
- 0xe7b5905d9b71b195u, 0x03025ba41ff0da69u, 0xb7df3d6d3be55aefu, 0xf89b212ebff2b361u,
- 0xfe856d095996f0adu, 0xd6e533e9fdf20f9du, 0xf8c0e84a63da3255u, 0xa677876cd91b4db7u,
- 0x07ed4f97780d7d9bu, 0x90a8705f258db62fu, 0xa41bbb2be31b1c0du, 0x6ec28690b038383bu,
- 0xdb860c3bb2edd691u, 0x0838286838a980f9u, 0x558417a74b36f77du, 0x71779afc3646ef07u,
- 0x743cda377ccb6e91u, 0x7fdf9f3fe89153c5u, 0xdc97d25df49b9a4bu, 0x76321a778eb37d95u,
- 0x7cbb5e27da3bd487u, 0x9cff4ade1a009de7u, 0x70eb166d05c15197u, 0xdcf0460b71d5fe3du,
- 0x5ac1ee5260b6a3c5u, 0xc922dedfdd78efe1u, 0xe5d381dc3b8eeb9bu, 0xd57e5347bafc6aadu,
- 0x86939040983acd21u, 0x395b9d69740a4ff9u, 0x1467299c8e43d135u, 0x5fe440fcad975cdfu,
- 0xcaa9a39794a6ca8du, 0xf61dbd640868dea1u, 0xac09d98d74843be7u, 0x2b103b9e1a6b4809u,
- 0x2ab92d16960f536fu, 0x6653323d5e3681dfu, 0xefd48c1c0624e2d7u, 0xa496fefe04816f0du,
- 0x1754a7b07bbdd7b1u, 0x23353c829a3852cdu, 0xbf831261abd59097u, 0x57a8e656df0618e1u,
- 0x16e9206c3100680fu, 0xadad4c6ee921dac7u, 0x635f2b3860265353u, 0xdd6d0059f44b3d09u,
- 0xac4dd6b894447dd7u, 0x42ea183eeaa87be3u, 0x15612d1550ee5b5du, 0x226fa19d656cb623u,
- };
- /* exponent of the largest power of 2 dividing factorial(n), for n in range(68)
- Python code to generate the values:
- import math
- for n in range(128):
- fac = math.factorial(n)
- fac_trailing_zeros = (fac & -fac).bit_length() - 1
- print(fac_trailing_zeros)
- */
- static const uint8_t factorial_trailing_zeros[] = {
- 0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, // 0-15
- 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, 23, 23, 25, 25, 26, 26, // 16-31
- 31, 31, 32, 32, 34, 34, 35, 35, 38, 38, 39, 39, 41, 41, 42, 42, // 32-47
- 46, 46, 47, 47, 49, 49, 50, 50, 53, 53, 54, 54, 56, 56, 57, 57, // 48-63
- 63, 63, 64, 64, 66, 66, 67, 67, 70, 70, 71, 71, 73, 73, 74, 74, // 64-79
- 78, 78, 79, 79, 81, 81, 82, 82, 85, 85, 86, 86, 88, 88, 89, 89, // 80-95
- 94, 94, 95, 95, 97, 97, 98, 98, 101, 101, 102, 102, 104, 104, 105, 105, // 96-111
- 109, 109, 110, 110, 112, 112, 113, 113, 116, 116, 117, 117, 119, 119, 120, 120, // 112-127
- };
- /* Number of permutations and combinations.
- * P(n, k) = n! / (n-k)!
- * C(n, k) = P(n, k) / k!
- */
- /* Calculate C(n, k) for n in the 63-bit range. */
- static PyObject *
- perm_comb_small(unsigned long long n, unsigned long long k, int iscomb)
- {
- if (k == 0) {
- return PyLong_FromLong(1);
- }
- /* For small enough n and k the result fits in the 64-bit range and can
- * be calculated without allocating intermediate PyLong objects. */
- if (iscomb) {
- /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)
- * fits into a uint64_t. Exclude k = 1, because the second fast
- * path is faster for this case.*/
- static const unsigned char fast_comb_limits1[] = {
- 0, 0, 127, 127, 127, 127, 127, 127, // 0-7
- 127, 127, 127, 127, 127, 127, 127, 127, // 8-15
- 116, 105, 97, 91, 86, 82, 78, 76, // 16-23
- 74, 72, 71, 70, 69, 68, 68, 67, // 24-31
- 67, 67, 67, // 32-34
- };
- if (k < Py_ARRAY_LENGTH(fast_comb_limits1) && n <= fast_comb_limits1[k]) {
- /*
- comb(n, k) fits into a uint64_t. We compute it as
- comb_odd_part << shift
- where 2**shift is the largest power of two dividing comb(n, k)
- and comb_odd_part is comb(n, k) >> shift. comb_odd_part can be
- calculated efficiently via arithmetic modulo 2**64, using three
- lookups and two uint64_t multiplications.
- */
- uint64_t comb_odd_part = reduced_factorial_odd_part[n]
- * inverted_factorial_odd_part[k]
- * inverted_factorial_odd_part[n - k];
- int shift = factorial_trailing_zeros[n]
- - factorial_trailing_zeros[k]
- - factorial_trailing_zeros[n - k];
- return PyLong_FromUnsignedLongLong(comb_odd_part << shift);
- }
- /* Maps k to the maximal n so that 2*k-1 <= n <= 127 and C(n, k)*k
- * fits into a long long (which is at least 64 bit). Only contains
- * items larger than in fast_comb_limits1. */
- static const unsigned long long fast_comb_limits2[] = {
- 0, ULLONG_MAX, 4294967296ULL, 3329022, 102570, 13467, 3612, 1449, // 0-7
- 746, 453, 308, 227, 178, 147, // 8-13
- };
- if (k < Py_ARRAY_LENGTH(fast_comb_limits2) && n <= fast_comb_limits2[k]) {
- /* C(n, k) = C(n, k-1) * (n-k+1) / k */
- unsigned long long result = n;
- for (unsigned long long i = 1; i < k;) {
- result *= --n;
- result /= ++i;
- }
- return PyLong_FromUnsignedLongLong(result);
- }
- }
- else {
- /* Maps k to the maximal n so that k <= n and P(n, k)
- * fits into a long long (which is at least 64 bit). */
- static const unsigned long long fast_perm_limits[] = {
- 0, ULLONG_MAX, 4294967296ULL, 2642246, 65537, 7133, 1627, 568, // 0-7
- 259, 142, 88, 61, 45, 36, 30, 26, // 8-15
- 24, 22, 21, 20, 20, // 16-20
- };
- if (k < Py_ARRAY_LENGTH(fast_perm_limits) && n <= fast_perm_limits[k]) {
- if (n <= 127) {
- /* P(n, k) fits into a uint64_t. */
- uint64_t perm_odd_part = reduced_factorial_odd_part[n]
- * inverted_factorial_odd_part[n - k];
- int shift = factorial_trailing_zeros[n]
- - factorial_trailing_zeros[n - k];
- return PyLong_FromUnsignedLongLong(perm_odd_part << shift);
- }
- /* P(n, k) = P(n, k-1) * (n-k+1) */
- unsigned long long result = n;
- for (unsigned long long i = 1; i < k;) {
- result *= --n;
- ++i;
- }
- return PyLong_FromUnsignedLongLong(result);
- }
- }
- /* For larger n use recursive formulas:
- *
- * P(n, k) = P(n, j) * P(n-j, k-j)
- * C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j)
- */
- unsigned long long j = k / 2;
- PyObject *a, *b;
- a = perm_comb_small(n, j, iscomb);
- if (a == NULL) {
- return NULL;
- }
- b = perm_comb_small(n - j, k - j, iscomb);
- if (b == NULL) {
- goto error;
- }
- Py_SETREF(a, PyNumber_Multiply(a, b));
- Py_DECREF(b);
- if (iscomb && a != NULL) {
- b = perm_comb_small(k, j, 1);
- if (b == NULL) {
- goto error;
- }
- Py_SETREF(a, PyNumber_FloorDivide(a, b));
- Py_DECREF(b);
- }
- return a;
- error:
- Py_DECREF(a);
- return NULL;
- }
- /* Calculate P(n, k) or C(n, k) using recursive formulas.
- * It is more efficient than sequential multiplication thanks to
- * Karatsuba multiplication.
- */
- static PyObject *
- perm_comb(PyObject *n, unsigned long long k, int iscomb)
- {
- if (k == 0) {
- return PyLong_FromLong(1);
- }
- if (k == 1) {
- return Py_NewRef(n);
- }
- /* P(n, k) = P(n, j) * P(n-j, k-j) */
- /* C(n, k) = C(n, j) * C(n-j, k-j) // C(k, j) */
- unsigned long long j = k / 2;
- PyObject *a, *b;
- a = perm_comb(n, j, iscomb);
- if (a == NULL) {
- return NULL;
- }
- PyObject *t = PyLong_FromUnsignedLongLong(j);
- if (t == NULL) {
- goto error;
- }
- n = PyNumber_Subtract(n, t);
- Py_DECREF(t);
- if (n == NULL) {
- goto error;
- }
- b = perm_comb(n, k - j, iscomb);
- Py_DECREF(n);
- if (b == NULL) {
- goto error;
- }
- Py_SETREF(a, PyNumber_Multiply(a, b));
- Py_DECREF(b);
- if (iscomb && a != NULL) {
- b = perm_comb_small(k, j, 1);
- if (b == NULL) {
- goto error;
- }
- Py_SETREF(a, PyNumber_FloorDivide(a, b));
- Py_DECREF(b);
- }
- return a;
- error:
- Py_DECREF(a);
- return NULL;
- }
- /*[clinic input]
- math.perm
- n: object
- k: object = None
- /
- Number of ways to choose k items from n items without repetition and with order.
- Evaluates to n! / (n - k)! when k <= n and evaluates
- to zero when k > n.
- If k is not specified or is None, then k defaults to n
- and the function returns n!.
- Raises TypeError if either of the arguments are not integers.
- Raises ValueError if either of the arguments are negative.
- [clinic start generated code]*/
- static PyObject *
- math_perm_impl(PyObject *module, PyObject *n, PyObject *k)
- /*[clinic end generated code: output=e021a25469653e23 input=5311c5a00f359b53]*/
- {
- PyObject *result = NULL;
- int overflow, cmp;
- long long ki, ni;
- if (k == Py_None) {
- return math_factorial(module, n);
- }
- n = PyNumber_Index(n);
- if (n == NULL) {
- return NULL;
- }
- k = PyNumber_Index(k);
- if (k == NULL) {
- Py_DECREF(n);
- return NULL;
- }
- assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
- if (_PyLong_IsNegative((PyLongObject *)n)) {
- PyErr_SetString(PyExc_ValueError,
- "n must be a non-negative integer");
- goto error;
- }
- if (_PyLong_IsNegative((PyLongObject *)k)) {
- PyErr_SetString(PyExc_ValueError,
- "k must be a non-negative integer");
- goto error;
- }
- cmp = PyObject_RichCompareBool(n, k, Py_LT);
- if (cmp != 0) {
- if (cmp > 0) {
- result = PyLong_FromLong(0);
- goto done;
- }
- goto error;
- }
- ki = PyLong_AsLongLongAndOverflow(k, &overflow);
- assert(overflow >= 0 && !PyErr_Occurred());
- if (overflow > 0) {
- PyErr_Format(PyExc_OverflowError,
- "k must not exceed %lld",
- LLONG_MAX);
- goto error;
- }
- assert(ki >= 0);
- ni = PyLong_AsLongLongAndOverflow(n, &overflow);
- assert(overflow >= 0 && !PyErr_Occurred());
- if (!overflow && ki > 1) {
- assert(ni >= 0);
- result = perm_comb_small((unsigned long long)ni,
- (unsigned long long)ki, 0);
- }
- else {
- result = perm_comb(n, (unsigned long long)ki, 0);
- }
- done:
- Py_DECREF(n);
- Py_DECREF(k);
- return result;
- error:
- Py_DECREF(n);
- Py_DECREF(k);
- return NULL;
- }
- /*[clinic input]
- math.comb
- n: object
- k: object
- /
- Number of ways to choose k items from n items without repetition and without order.
- Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates
- to zero when k > n.
- Also called the binomial coefficient because it is equivalent
- to the coefficient of k-th term in polynomial expansion of the
- expression (1 + x)**n.
- Raises TypeError if either of the arguments are not integers.
- Raises ValueError if either of the arguments are negative.
- [clinic start generated code]*/
- static PyObject *
- math_comb_impl(PyObject *module, PyObject *n, PyObject *k)
- /*[clinic end generated code: output=bd2cec8d854f3493 input=9a05315af2518709]*/
- {
- PyObject *result = NULL, *temp;
- int overflow, cmp;
- long long ki, ni;
- n = PyNumber_Index(n);
- if (n == NULL) {
- return NULL;
- }
- k = PyNumber_Index(k);
- if (k == NULL) {
- Py_DECREF(n);
- return NULL;
- }
- assert(PyLong_CheckExact(n) && PyLong_CheckExact(k));
- if (_PyLong_IsNegative((PyLongObject *)n)) {
- PyErr_SetString(PyExc_ValueError,
- "n must be a non-negative integer");
- goto error;
- }
- if (_PyLong_IsNegative((PyLongObject *)k)) {
- PyErr_SetString(PyExc_ValueError,
- "k must be a non-negative integer");
- goto error;
- }
- ni = PyLong_AsLongLongAndOverflow(n, &overflow);
- assert(overflow >= 0 && !PyErr_Occurred());
- if (!overflow) {
- assert(ni >= 0);
- ki = PyLong_AsLongLongAndOverflow(k, &overflow);
- assert(overflow >= 0 && !PyErr_Occurred());
- if (overflow || ki > ni) {
- result = PyLong_FromLong(0);
- goto done;
- }
- assert(ki >= 0);
- ki = Py_MIN(ki, ni - ki);
- if (ki > 1) {
- result = perm_comb_small((unsigned long long)ni,
- (unsigned long long)ki, 1);
- goto done;
- }
- /* For k == 1 just return the original n in perm_comb(). */
- }
- else {
- /* k = min(k, n - k) */
- temp = PyNumber_Subtract(n, k);
- if (temp == NULL) {
- goto error;
- }
- assert(PyLong_Check(temp));
- if (_PyLong_IsNegative((PyLongObject *)temp)) {
- Py_DECREF(temp);
- result = PyLong_FromLong(0);
- goto done;
- }
- cmp = PyObject_RichCompareBool(temp, k, Py_LT);
- if (cmp > 0) {
- Py_SETREF(k, temp);
- }
- else {
- Py_DECREF(temp);
- if (cmp < 0) {
- goto error;
- }
- }
- ki = PyLong_AsLongLongAndOverflow(k, &overflow);
- assert(overflow >= 0 && !PyErr_Occurred());
- if (overflow) {
- PyErr_Format(PyExc_OverflowError,
- "min(n - k, k) must not exceed %lld",
- LLONG_MAX);
- goto error;
- }
- assert(ki >= 0);
- }
- result = perm_comb(n, (unsigned long long)ki, 1);
- done:
- Py_DECREF(n);
- Py_DECREF(k);
- return result;
- error:
- Py_DECREF(n);
- Py_DECREF(k);
- return NULL;
- }
- /*[clinic input]
- math.nextafter
- x: double
- y: double
- /
- *
- steps: object = None
- Return the floating-point value the given number of steps after x towards y.
- If steps is not specified or is None, it defaults to 1.
- Raises a TypeError, if x or y is not a double, or if steps is not an integer.
- Raises ValueError if steps is negative.
- [clinic start generated code]*/
- static PyObject *
- math_nextafter_impl(PyObject *module, double x, double y, PyObject *steps)
- /*[clinic end generated code: output=cc6511f02afc099e input=7f2a5842112af2b4]*/
- {
- #if defined(_AIX)
- if (x == y) {
- /* On AIX 7.1, libm nextafter(-0.0, +0.0) returns -0.0.
- Bug fixed in bos.adt.libm 7.2.2.0 by APAR IV95512. */
- return PyFloat_FromDouble(y);
- }
- if (Py_IS_NAN(x)) {
- return PyFloat_FromDouble(x);
- }
- if (Py_IS_NAN(y)) {
- return PyFloat_FromDouble(y);
- }
- #endif
- if (steps == Py_None) {
- // fast path: we default to one step.
- return PyFloat_FromDouble(nextafter(x, y));
- }
- steps = PyNumber_Index(steps);
- if (steps == NULL) {
- return NULL;
- }
- assert(PyLong_CheckExact(steps));
- if (_PyLong_IsNegative((PyLongObject *)steps)) {
- PyErr_SetString(PyExc_ValueError,
- "steps must be a non-negative integer");
- Py_DECREF(steps);
- return NULL;
- }
- unsigned long long usteps_ull = PyLong_AsUnsignedLongLong(steps);
- // Conveniently, uint64_t and double have the same number of bits
- // on all the platforms we care about.
- // So if an overflow occurs, we can just use UINT64_MAX.
- Py_DECREF(steps);
- if (usteps_ull >= UINT64_MAX) {
- // This branch includes the case where an error occurred, since
- // (unsigned long long)(-1) = ULLONG_MAX >= UINT64_MAX. Note that
- // usteps_ull can be strictly larger than UINT64_MAX on a machine
- // where unsigned long long has width > 64 bits.
- if (PyErr_Occurred()) {
- if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
- PyErr_Clear();
- }
- else {
- return NULL;
- }
- }
- usteps_ull = UINT64_MAX;
- }
- assert(usteps_ull <= UINT64_MAX);
- uint64_t usteps = (uint64_t)usteps_ull;
- if (usteps == 0) {
- return PyFloat_FromDouble(x);
- }
- if (Py_IS_NAN(x)) {
- return PyFloat_FromDouble(x);
- }
- if (Py_IS_NAN(y)) {
- return PyFloat_FromDouble(y);
- }
- // We assume that double and uint64_t have the same endianness.
- // This is not guaranteed by the C-standard, but it is true for
- // all platforms we care about. (The most likely form of violation
- // would be a "mixed-endian" double.)
- union pun {double f; uint64_t i;};
- union pun ux = {x}, uy = {y};
- if (ux.i == uy.i) {
- return PyFloat_FromDouble(x);
- }
- const uint64_t sign_bit = 1ULL<<63;
- uint64_t ax = ux.i & ~sign_bit;
- uint64_t ay = uy.i & ~sign_bit;
- // opposite signs
- if (((ux.i ^ uy.i) & sign_bit)) {
- // NOTE: ax + ay can never overflow, because their most significant bit
- // ain't set.
- if (ax + ay <= usteps) {
- return PyFloat_FromDouble(uy.f);
- // This comparison has to use <, because <= would get +0.0 vs -0.0
- // wrong.
- } else if (ax < usteps) {
- union pun result = {.i = (uy.i & sign_bit) | (usteps - ax)};
- return PyFloat_FromDouble(result.f);
- } else {
- ux.i -= usteps;
- return PyFloat_FromDouble(ux.f);
- }
- // same sign
- } else if (ax > ay) {
- if (ax - ay >= usteps) {
- ux.i -= usteps;
- return PyFloat_FromDouble(ux.f);
- } else {
- return PyFloat_FromDouble(uy.f);
- }
- } else {
- if (ay - ax >= usteps) {
- ux.i += usteps;
- return PyFloat_FromDouble(ux.f);
- } else {
- return PyFloat_FromDouble(uy.f);
- }
- }
- }
- /*[clinic input]
- math.ulp -> double
- x: double
- /
- Return the value of the least significant bit of the float x.
- [clinic start generated code]*/
- static double
- math_ulp_impl(PyObject *module, double x)
- /*[clinic end generated code: output=f5207867a9384dd4 input=31f9bfbbe373fcaa]*/
- {
- if (Py_IS_NAN(x)) {
- return x;
- }
- x = fabs(x);
- if (Py_IS_INFINITY(x)) {
- return x;
- }
- double inf = Py_INFINITY;
- double x2 = nextafter(x, inf);
- if (Py_IS_INFINITY(x2)) {
- /* special case: x is the largest positive representable float */
- x2 = nextafter(x, -inf);
- return x - x2;
- }
- return x2 - x;
- }
- static int
- math_exec(PyObject *module)
- {
- math_module_state *state = get_math_module_state(module);
- state->str___ceil__ = PyUnicode_InternFromString("__ceil__");
- if (state->str___ceil__ == NULL) {
- return -1;
- }
- state->str___floor__ = PyUnicode_InternFromString("__floor__");
- if (state->str___floor__ == NULL) {
- return -1;
- }
- state->str___trunc__ = PyUnicode_InternFromString("__trunc__");
- if (state->str___trunc__ == NULL) {
- return -1;
- }
- if (_PyModule_Add(module, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) {
- return -1;
- }
- if (_PyModule_Add(module, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) {
- return -1;
- }
- // 2pi
- if (_PyModule_Add(module, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
- return -1;
- }
- if (_PyModule_Add(module, "inf", PyFloat_FromDouble(Py_INFINITY)) < 0) {
- return -1;
- }
- if (_PyModule_Add(module, "nan", PyFloat_FromDouble(fabs(Py_NAN))) < 0) {
- return -1;
- }
- return 0;
- }
- static int
- math_clear(PyObject *module)
- {
- math_module_state *state = get_math_module_state(module);
- Py_CLEAR(state->str___ceil__);
- Py_CLEAR(state->str___floor__);
- Py_CLEAR(state->str___trunc__);
- return 0;
- }
- static void
- math_free(void *module)
- {
- math_clear((PyObject *)module);
- }
- static PyMethodDef math_methods[] = {
- {"acos", math_acos, METH_O, math_acos_doc},
- {"acosh", math_acosh, METH_O, math_acosh_doc},
- {"asin", math_asin, METH_O, math_asin_doc},
- {"asinh", math_asinh, METH_O, math_asinh_doc},
- {"atan", math_atan, METH_O, math_atan_doc},
- {"atan2", _PyCFunction_CAST(math_atan2), METH_FASTCALL, math_atan2_doc},
- {"atanh", math_atanh, METH_O, math_atanh_doc},
- {"cbrt", math_cbrt, METH_O, math_cbrt_doc},
- MATH_CEIL_METHODDEF
- {"copysign", _PyCFunction_CAST(math_copysign), METH_FASTCALL, math_copysign_doc},
- {"cos", math_cos, METH_O, math_cos_doc},
- {"cosh", math_cosh, METH_O, math_cosh_doc},
- MATH_DEGREES_METHODDEF
- MATH_DIST_METHODDEF
- {"erf", math_erf, METH_O, math_erf_doc},
- {"erfc", math_erfc, METH_O, math_erfc_doc},
- {"exp", math_exp, METH_O, math_exp_doc},
- {"exp2", math_exp2, METH_O, math_exp2_doc},
- {"expm1", math_expm1, METH_O, math_expm1_doc},
- {"fabs", math_fabs, METH_O, math_fabs_doc},
- MATH_FACTORIAL_METHODDEF
- MATH_FLOOR_METHODDEF
- MATH_FMOD_METHODDEF
- MATH_FREXP_METHODDEF
- MATH_FSUM_METHODDEF
- {"gamma", math_gamma, METH_O, math_gamma_doc},
- {"gcd", _PyCFunction_CAST(math_gcd), METH_FASTCALL, math_gcd_doc},
- {"hypot", _PyCFunction_CAST(math_hypot), METH_FASTCALL, math_hypot_doc},
- MATH_ISCLOSE_METHODDEF
- MATH_ISFINITE_METHODDEF
- MATH_ISINF_METHODDEF
- MATH_ISNAN_METHODDEF
- MATH_ISQRT_METHODDEF
- {"lcm", _PyCFunction_CAST(math_lcm), METH_FASTCALL, math_lcm_doc},
- MATH_LDEXP_METHODDEF
- {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
- {"log", _PyCFunction_CAST(math_log), METH_FASTCALL, math_log_doc},
- {"log1p", math_log1p, METH_O, math_log1p_doc},
- MATH_LOG10_METHODDEF
- MATH_LOG2_METHODDEF
- MATH_MODF_METHODDEF
- MATH_POW_METHODDEF
- MATH_RADIANS_METHODDEF
- {"remainder", _PyCFunction_CAST(math_remainder), METH_FASTCALL, math_remainder_doc},
- {"sin", math_sin, METH_O, math_sin_doc},
- {"sinh", math_sinh, METH_O, math_sinh_doc},
- {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
- {"tan", math_tan, METH_O, math_tan_doc},
- {"tanh", math_tanh, METH_O, math_tanh_doc},
- MATH_SUMPROD_METHODDEF
- MATH_TRUNC_METHODDEF
- MATH_PROD_METHODDEF
- MATH_PERM_METHODDEF
- MATH_COMB_METHODDEF
- MATH_NEXTAFTER_METHODDEF
- MATH_ULP_METHODDEF
- {NULL, NULL} /* sentinel */
- };
- static PyModuleDef_Slot math_slots[] = {
- {Py_mod_exec, math_exec},
- {Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
- {0, NULL}
- };
- PyDoc_STRVAR(module_doc,
- "This module provides access to the mathematical functions\n"
- "defined by the C standard.");
- static struct PyModuleDef mathmodule = {
- PyModuleDef_HEAD_INIT,
- .m_name = "math",
- .m_doc = module_doc,
- .m_size = sizeof(math_module_state),
- .m_methods = math_methods,
- .m_slots = math_slots,
- .m_clear = math_clear,
- .m_free = math_free,
- };
- PyMODINIT_FUNC
- PyInit_math(void)
- {
- return PyModuleDef_Init(&mathmodule);
- }
|