123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
- #define ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
- #include <cstddef>
- #include <iostream>
- #include <vector>
- #include "absl/strings/string_view.h"
- #include "absl/types/span.h"
- // NOTE: The functions in this file are test only, and are should not be used in
- // non-test code.
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- // http://webspace.ship.edu/pgmarr/Geo441/Lectures/Lec%205%20-%20Normality%20Testing.pdf
- // Compute the 1st to 4th standard moments:
- // mean, variance, skewness, and kurtosis.
- // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
- struct DistributionMoments {
- size_t n = 0;
- double mean = 0.0;
- double variance = 0.0;
- double skewness = 0.0;
- double kurtosis = 0.0;
- };
- DistributionMoments ComputeDistributionMoments(
- absl::Span<const double> data_points);
- std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments);
- // Computes the Z-score for a set of data with the given distribution moments
- // compared against `expected_mean`.
- double ZScore(double expected_mean, const DistributionMoments& moments);
- // Returns the probability of success required for a single trial to ensure that
- // after `num_trials` trials, the probability of at least one failure is no more
- // than `p_fail`.
- double RequiredSuccessProbability(double p_fail, int num_trials);
- // Computes the maximum distance from the mean tolerable, for Z-Tests that are
- // expected to pass with `acceptance_probability`. Will terminate if the
- // resulting tolerance is zero (due to passing in 0.0 for
- // `acceptance_probability` or rounding errors).
- //
- // For example,
- // MaxErrorTolerance(0.001) = 0.0
- // MaxErrorTolerance(0.5) = ~0.47
- // MaxErrorTolerance(1.0) = inf
- double MaxErrorTolerance(double acceptance_probability);
- // Approximation to inverse of the Error Function in double precision.
- // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf)
- double erfinv(double x);
- // Beta(p, q) = Gamma(p) * Gamma(q) / Gamma(p+q)
- double beta(double p, double q);
- // The inverse of the normal survival function.
- double InverseNormalSurvival(double x);
- // Returns whether actual is "near" expected, based on the bound.
- bool Near(absl::string_view msg, double actual, double expected, double bound);
- // Implements the incomplete regularized beta function, AS63, BETAIN.
- // https://www.jstor.org/stable/2346797
- //
- // BetaIncomplete(x, p, q), where
- // `x` is the value of the upper limit
- // `p` is beta parameter p, `q` is beta parameter q.
- //
- // NOTE: This is a test-only function which is only accurate to within, at most,
- // 1e-13 of the actual value.
- //
- double BetaIncomplete(double x, double p, double q);
- // Implements the inverse of the incomplete regularized beta function, AS109,
- // XINBTA.
- // https://www.jstor.org/stable/2346798
- // https://www.jstor.org/stable/2346887
- //
- // BetaIncompleteInv(p, q, beta, alhpa)
- // `p` is beta parameter p, `q` is beta parameter q.
- // `alpha` is the value of the lower tail area.
- //
- // NOTE: This is a test-only function and, when successful, is only accurate to
- // within ~1e-6 of the actual value; there are some cases where it diverges from
- // the actual value by much more than that. The function uses Newton's method,
- // and thus the runtime is highly variable.
- double BetaIncompleteInv(double p, double q, double alpha);
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
|