123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 |
- //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements sparse conditional constant propagation and merging:
- //
- // Specifically, this:
- // * Assumes values are constant unless proven otherwise
- // * Assumes BasicBlocks are dead unless proven otherwise
- // * Proves values to be constant, and replaces them with constants
- // * Proves conditional branches to be unconditional
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/SCCP.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueLattice.h"
- #include "llvm/Analysis/ValueLatticeUtils.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstVisitor.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PredicateInfo.h"
- #include <cassert>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "sccp"
- STATISTIC(NumInstRemoved, "Number of instructions removed");
- STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
- STATISTIC(NumInstReplaced,
- "Number of instructions replaced with (simpler) instruction");
- STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
- STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
- STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
- STATISTIC(
- IPNumInstReplaced,
- "Number of instructions replaced with (simpler) instruction by IPSCCP");
- // Helper to check if \p LV is either a constant or a constant
- // range with a single element. This should cover exactly the same cases as the
- // old ValueLatticeElement::isConstant() and is intended to be used in the
- // transition to ValueLatticeElement.
- static bool isConstant(const ValueLatticeElement &LV) {
- return LV.isConstant() ||
- (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
- }
- // Helper to check if \p LV is either overdefined or a constant range with more
- // than a single element. This should cover exactly the same cases as the old
- // ValueLatticeElement::isOverdefined() and is intended to be used in the
- // transition to ValueLatticeElement.
- static bool isOverdefined(const ValueLatticeElement &LV) {
- return !LV.isUnknownOrUndef() && !isConstant(LV);
- }
- static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
- Constant *Const = nullptr;
- if (V->getType()->isStructTy()) {
- std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
- if (llvm::any_of(IVs, isOverdefined))
- return false;
- std::vector<Constant *> ConstVals;
- auto *ST = cast<StructType>(V->getType());
- for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
- ValueLatticeElement V = IVs[i];
- ConstVals.push_back(isConstant(V)
- ? Solver.getConstant(V)
- : UndefValue::get(ST->getElementType(i)));
- }
- Const = ConstantStruct::get(ST, ConstVals);
- } else {
- const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
- if (isOverdefined(IV))
- return false;
- Const =
- isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
- }
- assert(Const && "Constant is nullptr here!");
- // Replacing `musttail` instructions with constant breaks `musttail` invariant
- // unless the call itself can be removed.
- // Calls with "clang.arc.attachedcall" implicitly use the return value and
- // those uses cannot be updated with a constant.
- CallBase *CB = dyn_cast<CallBase>(V);
- if (CB && ((CB->isMustTailCall() && !CB->isSafeToRemove()) ||
- CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
- Function *F = CB->getCalledFunction();
- // Don't zap returns of the callee
- if (F)
- Solver.addToMustPreserveReturnsInFunctions(F);
- LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
- << " as a constant\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
- // Replaces all of the uses of a variable with uses of the constant.
- V->replaceAllUsesWith(Const);
- return true;
- }
- static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
- SmallPtrSetImpl<Value *> &InsertedValues,
- Statistic &InstRemovedStat,
- Statistic &InstReplacedStat) {
- bool MadeChanges = false;
- for (Instruction &Inst : make_early_inc_range(BB)) {
- if (Inst.getType()->isVoidTy())
- continue;
- if (tryToReplaceWithConstant(Solver, &Inst)) {
- if (Inst.isSafeToRemove())
- Inst.eraseFromParent();
- MadeChanges = true;
- ++InstRemovedStat;
- } else if (isa<SExtInst>(&Inst)) {
- Value *ExtOp = Inst.getOperand(0);
- if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
- continue;
- const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
- if (!IV.isConstantRange(/*UndefAllowed=*/false))
- continue;
- if (IV.getConstantRange().isAllNonNegative()) {
- auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
- InsertedValues.insert(ZExt);
- Inst.replaceAllUsesWith(ZExt);
- Solver.removeLatticeValueFor(&Inst);
- Inst.eraseFromParent();
- InstReplacedStat++;
- MadeChanges = true;
- }
- }
- }
- return MadeChanges;
- }
- // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
- // and return true if the function was modified.
- static bool runSCCP(Function &F, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
- SCCPSolver Solver(
- DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
- F.getContext());
- // Mark the first block of the function as being executable.
- Solver.markBlockExecutable(&F.front());
- // Mark all arguments to the function as being overdefined.
- for (Argument &AI : F.args())
- Solver.markOverdefined(&AI);
- // Solve for constants.
- bool ResolvedUndefs = true;
- while (ResolvedUndefs) {
- Solver.solve();
- LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
- ResolvedUndefs = Solver.resolvedUndefsIn(F);
- }
- bool MadeChanges = false;
- // If we decided that there are basic blocks that are dead in this function,
- // delete their contents now. Note that we cannot actually delete the blocks,
- // as we cannot modify the CFG of the function.
- SmallPtrSet<Value *, 32> InsertedValues;
- for (BasicBlock &BB : F) {
- if (!Solver.isBlockExecutable(&BB)) {
- LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
- ++NumDeadBlocks;
- NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first;
- MadeChanges = true;
- continue;
- }
- MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
- NumInstRemoved, NumInstReplaced);
- }
- return MadeChanges;
- }
- PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
- const DataLayout &DL = F.getParent()->getDataLayout();
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- if (!runSCCP(F, DL, &TLI))
- return PreservedAnalyses::all();
- auto PA = PreservedAnalyses();
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
- namespace {
- //===--------------------------------------------------------------------===//
- //
- /// SCCP Class - This class uses the SCCPSolver to implement a per-function
- /// Sparse Conditional Constant Propagator.
- ///
- class SCCPLegacyPass : public FunctionPass {
- public:
- // Pass identification, replacement for typeid
- static char ID;
- SCCPLegacyPass() : FunctionPass(ID) {
- initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.setPreservesCFG();
- }
- // runOnFunction - Run the Sparse Conditional Constant Propagation
- // algorithm, and return true if the function was modified.
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- const DataLayout &DL = F.getParent()->getDataLayout();
- const TargetLibraryInfo *TLI =
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- return runSCCP(F, DL, TLI);
- }
- };
- } // end anonymous namespace
- char SCCPLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
- "Sparse Conditional Constant Propagation", false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
- "Sparse Conditional Constant Propagation", false, false)
- // createSCCPPass - This is the public interface to this file.
- FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
- static void findReturnsToZap(Function &F,
- SmallVector<ReturnInst *, 8> &ReturnsToZap,
- SCCPSolver &Solver) {
- // We can only do this if we know that nothing else can call the function.
- if (!Solver.isArgumentTrackedFunction(&F))
- return;
- if (Solver.mustPreserveReturn(&F)) {
- LLVM_DEBUG(
- dbgs()
- << "Can't zap returns of the function : " << F.getName()
- << " due to present musttail or \"clang.arc.attachedcall\" call of "
- "it\n");
- return;
- }
- assert(
- all_of(F.users(),
- [&Solver](User *U) {
- if (isa<Instruction>(U) &&
- !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
- return true;
- // Non-callsite uses are not impacted by zapping. Also, constant
- // uses (like blockaddresses) could stuck around, without being
- // used in the underlying IR, meaning we do not have lattice
- // values for them.
- if (!isa<CallBase>(U))
- return true;
- if (U->getType()->isStructTy()) {
- return all_of(Solver.getStructLatticeValueFor(U),
- [](const ValueLatticeElement &LV) {
- return !isOverdefined(LV);
- });
- }
- return !isOverdefined(Solver.getLatticeValueFor(U));
- }) &&
- "We can only zap functions where all live users have a concrete value");
- for (BasicBlock &BB : F) {
- if (CallInst *CI = BB.getTerminatingMustTailCall()) {
- LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
- << "musttail call : " << *CI << "\n");
- (void)CI;
- return;
- }
- if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
- if (!isa<UndefValue>(RI->getOperand(0)))
- ReturnsToZap.push_back(RI);
- }
- }
- static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB,
- DomTreeUpdater &DTU,
- BasicBlock *&NewUnreachableBB) {
- SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
- bool HasNonFeasibleEdges = false;
- for (BasicBlock *Succ : successors(BB)) {
- if (Solver.isEdgeFeasible(BB, Succ))
- FeasibleSuccessors.insert(Succ);
- else
- HasNonFeasibleEdges = true;
- }
- // All edges feasible, nothing to do.
- if (!HasNonFeasibleEdges)
- return false;
- // SCCP can only determine non-feasible edges for br, switch and indirectbr.
- Instruction *TI = BB->getTerminator();
- assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
- isa<IndirectBrInst>(TI)) &&
- "Terminator must be a br, switch or indirectbr");
- if (FeasibleSuccessors.size() == 1) {
- // Replace with an unconditional branch to the only feasible successor.
- BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- bool HaveSeenOnlyFeasibleSuccessor = false;
- for (BasicBlock *Succ : successors(BB)) {
- if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
- // Don't remove the edge to the only feasible successor the first time
- // we see it. We still do need to remove any multi-edges to it though.
- HaveSeenOnlyFeasibleSuccessor = true;
- continue;
- }
- Succ->removePredecessor(BB);
- Updates.push_back({DominatorTree::Delete, BB, Succ});
- }
- BranchInst::Create(OnlyFeasibleSuccessor, BB);
- TI->eraseFromParent();
- DTU.applyUpdatesPermissive(Updates);
- } else if (FeasibleSuccessors.size() > 1) {
- SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
- SmallVector<DominatorTree::UpdateType, 8> Updates;
- // If the default destination is unfeasible it will never be taken. Replace
- // it with a new block with a single Unreachable instruction.
- BasicBlock *DefaultDest = SI->getDefaultDest();
- if (!FeasibleSuccessors.contains(DefaultDest)) {
- if (!NewUnreachableBB) {
- NewUnreachableBB =
- BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
- DefaultDest->getParent(), DefaultDest);
- new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
- }
- SI->setDefaultDest(NewUnreachableBB);
- Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
- Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
- }
- for (auto CI = SI->case_begin(); CI != SI->case_end();) {
- if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
- ++CI;
- continue;
- }
- BasicBlock *Succ = CI->getCaseSuccessor();
- Succ->removePredecessor(BB);
- Updates.push_back({DominatorTree::Delete, BB, Succ});
- SI.removeCase(CI);
- // Don't increment CI, as we removed a case.
- }
- DTU.applyUpdatesPermissive(Updates);
- } else {
- llvm_unreachable("Must have at least one feasible successor");
- }
- return true;
- }
- bool llvm::runIPSCCP(
- Module &M, const DataLayout &DL,
- std::function<const TargetLibraryInfo &(Function &)> GetTLI,
- function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
- SCCPSolver Solver(DL, GetTLI, M.getContext());
- // Loop over all functions, marking arguments to those with their addresses
- // taken or that are external as overdefined.
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
- Solver.addAnalysis(F, getAnalysis(F));
- // Determine if we can track the function's return values. If so, add the
- // function to the solver's set of return-tracked functions.
- if (canTrackReturnsInterprocedurally(&F))
- Solver.addTrackedFunction(&F);
- // Determine if we can track the function's arguments. If so, add the
- // function to the solver's set of argument-tracked functions.
- if (canTrackArgumentsInterprocedurally(&F)) {
- Solver.addArgumentTrackedFunction(&F);
- continue;
- }
- // Assume the function is called.
- Solver.markBlockExecutable(&F.front());
- // Assume nothing about the incoming arguments.
- for (Argument &AI : F.args())
- Solver.markOverdefined(&AI);
- }
- // Determine if we can track any of the module's global variables. If so, add
- // the global variables we can track to the solver's set of tracked global
- // variables.
- for (GlobalVariable &G : M.globals()) {
- G.removeDeadConstantUsers();
- if (canTrackGlobalVariableInterprocedurally(&G))
- Solver.trackValueOfGlobalVariable(&G);
- }
- // Solve for constants.
- bool ResolvedUndefs = true;
- Solver.solve();
- while (ResolvedUndefs) {
- LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
- ResolvedUndefs = false;
- for (Function &F : M) {
- if (Solver.resolvedUndefsIn(F))
- ResolvedUndefs = true;
- }
- if (ResolvedUndefs)
- Solver.solve();
- }
- bool MadeChanges = false;
- // Iterate over all of the instructions in the module, replacing them with
- // constants if we have found them to be of constant values.
- for (Function &F : M) {
- if (F.isDeclaration())
- continue;
- SmallVector<BasicBlock *, 512> BlocksToErase;
- if (Solver.isBlockExecutable(&F.front())) {
- bool ReplacedPointerArg = false;
- for (Argument &Arg : F.args()) {
- if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) {
- ReplacedPointerArg |= Arg.getType()->isPointerTy();
- ++IPNumArgsElimed;
- }
- }
- // If we replaced an argument, the argmemonly and
- // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove
- // them from both the function and callsites.
- if (ReplacedPointerArg) {
- AttributeMask AttributesToRemove;
- AttributesToRemove.addAttribute(Attribute::ArgMemOnly);
- AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
- F.removeFnAttrs(AttributesToRemove);
- for (User *U : F.users()) {
- auto *CB = dyn_cast<CallBase>(U);
- if (!CB || CB->getCalledFunction() != &F)
- continue;
- CB->removeFnAttrs(AttributesToRemove);
- }
- }
- MadeChanges |= ReplacedPointerArg;
- }
- SmallPtrSet<Value *, 32> InsertedValues;
- for (BasicBlock &BB : F) {
- if (!Solver.isBlockExecutable(&BB)) {
- LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
- ++NumDeadBlocks;
- MadeChanges = true;
- if (&BB != &F.front())
- BlocksToErase.push_back(&BB);
- continue;
- }
- MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
- IPNumInstRemoved, IPNumInstReplaced);
- }
- DomTreeUpdater DTU = Solver.getDTU(F);
- // Change dead blocks to unreachable. We do it after replacing constants
- // in all executable blocks, because changeToUnreachable may remove PHI
- // nodes in executable blocks we found values for. The function's entry
- // block is not part of BlocksToErase, so we have to handle it separately.
- for (BasicBlock *BB : BlocksToErase) {
- NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(),
- /*PreserveLCSSA=*/false, &DTU);
- }
- if (!Solver.isBlockExecutable(&F.front()))
- NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
- /*PreserveLCSSA=*/false, &DTU);
- BasicBlock *NewUnreachableBB = nullptr;
- for (BasicBlock &BB : F)
- MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU, NewUnreachableBB);
- for (BasicBlock *DeadBB : BlocksToErase)
- DTU.deleteBB(DeadBB);
- for (BasicBlock &BB : F) {
- for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
- if (Solver.getPredicateInfoFor(&Inst)) {
- if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) {
- if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
- Value *Op = II->getOperand(0);
- Inst.replaceAllUsesWith(Op);
- Inst.eraseFromParent();
- }
- }
- }
- }
- }
- }
- // If we inferred constant or undef return values for a function, we replaced
- // all call uses with the inferred value. This means we don't need to bother
- // actually returning anything from the function. Replace all return
- // instructions with return undef.
- //
- // Do this in two stages: first identify the functions we should process, then
- // actually zap their returns. This is important because we can only do this
- // if the address of the function isn't taken. In cases where a return is the
- // last use of a function, the order of processing functions would affect
- // whether other functions are optimizable.
- SmallVector<ReturnInst*, 8> ReturnsToZap;
- for (const auto &I : Solver.getTrackedRetVals()) {
- Function *F = I.first;
- const ValueLatticeElement &ReturnValue = I.second;
- // If there is a known constant range for the return value, add !range
- // metadata to the function's call sites.
- if (ReturnValue.isConstantRange() &&
- !ReturnValue.getConstantRange().isSingleElement()) {
- // Do not add range metadata if the return value may include undef.
- if (ReturnValue.isConstantRangeIncludingUndef())
- continue;
- auto &CR = ReturnValue.getConstantRange();
- for (User *User : F->users()) {
- auto *CB = dyn_cast<CallBase>(User);
- if (!CB || CB->getCalledFunction() != F)
- continue;
- // Limit to cases where the return value is guaranteed to be neither
- // poison nor undef. Poison will be outside any range and currently
- // values outside of the specified range cause immediate undefined
- // behavior.
- if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
- continue;
- // Do not touch existing metadata for now.
- // TODO: We should be able to take the intersection of the existing
- // metadata and the inferred range.
- if (CB->getMetadata(LLVMContext::MD_range))
- continue;
- LLVMContext &Context = CB->getParent()->getContext();
- Metadata *RangeMD[] = {
- ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
- ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
- CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
- }
- continue;
- }
- if (F->getReturnType()->isVoidTy())
- continue;
- if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
- findReturnsToZap(*F, ReturnsToZap, Solver);
- }
- for (auto F : Solver.getMRVFunctionsTracked()) {
- assert(F->getReturnType()->isStructTy() &&
- "The return type should be a struct");
- StructType *STy = cast<StructType>(F->getReturnType());
- if (Solver.isStructLatticeConstant(F, STy))
- findReturnsToZap(*F, ReturnsToZap, Solver);
- }
- // Zap all returns which we've identified as zap to change.
- SmallSetVector<Function *, 8> FuncZappedReturn;
- for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
- Function *F = ReturnsToZap[i]->getParent()->getParent();
- ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
- // Record all functions that are zapped.
- FuncZappedReturn.insert(F);
- }
- // Remove the returned attribute for zapped functions and the
- // corresponding call sites.
- for (Function *F : FuncZappedReturn) {
- for (Argument &A : F->args())
- F->removeParamAttr(A.getArgNo(), Attribute::Returned);
- for (Use &U : F->uses()) {
- // Skip over blockaddr users.
- if (isa<BlockAddress>(U.getUser()))
- continue;
- CallBase *CB = cast<CallBase>(U.getUser());
- for (Use &Arg : CB->args())
- CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
- }
- }
- // If we inferred constant or undef values for globals variables, we can
- // delete the global and any stores that remain to it.
- for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
- GlobalVariable *GV = I.first;
- if (isOverdefined(I.second))
- continue;
- LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
- << "' is constant!\n");
- while (!GV->use_empty()) {
- StoreInst *SI = cast<StoreInst>(GV->user_back());
- SI->eraseFromParent();
- MadeChanges = true;
- }
- M.getGlobalList().erase(GV);
- ++IPNumGlobalConst;
- }
- return MadeChanges;
- }
|