123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
- #define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
- #include <cstddef>
- #include <cstdint>
- #include <limits>
- #include <type_traits>
- #include "absl/base/config.h"
- #include "absl/meta/type_traits.h"
- #include "absl/random/internal/traits.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- // Returns true if the input value is zero or a power of two. Useful for
- // determining if the range of output values in a URBG
- template <typename UIntType>
- constexpr bool IsPowerOfTwoOrZero(UIntType n) {
- return (n == 0) || ((n & (n - 1)) == 0);
- }
- // Computes the length of the range of values producible by the URBG, or returns
- // zero if that would encompass the entire range of representable values in
- // URBG::result_type.
- template <typename URBG>
- constexpr typename URBG::result_type RangeSize() {
- using result_type = typename URBG::result_type;
- static_assert((URBG::max)() != (URBG::min)(), "URBG range cannot be 0.");
- return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
- (URBG::min)() == std::numeric_limits<result_type>::lowest())
- ? result_type{0}
- : ((URBG::max)() - (URBG::min)() + result_type{1});
- }
- // Computes the floor of the log. (i.e., std::floor(std::log2(N));
- template <typename UIntType>
- constexpr UIntType IntegerLog2(UIntType n) {
- return (n <= 1) ? 0 : 1 + IntegerLog2(n >> 1);
- }
- // Returns the number of bits of randomness returned through
- // `PowerOfTwoVariate(urbg)`.
- template <typename URBG>
- constexpr size_t NumBits() {
- return static_cast<size_t>(
- RangeSize<URBG>() == 0
- ? std::numeric_limits<typename URBG::result_type>::digits
- : IntegerLog2(RangeSize<URBG>()));
- }
- // Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
- // If `n == 0`, all bits are set.
- template <typename UIntType>
- constexpr UIntType MaskFromShift(size_t n) {
- return ((n % std::numeric_limits<UIntType>::digits) == 0)
- ? ~UIntType{0}
- : (UIntType{1} << n) - UIntType{1};
- }
- // Tags used to dispatch FastUniformBits::generate to the simple or more complex
- // entropy extraction algorithm.
- struct SimplifiedLoopTag {};
- struct RejectionLoopTag {};
- // FastUniformBits implements a fast path to acquire uniform independent bits
- // from a type which conforms to the [rand.req.urbg] concept.
- // Parameterized by:
- // `UIntType`: the result (output) type
- //
- // The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
- // instantiated from an existing generator through a copy or a move. It does
- // not, however, facilitate the production of pseudorandom bits from an un-owned
- // generator that will outlive the std::independent_bits_engine instance.
- template <typename UIntType = uint64_t>
- class FastUniformBits {
- public:
- using result_type = UIntType;
- static constexpr result_type(min)() { return 0; }
- static constexpr result_type(max)() {
- return (std::numeric_limits<result_type>::max)();
- }
- template <typename URBG>
- result_type operator()(URBG& g); // NOLINT(runtime/references)
- private:
- static_assert(IsUnsigned<UIntType>::value,
- "Class-template FastUniformBits<> must be parameterized using "
- "an unsigned type.");
- // Generate() generates a random value, dispatched on whether
- // the underlying URBG must use rejection sampling to generate a value,
- // or whether a simplified loop will suffice.
- template <typename URBG>
- result_type Generate(URBG& g, // NOLINT(runtime/references)
- SimplifiedLoopTag);
- template <typename URBG>
- result_type Generate(URBG& g, // NOLINT(runtime/references)
- RejectionLoopTag);
- };
- template <typename UIntType>
- template <typename URBG>
- typename FastUniformBits<UIntType>::result_type
- FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references)
- // kRangeMask is the mask used when sampling variates from the URBG when the
- // width of the URBG range is not a power of 2.
- // Y = (2 ^ kRange) - 1
- static_assert((URBG::max)() > (URBG::min)(),
- "URBG::max and URBG::min may not be equal.");
- using tag = absl::conditional_t<IsPowerOfTwoOrZero(RangeSize<URBG>()),
- SimplifiedLoopTag, RejectionLoopTag>;
- return Generate(g, tag{});
- }
- template <typename UIntType>
- template <typename URBG>
- typename FastUniformBits<UIntType>::result_type
- FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
- SimplifiedLoopTag) {
- // The simplified version of FastUniformBits works only on URBGs that have
- // a range that is a power of 2. In this case we simply loop and shift without
- // attempting to balance the bits across calls.
- static_assert(IsPowerOfTwoOrZero(RangeSize<URBG>()),
- "incorrect Generate tag for URBG instance");
- static constexpr size_t kResultBits =
- std::numeric_limits<result_type>::digits;
- static constexpr size_t kUrbgBits = NumBits<URBG>();
- static constexpr size_t kIters =
- (kResultBits / kUrbgBits) + (kResultBits % kUrbgBits != 0);
- static constexpr size_t kShift = (kIters == 1) ? 0 : kUrbgBits;
- static constexpr auto kMin = (URBG::min)();
- result_type r = static_cast<result_type>(g() - kMin);
- for (size_t n = 1; n < kIters; ++n) {
- r = static_cast<result_type>(r << kShift) +
- static_cast<result_type>(g() - kMin);
- }
- return r;
- }
- template <typename UIntType>
- template <typename URBG>
- typename FastUniformBits<UIntType>::result_type
- FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
- RejectionLoopTag) {
- static_assert(!IsPowerOfTwoOrZero(RangeSize<URBG>()),
- "incorrect Generate tag for URBG instance");
- using urbg_result_type = typename URBG::result_type;
- // See [rand.adapt.ibits] for more details on the constants calculated below.
- //
- // It is preferable to use roughly the same number of bits from each generator
- // call, however this is only possible when the number of bits provided by the
- // URBG is a divisor of the number of bits in `result_type`. In all other
- // cases, the number of bits used cannot always be the same, but it can be
- // guaranteed to be off by at most 1. Thus we run two loops, one with a
- // smaller bit-width size (`kSmallWidth`) and one with a larger width size
- // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
- // `kSmallIters` and `kLargeIters` times respectively such
- // that
- //
- // `kResultBits == kSmallIters * kSmallBits
- // + kLargeIters * kLargeBits`
- //
- // where `kResultBits` is the total number of bits in `result_type`.
- //
- static constexpr size_t kResultBits =
- std::numeric_limits<result_type>::digits; // w
- static constexpr urbg_result_type kUrbgRange = RangeSize<URBG>(); // R
- static constexpr size_t kUrbgBits = NumBits<URBG>(); // m
- // compute the initial estimate of the bits used.
- // [rand.adapt.ibits] 2 (c)
- static constexpr size_t kA = // ceil(w/m)
- (kResultBits / kUrbgBits) + ((kResultBits % kUrbgBits) != 0); // n'
- static constexpr size_t kABits = kResultBits / kA; // w0'
- static constexpr urbg_result_type kARejection =
- ((kUrbgRange >> kABits) << kABits); // y0'
- // refine the selection to reduce the rejection frequency.
- static constexpr size_t kTotalIters =
- ((kUrbgRange - kARejection) <= (kARejection / kA)) ? kA : (kA + 1); // n
- // [rand.adapt.ibits] 2 (b)
- static constexpr size_t kSmallIters =
- kTotalIters - (kResultBits % kTotalIters); // n0
- static constexpr size_t kSmallBits = kResultBits / kTotalIters; // w0
- static constexpr urbg_result_type kSmallRejection =
- ((kUrbgRange >> kSmallBits) << kSmallBits); // y0
- static constexpr size_t kLargeBits = kSmallBits + 1; // w0+1
- static constexpr urbg_result_type kLargeRejection =
- ((kUrbgRange >> kLargeBits) << kLargeBits); // y1
- //
- // Because `kLargeBits == kSmallBits + 1`, it follows that
- //
- // `kResultBits == kSmallIters * kSmallBits + kLargeIters`
- //
- // and therefore
- //
- // `kLargeIters == kTotalWidth % kSmallWidth`
- //
- // Intuitively, each iteration with the large width accounts for one unit
- // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
- // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
- // there would be no need for any large iterations (i.e., one loop would
- // suffice), and indeed, in this case, `kLargeIters` would be zero.
- static_assert(kResultBits == kSmallIters * kSmallBits +
- (kTotalIters - kSmallIters) * kLargeBits,
- "Error in looping constant calculations.");
- // The small shift is essentially small bits, but due to the potential
- // of generating a smaller result_type from a larger urbg type, the actual
- // shift might be 0.
- static constexpr size_t kSmallShift = kSmallBits % kResultBits;
- static constexpr auto kSmallMask =
- MaskFromShift<urbg_result_type>(kSmallShift);
- static constexpr size_t kLargeShift = kLargeBits % kResultBits;
- static constexpr auto kLargeMask =
- MaskFromShift<urbg_result_type>(kLargeShift);
- static constexpr auto kMin = (URBG::min)();
- result_type s = 0;
- for (size_t n = 0; n < kSmallIters; ++n) {
- urbg_result_type v;
- do {
- v = g() - kMin;
- } while (v >= kSmallRejection);
- s = (s << kSmallShift) + static_cast<result_type>(v & kSmallMask);
- }
- for (size_t n = kSmallIters; n < kTotalIters; ++n) {
- urbg_result_type v;
- do {
- v = g() - kMin;
- } while (v >= kLargeRejection);
- s = (s << kLargeShift) + static_cast<result_type>(v & kLargeMask);
- }
- return s;
- }
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
|