1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111 |
- //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenDAGPatterns.h"
- #include "CodeGenInstruction.h"
- #include "CodeGenRegisters.h"
- #include "DAGISelMatcher.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/TableGen/Error.h"
- #include "llvm/TableGen/Record.h"
- #include <utility>
- using namespace llvm;
- /// getRegisterValueType - Look up and return the ValueType of the specified
- /// register. If the register is a member of multiple register classes which
- /// have different associated types, return MVT::Other.
- static MVT::SimpleValueType getRegisterValueType(Record *R,
- const CodeGenTarget &T) {
- bool FoundRC = false;
- MVT::SimpleValueType VT = MVT::Other;
- const CodeGenRegister *Reg = T.getRegBank().getReg(R);
- for (const auto &RC : T.getRegBank().getRegClasses()) {
- if (!RC.contains(Reg))
- continue;
- if (!FoundRC) {
- FoundRC = true;
- const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
- if (VVT.isSimple())
- VT = VVT.getSimple().SimpleTy;
- continue;
- }
- #ifndef NDEBUG
- // If this occurs in multiple register classes, they all have to agree.
- const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
- assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
- "ValueType mismatch between register classes for this register");
- #endif
- }
- return VT;
- }
- namespace {
- class MatcherGen {
- const PatternToMatch &Pattern;
- const CodeGenDAGPatterns &CGP;
- /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
- /// out with all of the types removed. This allows us to insert type checks
- /// as we scan the tree.
- TreePatternNodePtr PatWithNoTypes;
- /// VariableMap - A map from variable names ('$dst') to the recorded operand
- /// number that they were captured as. These are biased by 1 to make
- /// insertion easier.
- StringMap<unsigned> VariableMap;
- /// This maintains the recorded operand number that OPC_CheckComplexPattern
- /// drops each sub-operand into. We don't want to insert these into
- /// VariableMap because that leads to identity checking if they are
- /// encountered multiple times. Biased by 1 like VariableMap for
- /// consistency.
- StringMap<unsigned> NamedComplexPatternOperands;
- /// NextRecordedOperandNo - As we emit opcodes to record matched values in
- /// the RecordedNodes array, this keeps track of which slot will be next to
- /// record into.
- unsigned NextRecordedOperandNo;
- /// MatchedChainNodes - This maintains the position in the recorded nodes
- /// array of all of the recorded input nodes that have chains.
- SmallVector<unsigned, 2> MatchedChainNodes;
- /// MatchedComplexPatterns - This maintains a list of all of the
- /// ComplexPatterns that we need to check. The second element of each pair
- /// is the recorded operand number of the input node.
- SmallVector<std::pair<const TreePatternNode*,
- unsigned>, 2> MatchedComplexPatterns;
- /// PhysRegInputs - List list has an entry for each explicitly specified
- /// physreg input to the pattern. The first elt is the Register node, the
- /// second is the recorded slot number the input pattern match saved it in.
- SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
- /// Matcher - This is the top level of the generated matcher, the result.
- Matcher *TheMatcher;
- /// CurPredicate - As we emit matcher nodes, this points to the latest check
- /// which should have future checks stuck into its Next position.
- Matcher *CurPredicate;
- public:
- MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
- bool EmitMatcherCode(unsigned Variant);
- void EmitResultCode();
- Matcher *GetMatcher() const { return TheMatcher; }
- private:
- void AddMatcher(Matcher *NewNode);
- void InferPossibleTypes(unsigned ForceMode);
- // Matcher Generation.
- void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
- unsigned ForceMode);
- void EmitLeafMatchCode(const TreePatternNode *N);
- void EmitOperatorMatchCode(const TreePatternNode *N,
- TreePatternNode *NodeNoTypes,
- unsigned ForceMode);
- /// If this is the first time a node with unique identifier Name has been
- /// seen, record it. Otherwise, emit a check to make sure this is the same
- /// node. Returns true if this is the first encounter.
- bool recordUniqueNode(ArrayRef<std::string> Names);
- // Result Code Generation.
- unsigned getNamedArgumentSlot(StringRef Name) {
- unsigned VarMapEntry = VariableMap[Name];
- assert(VarMapEntry != 0 &&
- "Variable referenced but not defined and not caught earlier!");
- return VarMapEntry-1;
- }
- void EmitResultOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps);
- void EmitResultOfNamedOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps);
- void EmitResultLeafAsOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps);
- void EmitResultInstructionAsOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps);
- void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps);
- };
- } // end anonymous namespace
- MatcherGen::MatcherGen(const PatternToMatch &pattern,
- const CodeGenDAGPatterns &cgp)
- : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
- TheMatcher(nullptr), CurPredicate(nullptr) {
- // We need to produce the matcher tree for the patterns source pattern. To do
- // this we need to match the structure as well as the types. To do the type
- // matching, we want to figure out the fewest number of type checks we need to
- // emit. For example, if there is only one integer type supported by a
- // target, there should be no type comparisons at all for integer patterns!
- //
- // To figure out the fewest number of type checks needed, clone the pattern,
- // remove the types, then perform type inference on the pattern as a whole.
- // If there are unresolved types, emit an explicit check for those types,
- // apply the type to the tree, then rerun type inference. Iterate until all
- // types are resolved.
- //
- PatWithNoTypes = Pattern.getSrcPattern()->clone();
- PatWithNoTypes->RemoveAllTypes();
- // If there are types that are manifestly known, infer them.
- InferPossibleTypes(Pattern.getForceMode());
- }
- /// InferPossibleTypes - As we emit the pattern, we end up generating type
- /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
- /// want to propagate implied types as far throughout the tree as possible so
- /// that we avoid doing redundant type checks. This does the type propagation.
- void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
- // TP - Get *SOME* tree pattern, we don't care which. It is only used for
- // diagnostics, which we know are impossible at this point.
- TreePattern &TP = *CGP.pf_begin()->second;
- TP.getInfer().CodeGen = true;
- TP.getInfer().ForceMode = ForceMode;
- bool MadeChange = true;
- while (MadeChange)
- MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
- true/*Ignore reg constraints*/);
- }
- /// AddMatcher - Add a matcher node to the current graph we're building.
- void MatcherGen::AddMatcher(Matcher *NewNode) {
- if (CurPredicate)
- CurPredicate->setNext(NewNode);
- else
- TheMatcher = NewNode;
- CurPredicate = NewNode;
- }
- //===----------------------------------------------------------------------===//
- // Pattern Match Generation
- //===----------------------------------------------------------------------===//
- /// EmitLeafMatchCode - Generate matching code for leaf nodes.
- void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
- assert(N->isLeaf() && "Not a leaf?");
- // Direct match against an integer constant.
- if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
- // If this is the root of the dag we're matching, we emit a redundant opcode
- // check to ensure that this gets folded into the normal top-level
- // OpcodeSwitch.
- if (N == Pattern.getSrcPattern()) {
- const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
- AddMatcher(new CheckOpcodeMatcher(NI));
- }
- return AddMatcher(new CheckIntegerMatcher(II->getValue()));
- }
- // An UnsetInit represents a named node without any constraints.
- if (isa<UnsetInit>(N->getLeafValue())) {
- assert(N->hasName() && "Unnamed ? leaf");
- return;
- }
- DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
- if (!DI) {
- errs() << "Unknown leaf kind: " << *N << "\n";
- abort();
- }
- Record *LeafRec = DI->getDef();
- // A ValueType leaf node can represent a register when named, or itself when
- // unnamed.
- if (LeafRec->isSubClassOf("ValueType")) {
- // A named ValueType leaf always matches: (add i32:$a, i32:$b).
- if (N->hasName())
- return;
- // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
- return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
- }
- if (// Handle register references. Nothing to do here, they always match.
- LeafRec->isSubClassOf("RegisterClass") ||
- LeafRec->isSubClassOf("RegisterOperand") ||
- LeafRec->isSubClassOf("PointerLikeRegClass") ||
- LeafRec->isSubClassOf("SubRegIndex") ||
- // Place holder for SRCVALUE nodes. Nothing to do here.
- LeafRec->getName() == "srcvalue")
- return;
- // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
- // record the register
- if (LeafRec->isSubClassOf("Register")) {
- AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
- NextRecordedOperandNo));
- PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
- return;
- }
- if (LeafRec->isSubClassOf("CondCode"))
- return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
- if (LeafRec->isSubClassOf("ComplexPattern")) {
- // We can't model ComplexPattern uses that don't have their name taken yet.
- // The OPC_CheckComplexPattern operation implicitly records the results.
- if (N->getName().empty()) {
- std::string S;
- raw_string_ostream OS(S);
- OS << "We expect complex pattern uses to have names: " << *N;
- PrintFatalError(S);
- }
- // Remember this ComplexPattern so that we can emit it after all the other
- // structural matches are done.
- unsigned InputOperand = VariableMap[N->getName()] - 1;
- MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
- return;
- }
- if (LeafRec->getName() == "immAllOnesV") {
- // If this is the root of the dag we're matching, we emit a redundant opcode
- // check to ensure that this gets folded into the normal top-level
- // OpcodeSwitch.
- if (N == Pattern.getSrcPattern()) {
- MVT VT = N->getSimpleType(0);
- StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
- const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
- AddMatcher(new CheckOpcodeMatcher(NI));
- }
- return AddMatcher(new CheckImmAllOnesVMatcher());
- }
- if (LeafRec->getName() == "immAllZerosV") {
- // If this is the root of the dag we're matching, we emit a redundant opcode
- // check to ensure that this gets folded into the normal top-level
- // OpcodeSwitch.
- if (N == Pattern.getSrcPattern()) {
- MVT VT = N->getSimpleType(0);
- StringRef Name = VT.isScalableVector() ? "splat_vector" : "build_vector";
- const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed(Name));
- AddMatcher(new CheckOpcodeMatcher(NI));
- }
- return AddMatcher(new CheckImmAllZerosVMatcher());
- }
- errs() << "Unknown leaf kind: " << *N << "\n";
- abort();
- }
- void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
- TreePatternNode *NodeNoTypes,
- unsigned ForceMode) {
- assert(!N->isLeaf() && "Not an operator?");
- if (N->getOperator()->isSubClassOf("ComplexPattern")) {
- // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
- // "MY_PAT:op1:op2". We should already have validated that the uses are
- // consistent.
- std::string PatternName = std::string(N->getOperator()->getName());
- for (unsigned i = 0; i < N->getNumChildren(); ++i) {
- PatternName += ":";
- PatternName += N->getChild(i)->getName();
- }
- if (recordUniqueNode(PatternName)) {
- auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
- MatchedComplexPatterns.push_back(NodeAndOpNum);
- }
- return;
- }
- const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
- // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
- // a constant without a predicate fn that has more than one bit set, handle
- // this as a special case. This is usually for targets that have special
- // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
- // handling stuff). Using these instructions is often far more efficient
- // than materializing the constant. Unfortunately, both the instcombiner
- // and the dag combiner can often infer that bits are dead, and thus drop
- // them from the mask in the dag. For example, it might turn 'AND X, 255'
- // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
- // to handle this.
- if ((N->getOperator()->getName() == "and" ||
- N->getOperator()->getName() == "or") &&
- N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
- N->getPredicateCalls().empty()) {
- if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
- if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
- // If this is at the root of the pattern, we emit a redundant
- // CheckOpcode so that the following checks get factored properly under
- // a single opcode check.
- if (N == Pattern.getSrcPattern())
- AddMatcher(new CheckOpcodeMatcher(CInfo));
- // Emit the CheckAndImm/CheckOrImm node.
- if (N->getOperator()->getName() == "and")
- AddMatcher(new CheckAndImmMatcher(II->getValue()));
- else
- AddMatcher(new CheckOrImmMatcher(II->getValue()));
- // Match the LHS of the AND as appropriate.
- AddMatcher(new MoveChildMatcher(0));
- EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
- AddMatcher(new MoveParentMatcher());
- return;
- }
- }
- }
- // Check that the current opcode lines up.
- AddMatcher(new CheckOpcodeMatcher(CInfo));
- // If this node has memory references (i.e. is a load or store), tell the
- // interpreter to capture them in the memref array.
- if (N->NodeHasProperty(SDNPMemOperand, CGP))
- AddMatcher(new RecordMemRefMatcher());
- // If this node has a chain, then the chain is operand #0 is the SDNode, and
- // the child numbers of the node are all offset by one.
- unsigned OpNo = 0;
- if (N->NodeHasProperty(SDNPHasChain, CGP)) {
- // Record the node and remember it in our chained nodes list.
- AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
- "' chained node",
- NextRecordedOperandNo));
- // Remember all of the input chains our pattern will match.
- MatchedChainNodes.push_back(NextRecordedOperandNo++);
- // Don't look at the input chain when matching the tree pattern to the
- // SDNode.
- OpNo = 1;
- // If this node is not the root and the subtree underneath it produces a
- // chain, then the result of matching the node is also produce a chain.
- // Beyond that, this means that we're also folding (at least) the root node
- // into the node that produce the chain (for example, matching
- // "(add reg, (load ptr))" as a add_with_memory on X86). This is
- // problematic, if the 'reg' node also uses the load (say, its chain).
- // Graphically:
- //
- // [LD]
- // ^ ^
- // | \ DAG's like cheese.
- // / |
- // / [YY]
- // | ^
- // [XX]--/
- //
- // It would be invalid to fold XX and LD. In this case, folding the two
- // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
- // To prevent this, we emit a dynamic check for legality before allowing
- // this to be folded.
- //
- const TreePatternNode *Root = Pattern.getSrcPattern();
- if (N != Root) { // Not the root of the pattern.
- // If there is a node between the root and this node, then we definitely
- // need to emit the check.
- bool NeedCheck = !Root->hasChild(N);
- // If it *is* an immediate child of the root, we can still need a check if
- // the root SDNode has multiple inputs. For us, this means that it is an
- // intrinsic, has multiple operands, or has other inputs like chain or
- // glue).
- if (!NeedCheck) {
- const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
- NeedCheck =
- Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
- Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
- Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
- PInfo.getNumOperands() > 1 ||
- PInfo.hasProperty(SDNPHasChain) ||
- PInfo.hasProperty(SDNPInGlue) ||
- PInfo.hasProperty(SDNPOptInGlue);
- }
- if (NeedCheck)
- AddMatcher(new CheckFoldableChainNodeMatcher());
- }
- }
- // If this node has an output glue and isn't the root, remember it.
- if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
- N != Pattern.getSrcPattern()) {
- // TODO: This redundantly records nodes with both glues and chains.
- // Record the node and remember it in our chained nodes list.
- AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
- "' glue output node",
- NextRecordedOperandNo));
- }
- // If this node is known to have an input glue or if it *might* have an input
- // glue, capture it as the glue input of the pattern.
- if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
- N->NodeHasProperty(SDNPInGlue, CGP))
- AddMatcher(new CaptureGlueInputMatcher());
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
- // Get the code suitable for matching this child. Move to the child, check
- // it then move back to the parent.
- AddMatcher(new MoveChildMatcher(OpNo));
- EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
- AddMatcher(new MoveParentMatcher());
- }
- }
- bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
- unsigned Entry = 0;
- for (const std::string &Name : Names) {
- unsigned &VarMapEntry = VariableMap[Name];
- if (!Entry)
- Entry = VarMapEntry;
- assert(Entry == VarMapEntry);
- }
- bool NewRecord = false;
- if (Entry == 0) {
- // If it is a named node, we must emit a 'Record' opcode.
- std::string WhatFor;
- for (const std::string &Name : Names) {
- if (!WhatFor.empty())
- WhatFor += ',';
- WhatFor += "$" + Name;
- }
- AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
- Entry = ++NextRecordedOperandNo;
- NewRecord = true;
- } else {
- // If we get here, this is a second reference to a specific name. Since
- // we already have checked that the first reference is valid, we don't
- // have to recursively match it, just check that it's the same as the
- // previously named thing.
- AddMatcher(new CheckSameMatcher(Entry-1));
- }
- for (const std::string &Name : Names)
- VariableMap[Name] = Entry;
- return NewRecord;
- }
- void MatcherGen::EmitMatchCode(const TreePatternNode *N,
- TreePatternNode *NodeNoTypes,
- unsigned ForceMode) {
- // If N and NodeNoTypes don't agree on a type, then this is a case where we
- // need to do a type check. Emit the check, apply the type to NodeNoTypes and
- // reinfer any correlated types.
- SmallVector<unsigned, 2> ResultsToTypeCheck;
- for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
- if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
- NodeNoTypes->setType(i, N->getExtType(i));
- InferPossibleTypes(ForceMode);
- ResultsToTypeCheck.push_back(i);
- }
- // If this node has a name associated with it, capture it in VariableMap. If
- // we already saw this in the pattern, emit code to verify dagness.
- SmallVector<std::string, 4> Names;
- if (!N->getName().empty())
- Names.push_back(N->getName());
- for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
- Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
- }
- if (!Names.empty()) {
- if (!recordUniqueNode(Names))
- return;
- }
- if (N->isLeaf())
- EmitLeafMatchCode(N);
- else
- EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
- // If there are node predicates for this node, generate their checks.
- for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
- const TreePredicateCall &Pred = N->getPredicateCalls()[i];
- SmallVector<unsigned, 4> Operands;
- if (Pred.Fn.usesOperands()) {
- TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
- for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
- std::string Name =
- ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
- Operands.push_back(getNamedArgumentSlot(Name));
- }
- }
- AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
- }
- for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
- AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
- ResultsToTypeCheck[i]));
- }
- /// EmitMatcherCode - Generate the code that matches the predicate of this
- /// pattern for the specified Variant. If the variant is invalid this returns
- /// true and does not generate code, if it is valid, it returns false.
- bool MatcherGen::EmitMatcherCode(unsigned Variant) {
- // If the root of the pattern is a ComplexPattern and if it is specified to
- // match some number of root opcodes, these are considered to be our variants.
- // Depending on which variant we're generating code for, emit the root opcode
- // check.
- if (const ComplexPattern *CP =
- Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
- const std::vector<Record*> &OpNodes = CP->getRootNodes();
- assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
- if (Variant >= OpNodes.size()) return true;
- AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
- } else {
- if (Variant != 0) return true;
- }
- // Emit the matcher for the pattern structure and types.
- EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
- Pattern.getForceMode());
- // If the pattern has a predicate on it (e.g. only enabled when a subtarget
- // feature is around, do the check).
- if (!Pattern.getPredicateCheck().empty())
- AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
- // Now that we've completed the structural type match, emit any ComplexPattern
- // checks (e.g. addrmode matches). We emit this after the structural match
- // because they are generally more expensive to evaluate and more difficult to
- // factor.
- for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
- auto N = MatchedComplexPatterns[i].first;
- // Remember where the results of this match get stuck.
- if (N->isLeaf()) {
- NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
- } else {
- unsigned CurOp = NextRecordedOperandNo;
- for (unsigned i = 0; i < N->getNumChildren(); ++i) {
- NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
- CurOp += N->getChild(i)->getNumMIResults(CGP);
- }
- }
- // Get the slot we recorded the value in from the name on the node.
- unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
- const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
- // Emit a CheckComplexPat operation, which does the match (aborting if it
- // fails) and pushes the matched operands onto the recorded nodes list.
- AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
- N->getName(), NextRecordedOperandNo));
- // Record the right number of operands.
- NextRecordedOperandNo += CP.getNumOperands();
- if (CP.hasProperty(SDNPHasChain)) {
- // If the complex pattern has a chain, then we need to keep track of the
- // fact that we just recorded a chain input. The chain input will be
- // matched as the last operand of the predicate if it was successful.
- ++NextRecordedOperandNo; // Chained node operand.
- // It is the last operand recorded.
- assert(NextRecordedOperandNo > 1 &&
- "Should have recorded input/result chains at least!");
- MatchedChainNodes.push_back(NextRecordedOperandNo-1);
- }
- // TODO: Complex patterns can't have output glues, if they did, we'd want
- // to record them.
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Node Result Generation
- //===----------------------------------------------------------------------===//
- void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps){
- assert(!N->getName().empty() && "Operand not named!");
- if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
- // Complex operands have already been completely selected, just find the
- // right slot ant add the arguments directly.
- for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
- ResultOps.push_back(SlotNo - 1 + i);
- return;
- }
- unsigned SlotNo = getNamedArgumentSlot(N->getName());
- // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
- // version of the immediate so that it doesn't get selected due to some other
- // node use.
- if (!N->isLeaf()) {
- StringRef OperatorName = N->getOperator()->getName();
- if (OperatorName == "imm" || OperatorName == "fpimm") {
- AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
- ResultOps.push_back(NextRecordedOperandNo++);
- return;
- }
- }
- for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
- ResultOps.push_back(SlotNo + i);
- }
- void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps) {
- assert(N->isLeaf() && "Must be a leaf");
- if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
- AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
- ResultOps.push_back(NextRecordedOperandNo++);
- return;
- }
- // If this is an explicit register reference, handle it.
- if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
- Record *Def = DI->getDef();
- if (Def->isSubClassOf("Register")) {
- const CodeGenRegister *Reg =
- CGP.getTargetInfo().getRegBank().getReg(Def);
- AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
- ResultOps.push_back(NextRecordedOperandNo++);
- return;
- }
- if (Def->getName() == "zero_reg") {
- AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
- ResultOps.push_back(NextRecordedOperandNo++);
- return;
- }
- if (Def->getName() == "undef_tied_input") {
- std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
- std::array<unsigned, 0> InstOps;
- auto IDOperandNo = NextRecordedOperandNo++;
- AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
- ResultVTs, InstOps, false, false, false,
- false, -1, IDOperandNo));
- ResultOps.push_back(IDOperandNo);
- return;
- }
- // Handle a reference to a register class. This is used
- // in COPY_TO_SUBREG instructions.
- if (Def->isSubClassOf("RegisterOperand"))
- Def = Def->getValueAsDef("RegClass");
- if (Def->isSubClassOf("RegisterClass")) {
- // If the register class has an enum integer value greater than 127, the
- // encoding overflows the limit of 7 bits, which precludes the use of
- // StringIntegerMatcher. In this case, fallback to using IntegerMatcher.
- const CodeGenRegisterClass &RC =
- CGP.getTargetInfo().getRegisterClass(Def);
- if (RC.EnumValue <= 127) {
- std::string Value = getQualifiedName(Def) + "RegClassID";
- AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
- ResultOps.push_back(NextRecordedOperandNo++);
- } else {
- AddMatcher(new EmitIntegerMatcher(RC.EnumValue, MVT::i32));
- ResultOps.push_back(NextRecordedOperandNo++);
- }
- return;
- }
- // Handle a subregister index. This is used for INSERT_SUBREG etc.
- if (Def->isSubClassOf("SubRegIndex")) {
- const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
- // If we have more than 127 subreg indices the encoding can overflow
- // 7 bit and we cannot use StringInteger.
- if (RB.getSubRegIndices().size() > 127) {
- const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
- assert(I && "Cannot find subreg index by name!");
- if (I->EnumValue > 127) {
- AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
- ResultOps.push_back(NextRecordedOperandNo++);
- return;
- }
- }
- std::string Value = getQualifiedName(Def);
- AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
- ResultOps.push_back(NextRecordedOperandNo++);
- return;
- }
- }
- errs() << "unhandled leaf node:\n";
- N->dump();
- }
- static bool
- mayInstNodeLoadOrStore(const TreePatternNode *N,
- const CodeGenDAGPatterns &CGP) {
- Record *Op = N->getOperator();
- const CodeGenTarget &CGT = CGP.getTargetInfo();
- CodeGenInstruction &II = CGT.getInstruction(Op);
- return II.mayLoad || II.mayStore;
- }
- static unsigned
- numNodesThatMayLoadOrStore(const TreePatternNode *N,
- const CodeGenDAGPatterns &CGP) {
- if (N->isLeaf())
- return 0;
- Record *OpRec = N->getOperator();
- if (!OpRec->isSubClassOf("Instruction"))
- return 0;
- unsigned Count = 0;
- if (mayInstNodeLoadOrStore(N, CGP))
- ++Count;
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
- return Count;
- }
- void MatcherGen::
- EmitResultInstructionAsOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &OutputOps) {
- Record *Op = N->getOperator();
- const CodeGenTarget &CGT = CGP.getTargetInfo();
- CodeGenInstruction &II = CGT.getInstruction(Op);
- const DAGInstruction &Inst = CGP.getInstruction(Op);
- bool isRoot = N == Pattern.getDstPattern();
- // TreeHasOutGlue - True if this tree has glue.
- bool TreeHasInGlue = false, TreeHasOutGlue = false;
- if (isRoot) {
- const TreePatternNode *SrcPat = Pattern.getSrcPattern();
- TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
- SrcPat->TreeHasProperty(SDNPInGlue, CGP);
- // FIXME2: this is checking the entire pattern, not just the node in
- // question, doing this just for the root seems like a total hack.
- TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
- }
- // NumResults - This is the number of results produced by the instruction in
- // the "outs" list.
- unsigned NumResults = Inst.getNumResults();
- // Number of operands we know the output instruction must have. If it is
- // variadic, we could have more operands.
- unsigned NumFixedOperands = II.Operands.size();
- SmallVector<unsigned, 8> InstOps;
- // Loop over all of the fixed operands of the instruction pattern, emitting
- // code to fill them all in. The node 'N' usually has number children equal to
- // the number of input operands of the instruction. However, in cases where
- // there are predicate operands for an instruction, we need to fill in the
- // 'execute always' values. Match up the node operands to the instruction
- // operands to do this.
- unsigned ChildNo = 0;
- // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
- // number of operands at the end of the list which have default values.
- // Those can come from the pattern if it provides enough arguments, or be
- // filled in with the default if the pattern hasn't provided them. But any
- // operand with a default value _before_ the last mandatory one will be
- // filled in with their defaults unconditionally.
- unsigned NonOverridableOperands = NumFixedOperands;
- while (NonOverridableOperands > NumResults &&
- CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
- --NonOverridableOperands;
- for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
- InstOpNo != e; ++InstOpNo) {
- // Determine what to emit for this operand.
- Record *OperandNode = II.Operands[InstOpNo].Rec;
- if (CGP.operandHasDefault(OperandNode) &&
- (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
- // This is a predicate or optional def operand which the pattern has not
- // overridden, or which we aren't letting it override; emit the 'default
- // ops' operands.
- const DAGDefaultOperand &DefaultOp
- = CGP.getDefaultOperand(OperandNode);
- for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
- EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
- continue;
- }
- // Otherwise this is a normal operand or a predicate operand without
- // 'execute always'; emit it.
- // For operands with multiple sub-operands we may need to emit
- // multiple child patterns to cover them all. However, ComplexPattern
- // children may themselves emit multiple MI operands.
- unsigned NumSubOps = 1;
- if (OperandNode->isSubClassOf("Operand")) {
- DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
- if (unsigned NumArgs = MIOpInfo->getNumArgs())
- NumSubOps = NumArgs;
- }
- unsigned FinalNumOps = InstOps.size() + NumSubOps;
- while (InstOps.size() < FinalNumOps) {
- const TreePatternNode *Child = N->getChild(ChildNo);
- unsigned BeforeAddingNumOps = InstOps.size();
- EmitResultOperand(Child, InstOps);
- assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
- // If the operand is an instruction and it produced multiple results, just
- // take the first one.
- if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
- InstOps.resize(BeforeAddingNumOps+1);
- ++ChildNo;
- }
- }
- // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
- // expand suboperands, use default operands, or other features determined from
- // the CodeGenInstruction after the fixed operands, which were handled
- // above. Emit the remaining instructions implicitly added by the use for
- // variable_ops.
- if (II.Operands.isVariadic) {
- for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
- EmitResultOperand(N->getChild(I), InstOps);
- }
- // If this node has input glue or explicitly specified input physregs, we
- // need to add chained and glued copyfromreg nodes and materialize the glue
- // input.
- if (isRoot && !PhysRegInputs.empty()) {
- // Emit all of the CopyToReg nodes for the input physical registers. These
- // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
- for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
- const CodeGenRegister *Reg =
- CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
- AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
- Reg));
- }
- // Even if the node has no other glue inputs, the resultant node must be
- // glued to the CopyFromReg nodes we just generated.
- TreeHasInGlue = true;
- }
- // Result order: node results, chain, glue
- // Determine the result types.
- SmallVector<MVT::SimpleValueType, 4> ResultVTs;
- for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
- ResultVTs.push_back(N->getSimpleType(i));
- // If this is the root instruction of a pattern that has physical registers in
- // its result pattern, add output VTs for them. For example, X86 has:
- // (set AL, (mul ...))
- // This also handles implicit results like:
- // (implicit EFLAGS)
- if (isRoot && !Pattern.getDstRegs().empty()) {
- // If the root came from an implicit def in the instruction handling stuff,
- // don't re-add it.
- Record *HandledReg = nullptr;
- if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
- HandledReg = II.ImplicitDefs[0];
- for (Record *Reg : Pattern.getDstRegs()) {
- if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
- ResultVTs.push_back(getRegisterValueType(Reg, CGT));
- }
- }
- // If this is the root of the pattern and the pattern we're matching includes
- // a node that is variadic, mark the generated node as variadic so that it
- // gets the excess operands from the input DAG.
- int NumFixedArityOperands = -1;
- if (isRoot &&
- Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
- NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
- // If this is the root node and multiple matched nodes in the input pattern
- // have MemRefs in them, have the interpreter collect them and plop them onto
- // this node. If there is just one node with MemRefs, leave them on that node
- // even if it is not the root.
- //
- // FIXME3: This is actively incorrect for result patterns with multiple
- // memory-referencing instructions.
- bool PatternHasMemOperands =
- Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
- bool NodeHasMemRefs = false;
- if (PatternHasMemOperands) {
- unsigned NumNodesThatLoadOrStore =
- numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
- bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
- NumNodesThatLoadOrStore == 1;
- NodeHasMemRefs =
- NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
- NumNodesThatLoadOrStore != 1));
- }
- // Determine whether we need to attach a chain to this node.
- bool NodeHasChain = false;
- if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
- // For some instructions, we were able to infer from the pattern whether
- // they should have a chain. Otherwise, attach the chain to the root.
- //
- // FIXME2: This is extremely dubious for several reasons, not the least of
- // which it gives special status to instructions with patterns that Pat<>
- // nodes can't duplicate.
- if (II.hasChain_Inferred)
- NodeHasChain = II.hasChain;
- else
- NodeHasChain = isRoot;
- // Instructions which load and store from memory should have a chain,
- // regardless of whether they happen to have a pattern saying so.
- if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
- II.hasSideEffects)
- NodeHasChain = true;
- }
- assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
- "Node has no result");
- AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
- ResultVTs, InstOps,
- NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
- NodeHasMemRefs, NumFixedArityOperands,
- NextRecordedOperandNo));
- // The non-chain and non-glue results of the newly emitted node get recorded.
- for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
- if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
- OutputOps.push_back(NextRecordedOperandNo++);
- }
- }
- void MatcherGen::
- EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps) {
- assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
- // Emit the operand.
- SmallVector<unsigned, 8> InputOps;
- // FIXME2: Could easily generalize this to support multiple inputs and outputs
- // to the SDNodeXForm. For now we just support one input and one output like
- // the old instruction selector.
- assert(N->getNumChildren() == 1);
- EmitResultOperand(N->getChild(0), InputOps);
- // The input currently must have produced exactly one result.
- assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
- AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
- ResultOps.push_back(NextRecordedOperandNo++);
- }
- void MatcherGen::EmitResultOperand(const TreePatternNode *N,
- SmallVectorImpl<unsigned> &ResultOps) {
- // This is something selected from the pattern we matched.
- if (!N->getName().empty())
- return EmitResultOfNamedOperand(N, ResultOps);
- if (N->isLeaf())
- return EmitResultLeafAsOperand(N, ResultOps);
- Record *OpRec = N->getOperator();
- if (OpRec->isSubClassOf("Instruction"))
- return EmitResultInstructionAsOperand(N, ResultOps);
- if (OpRec->isSubClassOf("SDNodeXForm"))
- return EmitResultSDNodeXFormAsOperand(N, ResultOps);
- errs() << "Unknown result node to emit code for: " << *N << '\n';
- PrintFatalError("Unknown node in result pattern!");
- }
- void MatcherGen::EmitResultCode() {
- // Patterns that match nodes with (potentially multiple) chain inputs have to
- // merge them together into a token factor. This informs the generated code
- // what all the chained nodes are.
- if (!MatchedChainNodes.empty())
- AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
- // Codegen the root of the result pattern, capturing the resulting values.
- SmallVector<unsigned, 8> Ops;
- EmitResultOperand(Pattern.getDstPattern(), Ops);
- // At this point, we have however many values the result pattern produces.
- // However, the input pattern might not need all of these. If there are
- // excess values at the end (such as implicit defs of condition codes etc)
- // just lop them off. This doesn't need to worry about glue or chains, just
- // explicit results.
- //
- unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
- // If the pattern also has (implicit) results, count them as well.
- if (!Pattern.getDstRegs().empty()) {
- // If the root came from an implicit def in the instruction handling stuff,
- // don't re-add it.
- Record *HandledReg = nullptr;
- const TreePatternNode *DstPat = Pattern.getDstPattern();
- if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
- const CodeGenTarget &CGT = CGP.getTargetInfo();
- CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
- if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
- HandledReg = II.ImplicitDefs[0];
- }
- for (Record *Reg : Pattern.getDstRegs()) {
- if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
- ++NumSrcResults;
- }
- }
- SmallVector<unsigned, 8> Results(Ops);
- // Apply result permutation.
- for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
- ++ResNo) {
- Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
- }
- Results.resize(NumSrcResults);
- AddMatcher(new CompleteMatchMatcher(Results, Pattern));
- }
- /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
- /// the specified variant. If the variant number is invalid, this returns null.
- Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
- unsigned Variant,
- const CodeGenDAGPatterns &CGP) {
- MatcherGen Gen(Pattern, CGP);
- // Generate the code for the matcher.
- if (Gen.EmitMatcherCode(Variant))
- return nullptr;
- // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
- // FIXME2: Split result code out to another table, and make the matcher end
- // with an "Emit <index>" command. This allows result generation stuff to be
- // shared and factored?
- // If the match succeeds, then we generate Pattern.
- Gen.EmitResultCode();
- // Unconditional match.
- return Gen.GetMatcher();
- }
|