123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: flat_hash_map.h
- // -----------------------------------------------------------------------------
- //
- // An `absl::flat_hash_map<K, V>` is an unordered associative container of
- // unique keys and associated values designed to be a more efficient replacement
- // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
- // deletion of map elements can be done as an `O(1)` operation. However,
- // `flat_hash_map` (and other unordered associative containers known as the
- // collection of Abseil "Swiss tables") contain other optimizations that result
- // in both memory and computation advantages.
- //
- // In most cases, your default choice for a hash map should be a map of type
- // `flat_hash_map`.
- #ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
- #define ABSL_CONTAINER_FLAT_HASH_MAP_H_
- #include <cstddef>
- #include <new>
- #include <type_traits>
- #include <utility>
- #include "absl/algorithm/container.h"
- #include "absl/base/macros.h"
- #include "absl/container/internal/container_memory.h"
- #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
- #include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
- #include "absl/memory/memory.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- template <class K, class V>
- struct FlatHashMapPolicy;
- } // namespace container_internal
- // -----------------------------------------------------------------------------
- // absl::flat_hash_map
- // -----------------------------------------------------------------------------
- //
- // An `absl::flat_hash_map<K, V>` is an unordered associative container which
- // has been optimized for both speed and memory footprint in most common use
- // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
- // the following notable differences:
- //
- // * Requires keys that are CopyConstructible
- // * Requires values that are MoveConstructible
- // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
- // `insert()`, provided that the map is provided a compatible heterogeneous
- // hashing function and equality operator.
- // * Invalidates any references and pointers to elements within the table after
- // `rehash()` and when the table is moved.
- // * Contains a `capacity()` member function indicating the number of element
- // slots (open, deleted, and empty) within the hash map.
- // * Returns `void` from the `erase(iterator)` overload.
- //
- // By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
- // All fundamental and Abseil types that support the `absl::Hash` framework have
- // a compatible equality operator for comparing insertions into `flat_hash_map`.
- // If your type is not yet supported by the `absl::Hash` framework, see
- // absl/hash/hash.h for information on extending Abseil hashing to user-defined
- // types.
- //
- // Using `absl::flat_hash_map` at interface boundaries in dynamically loaded
- // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
- // be randomized across dynamically loaded libraries.
- //
- // NOTE: A `flat_hash_map` stores its value types directly inside its
- // implementation array to avoid memory indirection. Because a `flat_hash_map`
- // is designed to move data when rehashed, map values will not retain pointer
- // stability. If you require pointer stability, or if your values are large,
- // consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
- // If your types are not moveable or you require pointer stability for keys,
- // consider `absl::node_hash_map`.
- //
- // Example:
- //
- // // Create a flat hash map of three strings (that map to strings)
- // absl::flat_hash_map<std::string, std::string> ducks =
- // {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
- //
- // // Insert a new element into the flat hash map
- // ducks.insert({"d", "donald"});
- //
- // // Force a rehash of the flat hash map
- // ducks.rehash(0);
- //
- // // Find the element with the key "b"
- // std::string search_key = "b";
- // auto result = ducks.find(search_key);
- // if (result != ducks.end()) {
- // std::cout << "Result: " << result->second << std::endl;
- // }
- template <class K, class V,
- class Hash = absl::container_internal::hash_default_hash<K>,
- class Eq = absl::container_internal::hash_default_eq<K>,
- class Allocator = std::allocator<std::pair<const K, V>>>
- class flat_hash_map : public absl::container_internal::raw_hash_map<
- absl::container_internal::FlatHashMapPolicy<K, V>,
- Hash, Eq, Allocator> {
- using Base = typename flat_hash_map::raw_hash_map;
- public:
- // Constructors and Assignment Operators
- //
- // A flat_hash_map supports the same overload set as `std::unordered_map`
- // for construction and assignment:
- //
- // * Default constructor
- //
- // // No allocation for the table's elements is made.
- // absl::flat_hash_map<int, std::string> map1;
- //
- // * Initializer List constructor
- //
- // absl::flat_hash_map<int, std::string> map2 =
- // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
- //
- // * Copy constructor
- //
- // absl::flat_hash_map<int, std::string> map3(map2);
- //
- // * Copy assignment operator
- //
- // // Hash functor and Comparator are copied as well
- // absl::flat_hash_map<int, std::string> map4;
- // map4 = map3;
- //
- // * Move constructor
- //
- // // Move is guaranteed efficient
- // absl::flat_hash_map<int, std::string> map5(std::move(map4));
- //
- // * Move assignment operator
- //
- // // May be efficient if allocators are compatible
- // absl::flat_hash_map<int, std::string> map6;
- // map6 = std::move(map5);
- //
- // * Range constructor
- //
- // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
- // absl::flat_hash_map<int, std::string> map7(v.begin(), v.end());
- flat_hash_map() {}
- using Base::Base;
- // flat_hash_map::begin()
- //
- // Returns an iterator to the beginning of the `flat_hash_map`.
- using Base::begin;
- // flat_hash_map::cbegin()
- //
- // Returns a const iterator to the beginning of the `flat_hash_map`.
- using Base::cbegin;
- // flat_hash_map::cend()
- //
- // Returns a const iterator to the end of the `flat_hash_map`.
- using Base::cend;
- // flat_hash_map::end()
- //
- // Returns an iterator to the end of the `flat_hash_map`.
- using Base::end;
- // flat_hash_map::capacity()
- //
- // Returns the number of element slots (assigned, deleted, and empty)
- // available within the `flat_hash_map`.
- //
- // NOTE: this member function is particular to `absl::flat_hash_map` and is
- // not provided in the `std::unordered_map` API.
- using Base::capacity;
- // flat_hash_map::empty()
- //
- // Returns whether or not the `flat_hash_map` is empty.
- using Base::empty;
- // flat_hash_map::max_size()
- //
- // Returns the largest theoretical possible number of elements within a
- // `flat_hash_map` under current memory constraints. This value can be thought
- // of the largest value of `std::distance(begin(), end())` for a
- // `flat_hash_map<K, V>`.
- using Base::max_size;
- // flat_hash_map::size()
- //
- // Returns the number of elements currently within the `flat_hash_map`.
- using Base::size;
- // flat_hash_map::clear()
- //
- // Removes all elements from the `flat_hash_map`. Invalidates any references,
- // pointers, or iterators referring to contained elements.
- //
- // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
- // the underlying buffer call `erase(begin(), end())`.
- using Base::clear;
- // flat_hash_map::erase()
- //
- // Erases elements within the `flat_hash_map`. Erasing does not trigger a
- // rehash. Overloads are listed below.
- //
- // void erase(const_iterator pos):
- //
- // Erases the element at `position` of the `flat_hash_map`, returning
- // `void`.
- //
- // NOTE: returning `void` in this case is different than that of STL
- // containers in general and `std::unordered_map` in particular (which
- // return an iterator to the element following the erased element). If that
- // iterator is needed, simply post increment the iterator:
- //
- // map.erase(it++);
- //
- // iterator erase(const_iterator first, const_iterator last):
- //
- // Erases the elements in the open interval [`first`, `last`), returning an
- // iterator pointing to `last`. The special case of calling
- // `erase(begin(), end())` resets the reserved growth such that if
- // `reserve(N)` has previously been called and there has been no intervening
- // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
- // to assume that inserting N elements will not cause a rehash.
- //
- // size_type erase(const key_type& key):
- //
- // Erases the element with the matching key, if it exists, returning the
- // number of elements erased (0 or 1).
- using Base::erase;
- // flat_hash_map::insert()
- //
- // Inserts an element of the specified value into the `flat_hash_map`,
- // returning an iterator pointing to the newly inserted element, provided that
- // an element with the given key does not already exist. If rehashing occurs
- // due to the insertion, all iterators are invalidated. Overloads are listed
- // below.
- //
- // std::pair<iterator,bool> insert(const init_type& value):
- //
- // Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
- // iterator to the inserted element (or to the element that prevented the
- // insertion) and a bool denoting whether the insertion took place.
- //
- // std::pair<iterator,bool> insert(T&& value):
- // std::pair<iterator,bool> insert(init_type&& value):
- //
- // Inserts a moveable value into the `flat_hash_map`. Returns a pair
- // consisting of an iterator to the inserted element (or to the element that
- // prevented the insertion) and a bool denoting whether the insertion took
- // place.
- //
- // iterator insert(const_iterator hint, const init_type& value):
- // iterator insert(const_iterator hint, T&& value):
- // iterator insert(const_iterator hint, init_type&& value);
- //
- // Inserts a value, using the position of `hint` as a non-binding suggestion
- // for where to begin the insertion search. Returns an iterator to the
- // inserted element, or to the existing element that prevented the
- // insertion.
- //
- // void insert(InputIterator first, InputIterator last):
- //
- // Inserts a range of values [`first`, `last`).
- //
- // NOTE: Although the STL does not specify which element may be inserted if
- // multiple keys compare equivalently, for `flat_hash_map` we guarantee the
- // first match is inserted.
- //
- // void insert(std::initializer_list<init_type> ilist):
- //
- // Inserts the elements within the initializer list `ilist`.
- //
- // NOTE: Although the STL does not specify which element may be inserted if
- // multiple keys compare equivalently within the initializer list, for
- // `flat_hash_map` we guarantee the first match is inserted.
- using Base::insert;
- // flat_hash_map::insert_or_assign()
- //
- // Inserts an element of the specified value into the `flat_hash_map` provided
- // that a value with the given key does not already exist, or replaces it with
- // the element value if a key for that value already exists, returning an
- // iterator pointing to the newly inserted element. If rehashing occurs due
- // to the insertion, all existing iterators are invalidated. Overloads are
- // listed below.
- //
- // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
- // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
- //
- // Inserts/Assigns (or moves) the element of the specified key into the
- // `flat_hash_map`.
- //
- // iterator insert_or_assign(const_iterator hint,
- // const init_type& k, T&& obj):
- // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
- //
- // Inserts/Assigns (or moves) the element of the specified key into the
- // `flat_hash_map` using the position of `hint` as a non-binding suggestion
- // for where to begin the insertion search.
- using Base::insert_or_assign;
- // flat_hash_map::emplace()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_map`, provided that no element with the given key
- // already exists.
- //
- // The element may be constructed even if there already is an element with the
- // key in the container, in which case the newly constructed element will be
- // destroyed immediately. Prefer `try_emplace()` unless your key is not
- // copyable or moveable.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- using Base::emplace;
- // flat_hash_map::emplace_hint()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_map`, using the position of `hint` as a non-binding
- // suggestion for where to begin the insertion search, and only inserts
- // provided that no element with the given key already exists.
- //
- // The element may be constructed even if there already is an element with the
- // key in the container, in which case the newly constructed element will be
- // destroyed immediately. Prefer `try_emplace()` unless your key is not
- // copyable or moveable.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- using Base::emplace_hint;
- // flat_hash_map::try_emplace()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_map`, provided that no element with the given key
- // already exists. Unlike `emplace()`, if an element with the given key
- // already exists, we guarantee that no element is constructed.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- // Overloads are listed below.
- //
- // pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
- // pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
- //
- // Inserts (via copy or move) the element of the specified key into the
- // `flat_hash_map`.
- //
- // iterator try_emplace(const_iterator hint,
- // const key_type& k, Args&&... args):
- // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
- //
- // Inserts (via copy or move) the element of the specified key into the
- // `flat_hash_map` using the position of `hint` as a non-binding suggestion
- // for where to begin the insertion search.
- //
- // All `try_emplace()` overloads make the same guarantees regarding rvalue
- // arguments as `std::unordered_map::try_emplace()`, namely that these
- // functions will not move from rvalue arguments if insertions do not happen.
- using Base::try_emplace;
- // flat_hash_map::extract()
- //
- // Extracts the indicated element, erasing it in the process, and returns it
- // as a C++17-compatible node handle. Overloads are listed below.
- //
- // node_type extract(const_iterator position):
- //
- // Extracts the key,value pair of the element at the indicated position and
- // returns a node handle owning that extracted data.
- //
- // node_type extract(const key_type& x):
- //
- // Extracts the key,value pair of the element with a key matching the passed
- // key value and returns a node handle owning that extracted data. If the
- // `flat_hash_map` does not contain an element with a matching key, this
- // function returns an empty node handle.
- //
- // NOTE: when compiled in an earlier version of C++ than C++17,
- // `node_type::key()` returns a const reference to the key instead of a
- // mutable reference. We cannot safely return a mutable reference without
- // std::launder (which is not available before C++17).
- using Base::extract;
- // flat_hash_map::merge()
- //
- // Extracts elements from a given `source` flat hash map into this
- // `flat_hash_map`. If the destination `flat_hash_map` already contains an
- // element with an equivalent key, that element is not extracted.
- using Base::merge;
- // flat_hash_map::swap(flat_hash_map& other)
- //
- // Exchanges the contents of this `flat_hash_map` with those of the `other`
- // flat hash map, avoiding invocation of any move, copy, or swap operations on
- // individual elements.
- //
- // All iterators and references on the `flat_hash_map` remain valid, excepting
- // for the past-the-end iterator, which is invalidated.
- //
- // `swap()` requires that the flat hash map's hashing and key equivalence
- // functions be Swappable, and are exchanged using unqualified calls to
- // non-member `swap()`. If the map's allocator has
- // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
- // set to `true`, the allocators are also exchanged using an unqualified call
- // to non-member `swap()`; otherwise, the allocators are not swapped.
- using Base::swap;
- // flat_hash_map::rehash(count)
- //
- // Rehashes the `flat_hash_map`, setting the number of slots to be at least
- // the passed value. If the new number of slots increases the load factor more
- // than the current maximum load factor
- // (`count` < `size()` / `max_load_factor()`), then the new number of slots
- // will be at least `size()` / `max_load_factor()`.
- //
- // To force a rehash, pass rehash(0).
- //
- // NOTE: unlike behavior in `std::unordered_map`, references are also
- // invalidated upon a `rehash()`.
- using Base::rehash;
- // flat_hash_map::reserve(count)
- //
- // Sets the number of slots in the `flat_hash_map` to the number needed to
- // accommodate at least `count` total elements without exceeding the current
- // maximum load factor, and may rehash the container if needed.
- using Base::reserve;
- // flat_hash_map::at()
- //
- // Returns a reference to the mapped value of the element with key equivalent
- // to the passed key.
- using Base::at;
- // flat_hash_map::contains()
- //
- // Determines whether an element with a key comparing equal to the given `key`
- // exists within the `flat_hash_map`, returning `true` if so or `false`
- // otherwise.
- using Base::contains;
- // flat_hash_map::count(const Key& key) const
- //
- // Returns the number of elements with a key comparing equal to the given
- // `key` within the `flat_hash_map`. note that this function will return
- // either `1` or `0` since duplicate keys are not allowed within a
- // `flat_hash_map`.
- using Base::count;
- // flat_hash_map::equal_range()
- //
- // Returns a closed range [first, last], defined by a `std::pair` of two
- // iterators, containing all elements with the passed key in the
- // `flat_hash_map`.
- using Base::equal_range;
- // flat_hash_map::find()
- //
- // Finds an element with the passed `key` within the `flat_hash_map`.
- using Base::find;
- // flat_hash_map::operator[]()
- //
- // Returns a reference to the value mapped to the passed key within the
- // `flat_hash_map`, performing an `insert()` if the key does not already
- // exist.
- //
- // If an insertion occurs and results in a rehashing of the container, all
- // iterators are invalidated. Otherwise iterators are not affected and
- // references are not invalidated. Overloads are listed below.
- //
- // T& operator[](const Key& key):
- //
- // Inserts an init_type object constructed in-place if the element with the
- // given key does not exist.
- //
- // T& operator[](Key&& key):
- //
- // Inserts an init_type object constructed in-place provided that an element
- // with the given key does not exist.
- using Base::operator[];
- // flat_hash_map::bucket_count()
- //
- // Returns the number of "buckets" within the `flat_hash_map`. Note that
- // because a flat hash map contains all elements within its internal storage,
- // this value simply equals the current capacity of the `flat_hash_map`.
- using Base::bucket_count;
- // flat_hash_map::load_factor()
- //
- // Returns the current load factor of the `flat_hash_map` (the average number
- // of slots occupied with a value within the hash map).
- using Base::load_factor;
- // flat_hash_map::max_load_factor()
- //
- // Manages the maximum load factor of the `flat_hash_map`. Overloads are
- // listed below.
- //
- // float flat_hash_map::max_load_factor()
- //
- // Returns the current maximum load factor of the `flat_hash_map`.
- //
- // void flat_hash_map::max_load_factor(float ml)
- //
- // Sets the maximum load factor of the `flat_hash_map` to the passed value.
- //
- // NOTE: This overload is provided only for API compatibility with the STL;
- // `flat_hash_map` will ignore any set load factor and manage its rehashing
- // internally as an implementation detail.
- using Base::max_load_factor;
- // flat_hash_map::get_allocator()
- //
- // Returns the allocator function associated with this `flat_hash_map`.
- using Base::get_allocator;
- // flat_hash_map::hash_function()
- //
- // Returns the hashing function used to hash the keys within this
- // `flat_hash_map`.
- using Base::hash_function;
- // flat_hash_map::key_eq()
- //
- // Returns the function used for comparing keys equality.
- using Base::key_eq;
- };
- // erase_if(flat_hash_map<>, Pred)
- //
- // Erases all elements that satisfy the predicate `pred` from the container `c`.
- // Returns the number of erased elements.
- template <typename K, typename V, typename H, typename E, typename A,
- typename Predicate>
- typename flat_hash_map<K, V, H, E, A>::size_type erase_if(
- flat_hash_map<K, V, H, E, A>& c, Predicate pred) {
- return container_internal::EraseIf(pred, &c);
- }
- namespace container_internal {
- template <class K, class V>
- struct FlatHashMapPolicy {
- using slot_policy = container_internal::map_slot_policy<K, V>;
- using slot_type = typename slot_policy::slot_type;
- using key_type = K;
- using mapped_type = V;
- using init_type = std::pair</*non const*/ key_type, mapped_type>;
- template <class Allocator, class... Args>
- static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
- slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
- }
- template <class Allocator>
- static void destroy(Allocator* alloc, slot_type* slot) {
- slot_policy::destroy(alloc, slot);
- }
- template <class Allocator>
- static auto transfer(Allocator* alloc, slot_type* new_slot,
- slot_type* old_slot) {
- return slot_policy::transfer(alloc, new_slot, old_slot);
- }
- template <class F, class... Args>
- static decltype(absl::container_internal::DecomposePair(
- std::declval<F>(), std::declval<Args>()...))
- apply(F&& f, Args&&... args) {
- return absl::container_internal::DecomposePair(std::forward<F>(f),
- std::forward<Args>(args)...);
- }
- static size_t space_used(const slot_type*) { return 0; }
- static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
- static V& value(std::pair<const K, V>* kv) { return kv->second; }
- static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
- };
- } // namespace container_internal
- namespace container_algorithm_internal {
- // Specialization of trait in absl/algorithm/container.h
- template <class Key, class T, class Hash, class KeyEqual, class Allocator>
- struct IsUnorderedContainer<
- absl::flat_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
- } // namespace container_algorithm_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_CONTAINER_FLAT_HASH_MAP_H_
|