randen_hwaes.cc 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. // Copyright 2017 The Abseil Authors.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // https://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
  15. // symbols from arbitrary system and other headers, since it may be built
  16. // with different flags from other targets, using different levels of
  17. // optimization, potentially introducing ODR violations.
  18. #include "absl/random/internal/randen_hwaes.h"
  19. #include <cstdint>
  20. #include <cstring>
  21. #include "absl/base/attributes.h"
  22. #include "absl/numeric/int128.h"
  23. #include "absl/random/internal/platform.h"
  24. #include "absl/random/internal/randen_traits.h"
  25. // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
  26. // a hardware accelerated implementation of randen, or whether it
  27. // will contain stubs that exit the process.
  28. #if ABSL_HAVE_ACCELERATED_AES
  29. // The following platforms have implemented RandenHwAes.
  30. #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) || \
  31. defined(ABSL_ARCH_PPC) || defined(ABSL_ARCH_ARM) || \
  32. defined(ABSL_ARCH_AARCH64)
  33. #define ABSL_RANDEN_HWAES_IMPL 1
  34. #endif
  35. #endif
  36. #if !defined(ABSL_RANDEN_HWAES_IMPL)
  37. // No accelerated implementation is supported.
  38. // The RandenHwAes functions are stubs that print an error and exit.
  39. #include <cstdio>
  40. #include <cstdlib>
  41. namespace absl {
  42. ABSL_NAMESPACE_BEGIN
  43. namespace random_internal {
  44. // No accelerated implementation.
  45. bool HasRandenHwAesImplementation() { return false; }
  46. // NOLINTNEXTLINE
  47. const void* RandenHwAes::GetKeys() {
  48. // Attempted to dispatch to an unsupported dispatch target.
  49. const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
  50. fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
  51. exit(1);
  52. return nullptr;
  53. }
  54. // NOLINTNEXTLINE
  55. void RandenHwAes::Absorb(const void*, void*) {
  56. // Attempted to dispatch to an unsupported dispatch target.
  57. const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
  58. fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
  59. exit(1);
  60. }
  61. // NOLINTNEXTLINE
  62. void RandenHwAes::Generate(const void*, void*) {
  63. // Attempted to dispatch to an unsupported dispatch target.
  64. const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
  65. fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
  66. exit(1);
  67. }
  68. } // namespace random_internal
  69. ABSL_NAMESPACE_END
  70. } // namespace absl
  71. #else // defined(ABSL_RANDEN_HWAES_IMPL)
  72. //
  73. // Accelerated implementations are supported.
  74. // We need the per-architecture includes and defines.
  75. //
  76. namespace {
  77. using absl::random_internal::RandenTraits;
  78. } // namespace
  79. // TARGET_CRYPTO defines a crypto attribute for each architecture.
  80. //
  81. // NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
  82. #if (defined(__clang__) || defined(__GNUC__))
  83. #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
  84. #define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
  85. #elif defined(ABSL_ARCH_PPC)
  86. #define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
  87. #else
  88. #define ABSL_TARGET_CRYPTO
  89. #endif
  90. #else
  91. #define ABSL_TARGET_CRYPTO
  92. #endif
  93. #if defined(ABSL_ARCH_PPC)
  94. // NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
  95. // however the PPC altivec vector registers (and thus the AES instructions)
  96. // always operate in big-endian mode.
  97. #include <altivec.h>
  98. // <altivec.h> #defines vector __vector; in C++, this is bad form.
  99. #undef vector
  100. #undef bool
  101. // Rely on the PowerPC AltiVec vector operations for accelerated AES
  102. // instructions. GCC support of the PPC vector types is described in:
  103. // https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
  104. //
  105. // Already provides operator^=.
  106. using Vector128 = __vector unsigned long long; // NOLINT(runtime/int)
  107. namespace {
  108. inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
  109. // Reverses the bytes of the vector.
  110. const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
  111. 7, 6, 5, 4, 3, 2, 1, 0};
  112. return vec_perm(v, v, perm);
  113. }
  114. // WARNING: these load/store in native byte order. It is OK to load and then
  115. // store an unchanged vector, but interpreting the bits as a number or input
  116. // to AES will have undefined results.
  117. inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
  118. return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
  119. }
  120. inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
  121. vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
  122. }
  123. // One round of AES. "round_key" is a public constant for breaking the
  124. // symmetry of AES (ensures previously equal columns differ afterwards).
  125. inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
  126. const Vector128& round_key) {
  127. return Vector128(__builtin_crypto_vcipher(state, round_key));
  128. }
  129. // Enables native loads in the round loop by pre-swapping.
  130. inline ABSL_TARGET_CRYPTO void SwapEndian(absl::uint128* state) {
  131. for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
  132. Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block);
  133. }
  134. }
  135. } // namespace
  136. #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
  137. // Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
  138. // uint8x16_t is the user alias for underlying __simd128_uint8_t type.
  139. // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
  140. //
  141. // <arm_neon> defines the following
  142. //
  143. // typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
  144. // typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
  145. // typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
  146. //
  147. // vld1q_v
  148. // vst1q_v
  149. // vaeseq_v
  150. // vaesmcq_v
  151. #include <arm_neon.h>
  152. // Already provides operator^=.
  153. using Vector128 = uint8x16_t;
  154. namespace {
  155. inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
  156. return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
  157. }
  158. inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
  159. vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
  160. }
  161. // One round of AES. "round_key" is a public constant for breaking the
  162. // symmetry of AES (ensures previously equal columns differ afterwards).
  163. inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
  164. const Vector128& round_key) {
  165. // It is important to always use the full round function - omitting the
  166. // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
  167. // and does not help because we never decrypt.
  168. //
  169. // Note that ARM divides AES instructions differently than x86 / PPC,
  170. // And we need to skip the first AddRoundKey step and add an extra
  171. // AddRoundKey step to the end. Lucky for us this is just XOR.
  172. return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
  173. }
  174. inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
  175. } // namespace
  176. #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
  177. // On x86 we rely on the aesni instructions
  178. #include <immintrin.h>
  179. namespace {
  180. // Vector128 class is only wrapper for __m128i, benchmark indicates that it's
  181. // faster than using __m128i directly.
  182. class Vector128 {
  183. public:
  184. // Convert from/to intrinsics.
  185. inline explicit Vector128(const __m128i& v) : data_(v) {}
  186. inline __m128i data() const { return data_; }
  187. inline Vector128& operator^=(const Vector128& other) {
  188. data_ = _mm_xor_si128(data_, other.data());
  189. return *this;
  190. }
  191. private:
  192. __m128i data_;
  193. };
  194. inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
  195. return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
  196. }
  197. inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
  198. _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data());
  199. }
  200. // One round of AES. "round_key" is a public constant for breaking the
  201. // symmetry of AES (ensures previously equal columns differ afterwards).
  202. inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
  203. const Vector128& round_key) {
  204. // It is important to always use the full round function - omitting the
  205. // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
  206. // and does not help because we never decrypt.
  207. return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
  208. }
  209. inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
  210. } // namespace
  211. #endif
  212. #ifdef __clang__
  213. #pragma clang diagnostic push
  214. #pragma clang diagnostic ignored "-Wunknown-pragmas"
  215. #endif
  216. // At this point, all of the platform-specific features have been defined /
  217. // implemented.
  218. //
  219. // REQUIRES: using Vector128 = ...
  220. // REQUIRES: Vector128 Vector128Load(void*) {...}
  221. // REQUIRES: void Vector128Store(Vector128, void*) {...}
  222. // REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
  223. // REQUIRES: void SwapEndian(uint64_t*) {...}
  224. //
  225. // PROVIDES: absl::random_internal::RandenHwAes::Absorb
  226. // PROVIDES: absl::random_internal::RandenHwAes::Generate
  227. namespace {
  228. // Block shuffles applies a shuffle to the entire state between AES rounds.
  229. // Improved odd-even shuffle from "New criterion for diffusion property".
  230. inline ABSL_TARGET_CRYPTO void BlockShuffle(absl::uint128* state) {
  231. static_assert(RandenTraits::kFeistelBlocks == 16,
  232. "Expecting 16 FeistelBlocks.");
  233. constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
  234. 7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
  235. const Vector128 v0 = Vector128Load(state + shuffle[0]);
  236. const Vector128 v1 = Vector128Load(state + shuffle[1]);
  237. const Vector128 v2 = Vector128Load(state + shuffle[2]);
  238. const Vector128 v3 = Vector128Load(state + shuffle[3]);
  239. const Vector128 v4 = Vector128Load(state + shuffle[4]);
  240. const Vector128 v5 = Vector128Load(state + shuffle[5]);
  241. const Vector128 v6 = Vector128Load(state + shuffle[6]);
  242. const Vector128 v7 = Vector128Load(state + shuffle[7]);
  243. const Vector128 w0 = Vector128Load(state + shuffle[8]);
  244. const Vector128 w1 = Vector128Load(state + shuffle[9]);
  245. const Vector128 w2 = Vector128Load(state + shuffle[10]);
  246. const Vector128 w3 = Vector128Load(state + shuffle[11]);
  247. const Vector128 w4 = Vector128Load(state + shuffle[12]);
  248. const Vector128 w5 = Vector128Load(state + shuffle[13]);
  249. const Vector128 w6 = Vector128Load(state + shuffle[14]);
  250. const Vector128 w7 = Vector128Load(state + shuffle[15]);
  251. Vector128Store(v0, state + 0);
  252. Vector128Store(v1, state + 1);
  253. Vector128Store(v2, state + 2);
  254. Vector128Store(v3, state + 3);
  255. Vector128Store(v4, state + 4);
  256. Vector128Store(v5, state + 5);
  257. Vector128Store(v6, state + 6);
  258. Vector128Store(v7, state + 7);
  259. Vector128Store(w0, state + 8);
  260. Vector128Store(w1, state + 9);
  261. Vector128Store(w2, state + 10);
  262. Vector128Store(w3, state + 11);
  263. Vector128Store(w4, state + 12);
  264. Vector128Store(w5, state + 13);
  265. Vector128Store(w6, state + 14);
  266. Vector128Store(w7, state + 15);
  267. }
  268. // Feistel round function using two AES subrounds. Very similar to F()
  269. // from Simpira v2, but with independent subround keys. Uses 17 AES rounds
  270. // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
  271. // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
  272. // XORs are 'free' (included in the second AES instruction).
  273. inline ABSL_TARGET_CRYPTO const absl::uint128* FeistelRound(
  274. absl::uint128* state,
  275. const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
  276. static_assert(RandenTraits::kFeistelBlocks == 16,
  277. "Expecting 16 FeistelBlocks.");
  278. // MSVC does a horrible job at unrolling loops.
  279. // So we unroll the loop by hand to improve the performance.
  280. const Vector128 s0 = Vector128Load(state + 0);
  281. const Vector128 s1 = Vector128Load(state + 1);
  282. const Vector128 s2 = Vector128Load(state + 2);
  283. const Vector128 s3 = Vector128Load(state + 3);
  284. const Vector128 s4 = Vector128Load(state + 4);
  285. const Vector128 s5 = Vector128Load(state + 5);
  286. const Vector128 s6 = Vector128Load(state + 6);
  287. const Vector128 s7 = Vector128Load(state + 7);
  288. const Vector128 s8 = Vector128Load(state + 8);
  289. const Vector128 s9 = Vector128Load(state + 9);
  290. const Vector128 s10 = Vector128Load(state + 10);
  291. const Vector128 s11 = Vector128Load(state + 11);
  292. const Vector128 s12 = Vector128Load(state + 12);
  293. const Vector128 s13 = Vector128Load(state + 13);
  294. const Vector128 s14 = Vector128Load(state + 14);
  295. const Vector128 s15 = Vector128Load(state + 15);
  296. // Encode even blocks with keys.
  297. const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
  298. const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
  299. const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
  300. const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
  301. const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
  302. const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
  303. const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
  304. const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
  305. // Encode odd blocks with even output from above.
  306. const Vector128 o1 = AesRound(e0, s1);
  307. const Vector128 o3 = AesRound(e2, s3);
  308. const Vector128 o5 = AesRound(e4, s5);
  309. const Vector128 o7 = AesRound(e6, s7);
  310. const Vector128 o9 = AesRound(e8, s9);
  311. const Vector128 o11 = AesRound(e10, s11);
  312. const Vector128 o13 = AesRound(e12, s13);
  313. const Vector128 o15 = AesRound(e14, s15);
  314. // Store odd blocks. (These will be shuffled later).
  315. Vector128Store(o1, state + 1);
  316. Vector128Store(o3, state + 3);
  317. Vector128Store(o5, state + 5);
  318. Vector128Store(o7, state + 7);
  319. Vector128Store(o9, state + 9);
  320. Vector128Store(o11, state + 11);
  321. Vector128Store(o13, state + 13);
  322. Vector128Store(o15, state + 15);
  323. return keys + 8;
  324. }
  325. // Cryptographic permutation based via type-2 Generalized Feistel Network.
  326. // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
  327. // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
  328. // of Simpira v2, but more efficient than its generic construction for b=16.
  329. inline ABSL_TARGET_CRYPTO void Permute(
  330. absl::uint128* state,
  331. const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
  332. // (Successfully unrolled; the first iteration jumps into the second half)
  333. #ifdef __clang__
  334. #pragma clang loop unroll_count(2)
  335. #endif
  336. for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
  337. keys = FeistelRound(state, keys);
  338. BlockShuffle(state);
  339. }
  340. }
  341. } // namespace
  342. namespace absl {
  343. ABSL_NAMESPACE_BEGIN
  344. namespace random_internal {
  345. bool HasRandenHwAesImplementation() { return true; }
  346. const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
  347. // Round keys for one AES per Feistel round and branch.
  348. // The canonical implementation uses first digits of Pi.
  349. #if defined(ABSL_ARCH_PPC)
  350. return kRandenRoundKeysBE;
  351. #else
  352. return kRandenRoundKeys;
  353. #endif
  354. }
  355. // NOLINTNEXTLINE
  356. void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
  357. void* state_void) {
  358. static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1,
  359. "Unexpected Randen kCapacityBlocks");
  360. static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16,
  361. "Unexpected Randen kStateBlocks");
  362. auto* state = reinterpret_cast<absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>(
  363. state_void);
  364. const auto* seed =
  365. reinterpret_cast<const absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>(
  366. seed_void);
  367. Vector128 b1 = Vector128Load(state + 1);
  368. b1 ^= Vector128Load(seed + 0);
  369. Vector128Store(b1, state + 1);
  370. Vector128 b2 = Vector128Load(state + 2);
  371. b2 ^= Vector128Load(seed + 1);
  372. Vector128Store(b2, state + 2);
  373. Vector128 b3 = Vector128Load(state + 3);
  374. b3 ^= Vector128Load(seed + 2);
  375. Vector128Store(b3, state + 3);
  376. Vector128 b4 = Vector128Load(state + 4);
  377. b4 ^= Vector128Load(seed + 3);
  378. Vector128Store(b4, state + 4);
  379. Vector128 b5 = Vector128Load(state + 5);
  380. b5 ^= Vector128Load(seed + 4);
  381. Vector128Store(b5, state + 5);
  382. Vector128 b6 = Vector128Load(state + 6);
  383. b6 ^= Vector128Load(seed + 5);
  384. Vector128Store(b6, state + 6);
  385. Vector128 b7 = Vector128Load(state + 7);
  386. b7 ^= Vector128Load(seed + 6);
  387. Vector128Store(b7, state + 7);
  388. Vector128 b8 = Vector128Load(state + 8);
  389. b8 ^= Vector128Load(seed + 7);
  390. Vector128Store(b8, state + 8);
  391. Vector128 b9 = Vector128Load(state + 9);
  392. b9 ^= Vector128Load(seed + 8);
  393. Vector128Store(b9, state + 9);
  394. Vector128 b10 = Vector128Load(state + 10);
  395. b10 ^= Vector128Load(seed + 9);
  396. Vector128Store(b10, state + 10);
  397. Vector128 b11 = Vector128Load(state + 11);
  398. b11 ^= Vector128Load(seed + 10);
  399. Vector128Store(b11, state + 11);
  400. Vector128 b12 = Vector128Load(state + 12);
  401. b12 ^= Vector128Load(seed + 11);
  402. Vector128Store(b12, state + 12);
  403. Vector128 b13 = Vector128Load(state + 13);
  404. b13 ^= Vector128Load(seed + 12);
  405. Vector128Store(b13, state + 13);
  406. Vector128 b14 = Vector128Load(state + 14);
  407. b14 ^= Vector128Load(seed + 13);
  408. Vector128Store(b14, state + 14);
  409. Vector128 b15 = Vector128Load(state + 15);
  410. b15 ^= Vector128Load(seed + 14);
  411. Vector128Store(b15, state + 15);
  412. }
  413. // NOLINTNEXTLINE
  414. void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void,
  415. void* state_void) {
  416. static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128),
  417. "Capacity mismatch");
  418. auto* state = reinterpret_cast<absl::uint128*>(state_void);
  419. const auto* keys = reinterpret_cast<const absl::uint128*>(keys_void);
  420. const Vector128 prev_inner = Vector128Load(state);
  421. SwapEndian(state);
  422. Permute(state, keys);
  423. SwapEndian(state);
  424. // Ensure backtracking resistance.
  425. Vector128 inner = Vector128Load(state);
  426. inner ^= prev_inner;
  427. Vector128Store(inner, state);
  428. }
  429. #ifdef __clang__
  430. #pragma clang diagnostic pop
  431. #endif
  432. } // namespace random_internal
  433. ABSL_NAMESPACE_END
  434. } // namespace absl
  435. #endif // (ABSL_RANDEN_HWAES_IMPL)