123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
- // symbols from arbitrary system and other headers, since it may be built
- // with different flags from other targets, using different levels of
- // optimization, potentially introducing ODR violations.
- #include "absl/random/internal/randen_hwaes.h"
- #include <cstdint>
- #include <cstring>
- #include "absl/base/attributes.h"
- #include "absl/numeric/int128.h"
- #include "absl/random/internal/platform.h"
- #include "absl/random/internal/randen_traits.h"
- // ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
- // a hardware accelerated implementation of randen, or whether it
- // will contain stubs that exit the process.
- #if ABSL_HAVE_ACCELERATED_AES
- // The following platforms have implemented RandenHwAes.
- #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) || \
- defined(ABSL_ARCH_PPC) || defined(ABSL_ARCH_ARM) || \
- defined(ABSL_ARCH_AARCH64)
- #define ABSL_RANDEN_HWAES_IMPL 1
- #endif
- #endif
- #if !defined(ABSL_RANDEN_HWAES_IMPL)
- // No accelerated implementation is supported.
- // The RandenHwAes functions are stubs that print an error and exit.
- #include <cstdio>
- #include <cstdlib>
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- // No accelerated implementation.
- bool HasRandenHwAesImplementation() { return false; }
- // NOLINTNEXTLINE
- const void* RandenHwAes::GetKeys() {
- // Attempted to dispatch to an unsupported dispatch target.
- const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
- fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
- exit(1);
- return nullptr;
- }
- // NOLINTNEXTLINE
- void RandenHwAes::Absorb(const void*, void*) {
- // Attempted to dispatch to an unsupported dispatch target.
- const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
- fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
- exit(1);
- }
- // NOLINTNEXTLINE
- void RandenHwAes::Generate(const void*, void*) {
- // Attempted to dispatch to an unsupported dispatch target.
- const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
- fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
- exit(1);
- }
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #else // defined(ABSL_RANDEN_HWAES_IMPL)
- //
- // Accelerated implementations are supported.
- // We need the per-architecture includes and defines.
- //
- namespace {
- using absl::random_internal::RandenTraits;
- } // namespace
- // TARGET_CRYPTO defines a crypto attribute for each architecture.
- //
- // NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
- #if (defined(__clang__) || defined(__GNUC__))
- #if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
- #define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
- #elif defined(ABSL_ARCH_PPC)
- #define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
- #else
- #define ABSL_TARGET_CRYPTO
- #endif
- #else
- #define ABSL_TARGET_CRYPTO
- #endif
- #if defined(ABSL_ARCH_PPC)
- // NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
- // however the PPC altivec vector registers (and thus the AES instructions)
- // always operate in big-endian mode.
- #include <altivec.h>
- // <altivec.h> #defines vector __vector; in C++, this is bad form.
- #undef vector
- #undef bool
- // Rely on the PowerPC AltiVec vector operations for accelerated AES
- // instructions. GCC support of the PPC vector types is described in:
- // https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
- //
- // Already provides operator^=.
- using Vector128 = __vector unsigned long long; // NOLINT(runtime/int)
- namespace {
- inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
- // Reverses the bytes of the vector.
- const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
- 7, 6, 5, 4, 3, 2, 1, 0};
- return vec_perm(v, v, perm);
- }
- // WARNING: these load/store in native byte order. It is OK to load and then
- // store an unchanged vector, but interpreting the bits as a number or input
- // to AES will have undefined results.
- inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
- return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
- }
- inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
- vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
- }
- // One round of AES. "round_key" is a public constant for breaking the
- // symmetry of AES (ensures previously equal columns differ afterwards).
- inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
- const Vector128& round_key) {
- return Vector128(__builtin_crypto_vcipher(state, round_key));
- }
- // Enables native loads in the round loop by pre-swapping.
- inline ABSL_TARGET_CRYPTO void SwapEndian(absl::uint128* state) {
- for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
- Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block);
- }
- }
- } // namespace
- #elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
- // Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
- // uint8x16_t is the user alias for underlying __simd128_uint8_t type.
- // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
- //
- // <arm_neon> defines the following
- //
- // typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
- // typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
- // typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
- //
- // vld1q_v
- // vst1q_v
- // vaeseq_v
- // vaesmcq_v
- #include <arm_neon.h>
- // Already provides operator^=.
- using Vector128 = uint8x16_t;
- namespace {
- inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
- return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
- }
- inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
- vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
- }
- // One round of AES. "round_key" is a public constant for breaking the
- // symmetry of AES (ensures previously equal columns differ afterwards).
- inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
- const Vector128& round_key) {
- // It is important to always use the full round function - omitting the
- // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
- // and does not help because we never decrypt.
- //
- // Note that ARM divides AES instructions differently than x86 / PPC,
- // And we need to skip the first AddRoundKey step and add an extra
- // AddRoundKey step to the end. Lucky for us this is just XOR.
- return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
- }
- inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
- } // namespace
- #elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
- // On x86 we rely on the aesni instructions
- #include <immintrin.h>
- namespace {
- // Vector128 class is only wrapper for __m128i, benchmark indicates that it's
- // faster than using __m128i directly.
- class Vector128 {
- public:
- // Convert from/to intrinsics.
- inline explicit Vector128(const __m128i& v) : data_(v) {}
- inline __m128i data() const { return data_; }
- inline Vector128& operator^=(const Vector128& other) {
- data_ = _mm_xor_si128(data_, other.data());
- return *this;
- }
- private:
- __m128i data_;
- };
- inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
- return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
- }
- inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
- _mm_store_si128(reinterpret_cast<__m128i*>(to), v.data());
- }
- // One round of AES. "round_key" is a public constant for breaking the
- // symmetry of AES (ensures previously equal columns differ afterwards).
- inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
- const Vector128& round_key) {
- // It is important to always use the full round function - omitting the
- // final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
- // and does not help because we never decrypt.
- return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
- }
- inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
- } // namespace
- #endif
- #ifdef __clang__
- #pragma clang diagnostic push
- #pragma clang diagnostic ignored "-Wunknown-pragmas"
- #endif
- // At this point, all of the platform-specific features have been defined /
- // implemented.
- //
- // REQUIRES: using Vector128 = ...
- // REQUIRES: Vector128 Vector128Load(void*) {...}
- // REQUIRES: void Vector128Store(Vector128, void*) {...}
- // REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
- // REQUIRES: void SwapEndian(uint64_t*) {...}
- //
- // PROVIDES: absl::random_internal::RandenHwAes::Absorb
- // PROVIDES: absl::random_internal::RandenHwAes::Generate
- namespace {
- // Block shuffles applies a shuffle to the entire state between AES rounds.
- // Improved odd-even shuffle from "New criterion for diffusion property".
- inline ABSL_TARGET_CRYPTO void BlockShuffle(absl::uint128* state) {
- static_assert(RandenTraits::kFeistelBlocks == 16,
- "Expecting 16 FeistelBlocks.");
- constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
- 7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
- const Vector128 v0 = Vector128Load(state + shuffle[0]);
- const Vector128 v1 = Vector128Load(state + shuffle[1]);
- const Vector128 v2 = Vector128Load(state + shuffle[2]);
- const Vector128 v3 = Vector128Load(state + shuffle[3]);
- const Vector128 v4 = Vector128Load(state + shuffle[4]);
- const Vector128 v5 = Vector128Load(state + shuffle[5]);
- const Vector128 v6 = Vector128Load(state + shuffle[6]);
- const Vector128 v7 = Vector128Load(state + shuffle[7]);
- const Vector128 w0 = Vector128Load(state + shuffle[8]);
- const Vector128 w1 = Vector128Load(state + shuffle[9]);
- const Vector128 w2 = Vector128Load(state + shuffle[10]);
- const Vector128 w3 = Vector128Load(state + shuffle[11]);
- const Vector128 w4 = Vector128Load(state + shuffle[12]);
- const Vector128 w5 = Vector128Load(state + shuffle[13]);
- const Vector128 w6 = Vector128Load(state + shuffle[14]);
- const Vector128 w7 = Vector128Load(state + shuffle[15]);
- Vector128Store(v0, state + 0);
- Vector128Store(v1, state + 1);
- Vector128Store(v2, state + 2);
- Vector128Store(v3, state + 3);
- Vector128Store(v4, state + 4);
- Vector128Store(v5, state + 5);
- Vector128Store(v6, state + 6);
- Vector128Store(v7, state + 7);
- Vector128Store(w0, state + 8);
- Vector128Store(w1, state + 9);
- Vector128Store(w2, state + 10);
- Vector128Store(w3, state + 11);
- Vector128Store(w4, state + 12);
- Vector128Store(w5, state + 13);
- Vector128Store(w6, state + 14);
- Vector128Store(w7, state + 15);
- }
- // Feistel round function using two AES subrounds. Very similar to F()
- // from Simpira v2, but with independent subround keys. Uses 17 AES rounds
- // per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
- // parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
- // XORs are 'free' (included in the second AES instruction).
- inline ABSL_TARGET_CRYPTO const absl::uint128* FeistelRound(
- absl::uint128* state,
- const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
- static_assert(RandenTraits::kFeistelBlocks == 16,
- "Expecting 16 FeistelBlocks.");
- // MSVC does a horrible job at unrolling loops.
- // So we unroll the loop by hand to improve the performance.
- const Vector128 s0 = Vector128Load(state + 0);
- const Vector128 s1 = Vector128Load(state + 1);
- const Vector128 s2 = Vector128Load(state + 2);
- const Vector128 s3 = Vector128Load(state + 3);
- const Vector128 s4 = Vector128Load(state + 4);
- const Vector128 s5 = Vector128Load(state + 5);
- const Vector128 s6 = Vector128Load(state + 6);
- const Vector128 s7 = Vector128Load(state + 7);
- const Vector128 s8 = Vector128Load(state + 8);
- const Vector128 s9 = Vector128Load(state + 9);
- const Vector128 s10 = Vector128Load(state + 10);
- const Vector128 s11 = Vector128Load(state + 11);
- const Vector128 s12 = Vector128Load(state + 12);
- const Vector128 s13 = Vector128Load(state + 13);
- const Vector128 s14 = Vector128Load(state + 14);
- const Vector128 s15 = Vector128Load(state + 15);
- // Encode even blocks with keys.
- const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
- const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
- const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
- const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
- const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
- const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
- const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
- const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
- // Encode odd blocks with even output from above.
- const Vector128 o1 = AesRound(e0, s1);
- const Vector128 o3 = AesRound(e2, s3);
- const Vector128 o5 = AesRound(e4, s5);
- const Vector128 o7 = AesRound(e6, s7);
- const Vector128 o9 = AesRound(e8, s9);
- const Vector128 o11 = AesRound(e10, s11);
- const Vector128 o13 = AesRound(e12, s13);
- const Vector128 o15 = AesRound(e14, s15);
- // Store odd blocks. (These will be shuffled later).
- Vector128Store(o1, state + 1);
- Vector128Store(o3, state + 3);
- Vector128Store(o5, state + 5);
- Vector128Store(o7, state + 7);
- Vector128Store(o9, state + 9);
- Vector128Store(o11, state + 11);
- Vector128Store(o13, state + 13);
- Vector128Store(o15, state + 15);
- return keys + 8;
- }
- // Cryptographic permutation based via type-2 Generalized Feistel Network.
- // Indistinguishable from ideal by chosen-ciphertext adversaries using less than
- // 2^64 queries if the round function is a PRF. This is similar to the b=8 case
- // of Simpira v2, but more efficient than its generic construction for b=16.
- inline ABSL_TARGET_CRYPTO void Permute(
- absl::uint128* state,
- const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
- // (Successfully unrolled; the first iteration jumps into the second half)
- #ifdef __clang__
- #pragma clang loop unroll_count(2)
- #endif
- for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
- keys = FeistelRound(state, keys);
- BlockShuffle(state);
- }
- }
- } // namespace
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- bool HasRandenHwAesImplementation() { return true; }
- const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
- // Round keys for one AES per Feistel round and branch.
- // The canonical implementation uses first digits of Pi.
- #if defined(ABSL_ARCH_PPC)
- return kRandenRoundKeysBE;
- #else
- return kRandenRoundKeys;
- #endif
- }
- // NOLINTNEXTLINE
- void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
- void* state_void) {
- static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1,
- "Unexpected Randen kCapacityBlocks");
- static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16,
- "Unexpected Randen kStateBlocks");
- auto* state = reinterpret_cast<absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>(
- state_void);
- const auto* seed =
- reinterpret_cast<const absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>(
- seed_void);
- Vector128 b1 = Vector128Load(state + 1);
- b1 ^= Vector128Load(seed + 0);
- Vector128Store(b1, state + 1);
- Vector128 b2 = Vector128Load(state + 2);
- b2 ^= Vector128Load(seed + 1);
- Vector128Store(b2, state + 2);
- Vector128 b3 = Vector128Load(state + 3);
- b3 ^= Vector128Load(seed + 2);
- Vector128Store(b3, state + 3);
- Vector128 b4 = Vector128Load(state + 4);
- b4 ^= Vector128Load(seed + 3);
- Vector128Store(b4, state + 4);
- Vector128 b5 = Vector128Load(state + 5);
- b5 ^= Vector128Load(seed + 4);
- Vector128Store(b5, state + 5);
- Vector128 b6 = Vector128Load(state + 6);
- b6 ^= Vector128Load(seed + 5);
- Vector128Store(b6, state + 6);
- Vector128 b7 = Vector128Load(state + 7);
- b7 ^= Vector128Load(seed + 6);
- Vector128Store(b7, state + 7);
- Vector128 b8 = Vector128Load(state + 8);
- b8 ^= Vector128Load(seed + 7);
- Vector128Store(b8, state + 8);
- Vector128 b9 = Vector128Load(state + 9);
- b9 ^= Vector128Load(seed + 8);
- Vector128Store(b9, state + 9);
- Vector128 b10 = Vector128Load(state + 10);
- b10 ^= Vector128Load(seed + 9);
- Vector128Store(b10, state + 10);
- Vector128 b11 = Vector128Load(state + 11);
- b11 ^= Vector128Load(seed + 10);
- Vector128Store(b11, state + 11);
- Vector128 b12 = Vector128Load(state + 12);
- b12 ^= Vector128Load(seed + 11);
- Vector128Store(b12, state + 12);
- Vector128 b13 = Vector128Load(state + 13);
- b13 ^= Vector128Load(seed + 12);
- Vector128Store(b13, state + 13);
- Vector128 b14 = Vector128Load(state + 14);
- b14 ^= Vector128Load(seed + 13);
- Vector128Store(b14, state + 14);
- Vector128 b15 = Vector128Load(state + 15);
- b15 ^= Vector128Load(seed + 14);
- Vector128Store(b15, state + 15);
- }
- // NOLINTNEXTLINE
- void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void,
- void* state_void) {
- static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128),
- "Capacity mismatch");
- auto* state = reinterpret_cast<absl::uint128*>(state_void);
- const auto* keys = reinterpret_cast<const absl::uint128*>(keys_void);
- const Vector128 prev_inner = Vector128Load(state);
- SwapEndian(state);
- Permute(state, keys);
- SwapEndian(state);
- // Ensure backtracking resistance.
- Vector128 inner = Vector128Load(state);
- inner ^= prev_inner;
- Vector128Store(inner, state);
- }
- #ifdef __clang__
- #pragma clang diagnostic pop
- #endif
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // (ABSL_RANDEN_HWAES_IMPL)
|