123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281 |
- //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file implements the new LLVM's Global Value Numbering pass.
- /// GVN partitions values computed by a function into congruence classes.
- /// Values ending up in the same congruence class are guaranteed to be the same
- /// for every execution of the program. In that respect, congruency is a
- /// compile-time approximation of equivalence of values at runtime.
- /// The algorithm implemented here uses a sparse formulation and it's based
- /// on the ideas described in the paper:
- /// "A Sparse Algorithm for Predicated Global Value Numbering" from
- /// Karthik Gargi.
- ///
- /// A brief overview of the algorithm: The algorithm is essentially the same as
- /// the standard RPO value numbering algorithm (a good reference is the paper
- /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
- /// The RPO algorithm proceeds, on every iteration, to process every reachable
- /// block and every instruction in that block. This is because the standard RPO
- /// algorithm does not track what things have the same value number, it only
- /// tracks what the value number of a given operation is (the mapping is
- /// operation -> value number). Thus, when a value number of an operation
- /// changes, it must reprocess everything to ensure all uses of a value number
- /// get updated properly. In constrast, the sparse algorithm we use *also*
- /// tracks what operations have a given value number (IE it also tracks the
- /// reverse mapping from value number -> operations with that value number), so
- /// that it only needs to reprocess the instructions that are affected when
- /// something's value number changes. The vast majority of complexity and code
- /// in this file is devoted to tracking what value numbers could change for what
- /// instructions when various things happen. The rest of the algorithm is
- /// devoted to performing symbolic evaluation, forward propagation, and
- /// simplification of operations based on the value numbers deduced so far
- ///
- /// In order to make the GVN mostly-complete, we use a technique derived from
- /// "Detection of Redundant Expressions: A Complete and Polynomial-time
- /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
- /// based GVN algorithms is related to their inability to detect equivalence
- /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
- /// We resolve this issue by generating the equivalent "phi of ops" form for
- /// each op of phis we see, in a way that only takes polynomial time to resolve.
- ///
- /// We also do not perform elimination by using any published algorithm. All
- /// published algorithms are O(Instructions). Instead, we use a technique that
- /// is O(number of operations with the same value number), enabling us to skip
- /// trying to eliminate things that have unique value numbers.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/NewGVN.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DenseMapInfo.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/GraphTraits.h"
- #include "llvm/ADT/Hashing.h"
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/SparseBitVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/iterator_range.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CFGPrinter.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/ArrayRecycler.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/DebugCounter.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/PointerLikeTypeTraits.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Scalar/GVNExpression.h"
- #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PredicateInfo.h"
- #include "llvm/Transforms/Utils/VNCoercion.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <map>
- #include <memory>
- #include <set>
- #include <string>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace llvm::GVNExpression;
- using namespace llvm::VNCoercion;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "newgvn"
- STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
- STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
- STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
- STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
- STATISTIC(NumGVNMaxIterations,
- "Maximum Number of iterations it took to converge GVN");
- STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
- STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
- STATISTIC(NumGVNAvoidedSortedLeaderChanges,
- "Number of avoided sorted leader changes");
- STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
- STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
- STATISTIC(NumGVNPHIOfOpsEliminations,
- "Number of things eliminated using PHI of ops");
- DEBUG_COUNTER(VNCounter, "newgvn-vn",
- "Controls which instructions are value numbered");
- DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
- "Controls which instructions we create phi of ops for");
- // Currently store defining access refinement is too slow due to basicaa being
- // egregiously slow. This flag lets us keep it working while we work on this
- // issue.
- static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
- cl::init(false), cl::Hidden);
- /// Currently, the generation "phi of ops" can result in correctness issues.
- static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
- cl::Hidden);
- //===----------------------------------------------------------------------===//
- // GVN Pass
- //===----------------------------------------------------------------------===//
- // Anchor methods.
- namespace llvm {
- namespace GVNExpression {
- Expression::~Expression() = default;
- BasicExpression::~BasicExpression() = default;
- CallExpression::~CallExpression() = default;
- LoadExpression::~LoadExpression() = default;
- StoreExpression::~StoreExpression() = default;
- AggregateValueExpression::~AggregateValueExpression() = default;
- PHIExpression::~PHIExpression() = default;
- } // end namespace GVNExpression
- } // end namespace llvm
- namespace {
- // Tarjan's SCC finding algorithm with Nuutila's improvements
- // SCCIterator is actually fairly complex for the simple thing we want.
- // It also wants to hand us SCC's that are unrelated to the phi node we ask
- // about, and have us process them there or risk redoing work.
- // Graph traits over a filter iterator also doesn't work that well here.
- // This SCC finder is specialized to walk use-def chains, and only follows
- // instructions,
- // not generic values (arguments, etc).
- struct TarjanSCC {
- TarjanSCC() : Components(1) {}
- void Start(const Instruction *Start) {
- if (Root.lookup(Start) == 0)
- FindSCC(Start);
- }
- const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
- unsigned ComponentID = ValueToComponent.lookup(V);
- assert(ComponentID > 0 &&
- "Asking for a component for a value we never processed");
- return Components[ComponentID];
- }
- private:
- void FindSCC(const Instruction *I) {
- Root[I] = ++DFSNum;
- // Store the DFS Number we had before it possibly gets incremented.
- unsigned int OurDFS = DFSNum;
- for (auto &Op : I->operands()) {
- if (auto *InstOp = dyn_cast<Instruction>(Op)) {
- if (Root.lookup(Op) == 0)
- FindSCC(InstOp);
- if (!InComponent.count(Op))
- Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
- }
- }
- // See if we really were the root of a component, by seeing if we still have
- // our DFSNumber. If we do, we are the root of the component, and we have
- // completed a component. If we do not, we are not the root of a component,
- // and belong on the component stack.
- if (Root.lookup(I) == OurDFS) {
- unsigned ComponentID = Components.size();
- Components.resize(Components.size() + 1);
- auto &Component = Components.back();
- Component.insert(I);
- LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
- InComponent.insert(I);
- ValueToComponent[I] = ComponentID;
- // Pop a component off the stack and label it.
- while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
- auto *Member = Stack.back();
- LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
- Component.insert(Member);
- InComponent.insert(Member);
- ValueToComponent[Member] = ComponentID;
- Stack.pop_back();
- }
- } else {
- // Part of a component, push to stack
- Stack.push_back(I);
- }
- }
- unsigned int DFSNum = 1;
- SmallPtrSet<const Value *, 8> InComponent;
- DenseMap<const Value *, unsigned int> Root;
- SmallVector<const Value *, 8> Stack;
- // Store the components as vector of ptr sets, because we need the topo order
- // of SCC's, but not individual member order
- SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
- DenseMap<const Value *, unsigned> ValueToComponent;
- };
- // Congruence classes represent the set of expressions/instructions
- // that are all the same *during some scope in the function*.
- // That is, because of the way we perform equality propagation, and
- // because of memory value numbering, it is not correct to assume
- // you can willy-nilly replace any member with any other at any
- // point in the function.
- //
- // For any Value in the Member set, it is valid to replace any dominated member
- // with that Value.
- //
- // Every congruence class has a leader, and the leader is used to symbolize
- // instructions in a canonical way (IE every operand of an instruction that is a
- // member of the same congruence class will always be replaced with leader
- // during symbolization). To simplify symbolization, we keep the leader as a
- // constant if class can be proved to be a constant value. Otherwise, the
- // leader is the member of the value set with the smallest DFS number. Each
- // congruence class also has a defining expression, though the expression may be
- // null. If it exists, it can be used for forward propagation and reassociation
- // of values.
- // For memory, we also track a representative MemoryAccess, and a set of memory
- // members for MemoryPhis (which have no real instructions). Note that for
- // memory, it seems tempting to try to split the memory members into a
- // MemoryCongruenceClass or something. Unfortunately, this does not work
- // easily. The value numbering of a given memory expression depends on the
- // leader of the memory congruence class, and the leader of memory congruence
- // class depends on the value numbering of a given memory expression. This
- // leads to wasted propagation, and in some cases, missed optimization. For
- // example: If we had value numbered two stores together before, but now do not,
- // we move them to a new value congruence class. This in turn will move at one
- // of the memorydefs to a new memory congruence class. Which in turn, affects
- // the value numbering of the stores we just value numbered (because the memory
- // congruence class is part of the value number). So while theoretically
- // possible to split them up, it turns out to be *incredibly* complicated to get
- // it to work right, because of the interdependency. While structurally
- // slightly messier, it is algorithmically much simpler and faster to do what we
- // do here, and track them both at once in the same class.
- // Note: The default iterators for this class iterate over values
- class CongruenceClass {
- public:
- using MemberType = Value;
- using MemberSet = SmallPtrSet<MemberType *, 4>;
- using MemoryMemberType = MemoryPhi;
- using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
- explicit CongruenceClass(unsigned ID) : ID(ID) {}
- CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
- : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
- unsigned getID() const { return ID; }
- // True if this class has no members left. This is mainly used for assertion
- // purposes, and for skipping empty classes.
- bool isDead() const {
- // If it's both dead from a value perspective, and dead from a memory
- // perspective, it's really dead.
- return empty() && memory_empty();
- }
- // Leader functions
- Value *getLeader() const { return RepLeader; }
- void setLeader(Value *Leader) { RepLeader = Leader; }
- const std::pair<Value *, unsigned int> &getNextLeader() const {
- return NextLeader;
- }
- void resetNextLeader() { NextLeader = {nullptr, ~0}; }
- void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
- if (LeaderPair.second < NextLeader.second)
- NextLeader = LeaderPair;
- }
- Value *getStoredValue() const { return RepStoredValue; }
- void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
- const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
- void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
- // Forward propagation info
- const Expression *getDefiningExpr() const { return DefiningExpr; }
- // Value member set
- bool empty() const { return Members.empty(); }
- unsigned size() const { return Members.size(); }
- MemberSet::const_iterator begin() const { return Members.begin(); }
- MemberSet::const_iterator end() const { return Members.end(); }
- void insert(MemberType *M) { Members.insert(M); }
- void erase(MemberType *M) { Members.erase(M); }
- void swap(MemberSet &Other) { Members.swap(Other); }
- // Memory member set
- bool memory_empty() const { return MemoryMembers.empty(); }
- unsigned memory_size() const { return MemoryMembers.size(); }
- MemoryMemberSet::const_iterator memory_begin() const {
- return MemoryMembers.begin();
- }
- MemoryMemberSet::const_iterator memory_end() const {
- return MemoryMembers.end();
- }
- iterator_range<MemoryMemberSet::const_iterator> memory() const {
- return make_range(memory_begin(), memory_end());
- }
- void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
- void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
- // Store count
- unsigned getStoreCount() const { return StoreCount; }
- void incStoreCount() { ++StoreCount; }
- void decStoreCount() {
- assert(StoreCount != 0 && "Store count went negative");
- --StoreCount;
- }
- // True if this class has no memory members.
- bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
- // Return true if two congruence classes are equivalent to each other. This
- // means that every field but the ID number and the dead field are equivalent.
- bool isEquivalentTo(const CongruenceClass *Other) const {
- if (!Other)
- return false;
- if (this == Other)
- return true;
- if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
- std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
- Other->RepMemoryAccess))
- return false;
- if (DefiningExpr != Other->DefiningExpr)
- if (!DefiningExpr || !Other->DefiningExpr ||
- *DefiningExpr != *Other->DefiningExpr)
- return false;
- if (Members.size() != Other->Members.size())
- return false;
- return llvm::set_is_subset(Members, Other->Members);
- }
- private:
- unsigned ID;
- // Representative leader.
- Value *RepLeader = nullptr;
- // The most dominating leader after our current leader, because the member set
- // is not sorted and is expensive to keep sorted all the time.
- std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
- // If this is represented by a store, the value of the store.
- Value *RepStoredValue = nullptr;
- // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
- // access.
- const MemoryAccess *RepMemoryAccess = nullptr;
- // Defining Expression.
- const Expression *DefiningExpr = nullptr;
- // Actual members of this class.
- MemberSet Members;
- // This is the set of MemoryPhis that exist in the class. MemoryDefs and
- // MemoryUses have real instructions representing them, so we only need to
- // track MemoryPhis here.
- MemoryMemberSet MemoryMembers;
- // Number of stores in this congruence class.
- // This is used so we can detect store equivalence changes properly.
- int StoreCount = 0;
- };
- } // end anonymous namespace
- namespace llvm {
- struct ExactEqualsExpression {
- const Expression &E;
- explicit ExactEqualsExpression(const Expression &E) : E(E) {}
- hash_code getComputedHash() const { return E.getComputedHash(); }
- bool operator==(const Expression &Other) const {
- return E.exactlyEquals(Other);
- }
- };
- template <> struct DenseMapInfo<const Expression *> {
- static const Expression *getEmptyKey() {
- auto Val = static_cast<uintptr_t>(-1);
- Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
- return reinterpret_cast<const Expression *>(Val);
- }
- static const Expression *getTombstoneKey() {
- auto Val = static_cast<uintptr_t>(~1U);
- Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
- return reinterpret_cast<const Expression *>(Val);
- }
- static unsigned getHashValue(const Expression *E) {
- return E->getComputedHash();
- }
- static unsigned getHashValue(const ExactEqualsExpression &E) {
- return E.getComputedHash();
- }
- static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
- if (RHS == getTombstoneKey() || RHS == getEmptyKey())
- return false;
- return LHS == *RHS;
- }
- static bool isEqual(const Expression *LHS, const Expression *RHS) {
- if (LHS == RHS)
- return true;
- if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
- LHS == getEmptyKey() || RHS == getEmptyKey())
- return false;
- // Compare hashes before equality. This is *not* what the hashtable does,
- // since it is computing it modulo the number of buckets, whereas we are
- // using the full hash keyspace. Since the hashes are precomputed, this
- // check is *much* faster than equality.
- if (LHS->getComputedHash() != RHS->getComputedHash())
- return false;
- return *LHS == *RHS;
- }
- };
- } // end namespace llvm
- namespace {
- class NewGVN {
- Function &F;
- DominatorTree *DT = nullptr;
- const TargetLibraryInfo *TLI = nullptr;
- AliasAnalysis *AA = nullptr;
- MemorySSA *MSSA = nullptr;
- MemorySSAWalker *MSSAWalker = nullptr;
- AssumptionCache *AC = nullptr;
- const DataLayout &DL;
- std::unique_ptr<PredicateInfo> PredInfo;
- // These are the only two things the create* functions should have
- // side-effects on due to allocating memory.
- mutable BumpPtrAllocator ExpressionAllocator;
- mutable ArrayRecycler<Value *> ArgRecycler;
- mutable TarjanSCC SCCFinder;
- const SimplifyQuery SQ;
- // Number of function arguments, used by ranking
- unsigned int NumFuncArgs = 0;
- // RPOOrdering of basic blocks
- DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
- // Congruence class info.
- // This class is called INITIAL in the paper. It is the class everything
- // startsout in, and represents any value. Being an optimistic analysis,
- // anything in the TOP class has the value TOP, which is indeterminate and
- // equivalent to everything.
- CongruenceClass *TOPClass = nullptr;
- std::vector<CongruenceClass *> CongruenceClasses;
- unsigned NextCongruenceNum = 0;
- // Value Mappings.
- DenseMap<Value *, CongruenceClass *> ValueToClass;
- DenseMap<Value *, const Expression *> ValueToExpression;
- // Value PHI handling, used to make equivalence between phi(op, op) and
- // op(phi, phi).
- // These mappings just store various data that would normally be part of the
- // IR.
- SmallPtrSet<const Instruction *, 8> PHINodeUses;
- DenseMap<const Value *, bool> OpSafeForPHIOfOps;
- // Map a temporary instruction we created to a parent block.
- DenseMap<const Value *, BasicBlock *> TempToBlock;
- // Map between the already in-program instructions and the temporary phis we
- // created that they are known equivalent to.
- DenseMap<const Value *, PHINode *> RealToTemp;
- // In order to know when we should re-process instructions that have
- // phi-of-ops, we track the set of expressions that they needed as
- // leaders. When we discover new leaders for those expressions, we process the
- // associated phi-of-op instructions again in case they have changed. The
- // other way they may change is if they had leaders, and those leaders
- // disappear. However, at the point they have leaders, there are uses of the
- // relevant operands in the created phi node, and so they will get reprocessed
- // through the normal user marking we perform.
- mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
- DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
- ExpressionToPhiOfOps;
- // Map from temporary operation to MemoryAccess.
- DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
- // Set of all temporary instructions we created.
- // Note: This will include instructions that were just created during value
- // numbering. The way to test if something is using them is to check
- // RealToTemp.
- DenseSet<Instruction *> AllTempInstructions;
- // This is the set of instructions to revisit on a reachability change. At
- // the end of the main iteration loop it will contain at least all the phi of
- // ops instructions that will be changed to phis, as well as regular phis.
- // During the iteration loop, it may contain other things, such as phi of ops
- // instructions that used edge reachability to reach a result, and so need to
- // be revisited when the edge changes, independent of whether the phi they
- // depended on changes.
- DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
- // Mapping from predicate info we used to the instructions we used it with.
- // In order to correctly ensure propagation, we must keep track of what
- // comparisons we used, so that when the values of the comparisons change, we
- // propagate the information to the places we used the comparison.
- mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
- PredicateToUsers;
- // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
- // stores, we no longer can rely solely on the def-use chains of MemorySSA.
- mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
- MemoryToUsers;
- // A table storing which memorydefs/phis represent a memory state provably
- // equivalent to another memory state.
- // We could use the congruence class machinery, but the MemoryAccess's are
- // abstract memory states, so they can only ever be equivalent to each other,
- // and not to constants, etc.
- DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
- // We could, if we wanted, build MemoryPhiExpressions and
- // MemoryVariableExpressions, etc, and value number them the same way we value
- // number phi expressions. For the moment, this seems like overkill. They
- // can only exist in one of three states: they can be TOP (equal to
- // everything), Equivalent to something else, or unique. Because we do not
- // create expressions for them, we need to simulate leader change not just
- // when they change class, but when they change state. Note: We can do the
- // same thing for phis, and avoid having phi expressions if we wanted, We
- // should eventually unify in one direction or the other, so this is a little
- // bit of an experiment in which turns out easier to maintain.
- enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
- DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
- enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
- mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
- // Expression to class mapping.
- using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
- ExpressionClassMap ExpressionToClass;
- // We have a single expression that represents currently DeadExpressions.
- // For dead expressions we can prove will stay dead, we mark them with
- // DFS number zero. However, it's possible in the case of phi nodes
- // for us to assume/prove all arguments are dead during fixpointing.
- // We use DeadExpression for that case.
- DeadExpression *SingletonDeadExpression = nullptr;
- // Which values have changed as a result of leader changes.
- SmallPtrSet<Value *, 8> LeaderChanges;
- // Reachability info.
- using BlockEdge = BasicBlockEdge;
- DenseSet<BlockEdge> ReachableEdges;
- SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
- // This is a bitvector because, on larger functions, we may have
- // thousands of touched instructions at once (entire blocks,
- // instructions with hundreds of uses, etc). Even with optimization
- // for when we mark whole blocks as touched, when this was a
- // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
- // the time in GVN just managing this list. The bitvector, on the
- // other hand, efficiently supports test/set/clear of both
- // individual and ranges, as well as "find next element" This
- // enables us to use it as a worklist with essentially 0 cost.
- BitVector TouchedInstructions;
- DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
- mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
- #ifndef NDEBUG
- // Debugging for how many times each block and instruction got processed.
- DenseMap<const Value *, unsigned> ProcessedCount;
- #endif
- // DFS info.
- // This contains a mapping from Instructions to DFS numbers.
- // The numbering starts at 1. An instruction with DFS number zero
- // means that the instruction is dead.
- DenseMap<const Value *, unsigned> InstrDFS;
- // This contains the mapping DFS numbers to instructions.
- SmallVector<Value *, 32> DFSToInstr;
- // Deletion info.
- SmallPtrSet<Instruction *, 8> InstructionsToErase;
- public:
- NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
- TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
- const DataLayout &DL)
- : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
- PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
- SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
- /*CanUseUndef=*/false) {}
- bool runGVN();
- private:
- /// Helper struct return a Expression with an optional extra dependency.
- struct ExprResult {
- const Expression *Expr;
- Value *ExtraDep;
- const PredicateBase *PredDep;
- ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
- const PredicateBase *PredDep = nullptr)
- : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
- ExprResult(const ExprResult &) = delete;
- ExprResult(ExprResult &&Other)
- : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
- Other.Expr = nullptr;
- Other.ExtraDep = nullptr;
- Other.PredDep = nullptr;
- }
- ExprResult &operator=(const ExprResult &Other) = delete;
- ExprResult &operator=(ExprResult &&Other) = delete;
- ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
- operator bool() const { return Expr; }
- static ExprResult none() { return {nullptr, nullptr, nullptr}; }
- static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
- return {Expr, ExtraDep, nullptr};
- }
- static ExprResult some(const Expression *Expr,
- const PredicateBase *PredDep) {
- return {Expr, nullptr, PredDep};
- }
- static ExprResult some(const Expression *Expr, Value *ExtraDep,
- const PredicateBase *PredDep) {
- return {Expr, ExtraDep, PredDep};
- }
- };
- // Expression handling.
- ExprResult createExpression(Instruction *) const;
- const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
- Instruction *) const;
- // Our canonical form for phi arguments is a pair of incoming value, incoming
- // basic block.
- using ValPair = std::pair<Value *, BasicBlock *>;
- PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
- BasicBlock *, bool &HasBackEdge,
- bool &OriginalOpsConstant) const;
- const DeadExpression *createDeadExpression() const;
- const VariableExpression *createVariableExpression(Value *) const;
- const ConstantExpression *createConstantExpression(Constant *) const;
- const Expression *createVariableOrConstant(Value *V) const;
- const UnknownExpression *createUnknownExpression(Instruction *) const;
- const StoreExpression *createStoreExpression(StoreInst *,
- const MemoryAccess *) const;
- LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
- const MemoryAccess *) const;
- const CallExpression *createCallExpression(CallInst *,
- const MemoryAccess *) const;
- const AggregateValueExpression *
- createAggregateValueExpression(Instruction *) const;
- bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
- // Congruence class handling.
- CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
- auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
- CongruenceClasses.emplace_back(result);
- return result;
- }
- CongruenceClass *createMemoryClass(MemoryAccess *MA) {
- auto *CC = createCongruenceClass(nullptr, nullptr);
- CC->setMemoryLeader(MA);
- return CC;
- }
- CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
- auto *CC = getMemoryClass(MA);
- if (CC->getMemoryLeader() != MA)
- CC = createMemoryClass(MA);
- return CC;
- }
- CongruenceClass *createSingletonCongruenceClass(Value *Member) {
- CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
- CClass->insert(Member);
- ValueToClass[Member] = CClass;
- return CClass;
- }
- void initializeCongruenceClasses(Function &F);
- const Expression *makePossiblePHIOfOps(Instruction *,
- SmallPtrSetImpl<Value *> &);
- Value *findLeaderForInst(Instruction *ValueOp,
- SmallPtrSetImpl<Value *> &Visited,
- MemoryAccess *MemAccess, Instruction *OrigInst,
- BasicBlock *PredBB);
- bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
- SmallPtrSetImpl<const Value *> &Visited,
- SmallVectorImpl<Instruction *> &Worklist);
- bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
- SmallPtrSetImpl<const Value *> &);
- void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
- void removePhiOfOps(Instruction *I, PHINode *PHITemp);
- // Value number an Instruction or MemoryPhi.
- void valueNumberMemoryPhi(MemoryPhi *);
- void valueNumberInstruction(Instruction *);
- // Symbolic evaluation.
- ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
- ExprResult performSymbolicEvaluation(Value *,
- SmallPtrSetImpl<Value *> &) const;
- const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
- Instruction *,
- MemoryAccess *) const;
- const Expression *performSymbolicLoadEvaluation(Instruction *) const;
- const Expression *performSymbolicStoreEvaluation(Instruction *) const;
- ExprResult performSymbolicCallEvaluation(Instruction *) const;
- void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
- const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
- Instruction *I,
- BasicBlock *PHIBlock) const;
- const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
- ExprResult performSymbolicCmpEvaluation(Instruction *) const;
- ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
- // Congruence finding.
- bool someEquivalentDominates(const Instruction *, const Instruction *) const;
- Value *lookupOperandLeader(Value *) const;
- CongruenceClass *getClassForExpression(const Expression *E) const;
- void performCongruenceFinding(Instruction *, const Expression *);
- void moveValueToNewCongruenceClass(Instruction *, const Expression *,
- CongruenceClass *, CongruenceClass *);
- void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
- CongruenceClass *, CongruenceClass *);
- Value *getNextValueLeader(CongruenceClass *) const;
- const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
- bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
- CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
- const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
- bool isMemoryAccessTOP(const MemoryAccess *) const;
- // Ranking
- unsigned int getRank(const Value *) const;
- bool shouldSwapOperands(const Value *, const Value *) const;
- bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
- const IntrinsicInst *I) const;
- // Reachability handling.
- void updateReachableEdge(BasicBlock *, BasicBlock *);
- void processOutgoingEdges(Instruction *, BasicBlock *);
- Value *findConditionEquivalence(Value *) const;
- // Elimination.
- struct ValueDFS;
- void convertClassToDFSOrdered(const CongruenceClass &,
- SmallVectorImpl<ValueDFS> &,
- DenseMap<const Value *, unsigned int> &,
- SmallPtrSetImpl<Instruction *> &) const;
- void convertClassToLoadsAndStores(const CongruenceClass &,
- SmallVectorImpl<ValueDFS> &) const;
- bool eliminateInstructions(Function &);
- void replaceInstruction(Instruction *, Value *);
- void markInstructionForDeletion(Instruction *);
- void deleteInstructionsInBlock(BasicBlock *);
- Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
- const BasicBlock *) const;
- // Various instruction touch utilities
- template <typename Map, typename KeyType>
- void touchAndErase(Map &, const KeyType &);
- void markUsersTouched(Value *);
- void markMemoryUsersTouched(const MemoryAccess *);
- void markMemoryDefTouched(const MemoryAccess *);
- void markPredicateUsersTouched(Instruction *);
- void markValueLeaderChangeTouched(CongruenceClass *CC);
- void markMemoryLeaderChangeTouched(CongruenceClass *CC);
- void markPhiOfOpsChanged(const Expression *E);
- void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
- void addAdditionalUsers(Value *To, Value *User) const;
- void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
- // Main loop of value numbering
- void iterateTouchedInstructions();
- // Utilities.
- void cleanupTables();
- std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
- void updateProcessedCount(const Value *V);
- void verifyMemoryCongruency() const;
- void verifyIterationSettled(Function &F);
- void verifyStoreExpressions() const;
- bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
- const MemoryAccess *, const MemoryAccess *) const;
- BasicBlock *getBlockForValue(Value *V) const;
- void deleteExpression(const Expression *E) const;
- MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
- MemoryPhi *getMemoryAccess(const BasicBlock *) const;
- template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
- unsigned InstrToDFSNum(const Value *V) const {
- assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
- return InstrDFS.lookup(V);
- }
- unsigned InstrToDFSNum(const MemoryAccess *MA) const {
- return MemoryToDFSNum(MA);
- }
- Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
- // Given a MemoryAccess, return the relevant instruction DFS number. Note:
- // This deliberately takes a value so it can be used with Use's, which will
- // auto-convert to Value's but not to MemoryAccess's.
- unsigned MemoryToDFSNum(const Value *MA) const {
- assert(isa<MemoryAccess>(MA) &&
- "This should not be used with instructions");
- return isa<MemoryUseOrDef>(MA)
- ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
- : InstrDFS.lookup(MA);
- }
- bool isCycleFree(const Instruction *) const;
- bool isBackedge(BasicBlock *From, BasicBlock *To) const;
- // Debug counter info. When verifying, we have to reset the value numbering
- // debug counter to the same state it started in to get the same results.
- int64_t StartingVNCounter = 0;
- };
- } // end anonymous namespace
- template <typename T>
- static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
- if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
- return false;
- return LHS.MemoryExpression::equals(RHS);
- }
- bool LoadExpression::equals(const Expression &Other) const {
- return equalsLoadStoreHelper(*this, Other);
- }
- bool StoreExpression::equals(const Expression &Other) const {
- if (!equalsLoadStoreHelper(*this, Other))
- return false;
- // Make sure that store vs store includes the value operand.
- if (const auto *S = dyn_cast<StoreExpression>(&Other))
- if (getStoredValue() != S->getStoredValue())
- return false;
- return true;
- }
- // Determine if the edge From->To is a backedge
- bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
- return From == To ||
- RPOOrdering.lookup(DT->getNode(From)) >=
- RPOOrdering.lookup(DT->getNode(To));
- }
- #ifndef NDEBUG
- static std::string getBlockName(const BasicBlock *B) {
- return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
- }
- #endif
- // Get a MemoryAccess for an instruction, fake or real.
- MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
- auto *Result = MSSA->getMemoryAccess(I);
- return Result ? Result : TempToMemory.lookup(I);
- }
- // Get a MemoryPhi for a basic block. These are all real.
- MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
- return MSSA->getMemoryAccess(BB);
- }
- // Get the basic block from an instruction/memory value.
- BasicBlock *NewGVN::getBlockForValue(Value *V) const {
- if (auto *I = dyn_cast<Instruction>(V)) {
- auto *Parent = I->getParent();
- if (Parent)
- return Parent;
- Parent = TempToBlock.lookup(V);
- assert(Parent && "Every fake instruction should have a block");
- return Parent;
- }
- auto *MP = dyn_cast<MemoryPhi>(V);
- assert(MP && "Should have been an instruction or a MemoryPhi");
- return MP->getBlock();
- }
- // Delete a definitely dead expression, so it can be reused by the expression
- // allocator. Some of these are not in creation functions, so we have to accept
- // const versions.
- void NewGVN::deleteExpression(const Expression *E) const {
- assert(isa<BasicExpression>(E));
- auto *BE = cast<BasicExpression>(E);
- const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
- ExpressionAllocator.Deallocate(E);
- }
- // If V is a predicateinfo copy, get the thing it is a copy of.
- static Value *getCopyOf(const Value *V) {
- if (auto *II = dyn_cast<IntrinsicInst>(V))
- if (II->getIntrinsicID() == Intrinsic::ssa_copy)
- return II->getOperand(0);
- return nullptr;
- }
- // Return true if V is really PN, even accounting for predicateinfo copies.
- static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
- return V == PN || getCopyOf(V) == PN;
- }
- static bool isCopyOfAPHI(const Value *V) {
- auto *CO = getCopyOf(V);
- return CO && isa<PHINode>(CO);
- }
- // Sort PHI Operands into a canonical order. What we use here is an RPO
- // order. The BlockInstRange numbers are generated in an RPO walk of the basic
- // blocks.
- void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
- llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
- return BlockInstRange.lookup(P1.second).first <
- BlockInstRange.lookup(P2.second).first;
- });
- }
- // Return true if V is a value that will always be available (IE can
- // be placed anywhere) in the function. We don't do globals here
- // because they are often worse to put in place.
- static bool alwaysAvailable(Value *V) {
- return isa<Constant>(V) || isa<Argument>(V);
- }
- // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
- // the original instruction we are creating a PHIExpression for (but may not be
- // a phi node). We require, as an invariant, that all the PHIOperands in the
- // same block are sorted the same way. sortPHIOps will sort them into a
- // canonical order.
- PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
- const Instruction *I,
- BasicBlock *PHIBlock,
- bool &HasBackedge,
- bool &OriginalOpsConstant) const {
- unsigned NumOps = PHIOperands.size();
- auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
- E->allocateOperands(ArgRecycler, ExpressionAllocator);
- E->setType(PHIOperands.begin()->first->getType());
- E->setOpcode(Instruction::PHI);
- // Filter out unreachable phi operands.
- auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
- auto *BB = P.second;
- if (auto *PHIOp = dyn_cast<PHINode>(I))
- if (isCopyOfPHI(P.first, PHIOp))
- return false;
- if (!ReachableEdges.count({BB, PHIBlock}))
- return false;
- // Things in TOPClass are equivalent to everything.
- if (ValueToClass.lookup(P.first) == TOPClass)
- return false;
- OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
- HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
- return lookupOperandLeader(P.first) != I;
- });
- std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
- [&](const ValPair &P) -> Value * {
- return lookupOperandLeader(P.first);
- });
- return E;
- }
- // Set basic expression info (Arguments, type, opcode) for Expression
- // E from Instruction I in block B.
- bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
- bool AllConstant = true;
- if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
- E->setType(GEP->getSourceElementType());
- else
- E->setType(I->getType());
- E->setOpcode(I->getOpcode());
- E->allocateOperands(ArgRecycler, ExpressionAllocator);
- // Transform the operand array into an operand leader array, and keep track of
- // whether all members are constant.
- std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
- auto Operand = lookupOperandLeader(O);
- AllConstant = AllConstant && isa<Constant>(Operand);
- return Operand;
- });
- return AllConstant;
- }
- const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
- Value *Arg1, Value *Arg2,
- Instruction *I) const {
- auto *E = new (ExpressionAllocator) BasicExpression(2);
- E->setType(T);
- E->setOpcode(Opcode);
- E->allocateOperands(ArgRecycler, ExpressionAllocator);
- if (Instruction::isCommutative(Opcode)) {
- // Ensure that commutative instructions that only differ by a permutation
- // of their operands get the same value number by sorting the operand value
- // numbers. Since all commutative instructions have two operands it is more
- // efficient to sort by hand rather than using, say, std::sort.
- if (shouldSwapOperands(Arg1, Arg2))
- std::swap(Arg1, Arg2);
- }
- E->op_push_back(lookupOperandLeader(Arg1));
- E->op_push_back(lookupOperandLeader(Arg2));
- Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
- if (auto Simplified = checkExprResults(E, I, V)) {
- addAdditionalUsers(Simplified, I);
- return Simplified.Expr;
- }
- return E;
- }
- // Take a Value returned by simplification of Expression E/Instruction
- // I, and see if it resulted in a simpler expression. If so, return
- // that expression.
- NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
- Value *V) const {
- if (!V)
- return ExprResult::none();
- if (auto *C = dyn_cast<Constant>(V)) {
- if (I)
- LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
- << " constant " << *C << "\n");
- NumGVNOpsSimplified++;
- assert(isa<BasicExpression>(E) &&
- "We should always have had a basic expression here");
- deleteExpression(E);
- return ExprResult::some(createConstantExpression(C));
- } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
- if (I)
- LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
- << " variable " << *V << "\n");
- deleteExpression(E);
- return ExprResult::some(createVariableExpression(V));
- }
- CongruenceClass *CC = ValueToClass.lookup(V);
- if (CC) {
- if (CC->getLeader() && CC->getLeader() != I) {
- return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
- }
- if (CC->getDefiningExpr()) {
- if (I)
- LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
- << " expression " << *CC->getDefiningExpr() << "\n");
- NumGVNOpsSimplified++;
- deleteExpression(E);
- return ExprResult::some(CC->getDefiningExpr(), V);
- }
- }
- return ExprResult::none();
- }
- // Create a value expression from the instruction I, replacing operands with
- // their leaders.
- NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
- auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
- bool AllConstant = setBasicExpressionInfo(I, E);
- if (I->isCommutative()) {
- // Ensure that commutative instructions that only differ by a permutation
- // of their operands get the same value number by sorting the operand value
- // numbers. Since all commutative instructions have two operands it is more
- // efficient to sort by hand rather than using, say, std::sort.
- assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
- if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
- E->swapOperands(0, 1);
- }
- // Perform simplification.
- if (auto *CI = dyn_cast<CmpInst>(I)) {
- // Sort the operand value numbers so x<y and y>x get the same value
- // number.
- CmpInst::Predicate Predicate = CI->getPredicate();
- if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
- E->swapOperands(0, 1);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- }
- E->setOpcode((CI->getOpcode() << 8) | Predicate);
- // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
- assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
- "Wrong types on cmp instruction");
- assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
- E->getOperand(1)->getType() == I->getOperand(1)->getType()));
- Value *V =
- SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
- if (auto Simplified = checkExprResults(E, I, V))
- return Simplified;
- } else if (isa<SelectInst>(I)) {
- if (isa<Constant>(E->getOperand(0)) ||
- E->getOperand(1) == E->getOperand(2)) {
- assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
- E->getOperand(2)->getType() == I->getOperand(2)->getType());
- Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
- E->getOperand(2), SQ);
- if (auto Simplified = checkExprResults(E, I, V))
- return Simplified;
- }
- } else if (I->isBinaryOp()) {
- Value *V =
- SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
- if (auto Simplified = checkExprResults(E, I, V))
- return Simplified;
- } else if (auto *CI = dyn_cast<CastInst>(I)) {
- Value *V =
- SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
- if (auto Simplified = checkExprResults(E, I, V))
- return Simplified;
- } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
- Value *V =
- SimplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
- makeArrayRef(std::next(E->op_begin()), E->op_end()),
- GEPI->isInBounds(), SQ);
- if (auto Simplified = checkExprResults(E, I, V))
- return Simplified;
- } else if (AllConstant) {
- // We don't bother trying to simplify unless all of the operands
- // were constant.
- // TODO: There are a lot of Simplify*'s we could call here, if we
- // wanted to. The original motivating case for this code was a
- // zext i1 false to i8, which we don't have an interface to
- // simplify (IE there is no SimplifyZExt).
- SmallVector<Constant *, 8> C;
- for (Value *Arg : E->operands())
- C.emplace_back(cast<Constant>(Arg));
- if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
- if (auto Simplified = checkExprResults(E, I, V))
- return Simplified;
- }
- return ExprResult::some(E);
- }
- const AggregateValueExpression *
- NewGVN::createAggregateValueExpression(Instruction *I) const {
- if (auto *II = dyn_cast<InsertValueInst>(I)) {
- auto *E = new (ExpressionAllocator)
- AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
- setBasicExpressionInfo(I, E);
- E->allocateIntOperands(ExpressionAllocator);
- std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
- return E;
- } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
- auto *E = new (ExpressionAllocator)
- AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
- setBasicExpressionInfo(EI, E);
- E->allocateIntOperands(ExpressionAllocator);
- std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
- return E;
- }
- llvm_unreachable("Unhandled type of aggregate value operation");
- }
- const DeadExpression *NewGVN::createDeadExpression() const {
- // DeadExpression has no arguments and all DeadExpression's are the same,
- // so we only need one of them.
- return SingletonDeadExpression;
- }
- const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
- auto *E = new (ExpressionAllocator) VariableExpression(V);
- E->setOpcode(V->getValueID());
- return E;
- }
- const Expression *NewGVN::createVariableOrConstant(Value *V) const {
- if (auto *C = dyn_cast<Constant>(V))
- return createConstantExpression(C);
- return createVariableExpression(V);
- }
- const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
- auto *E = new (ExpressionAllocator) ConstantExpression(C);
- E->setOpcode(C->getValueID());
- return E;
- }
- const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
- auto *E = new (ExpressionAllocator) UnknownExpression(I);
- E->setOpcode(I->getOpcode());
- return E;
- }
- const CallExpression *
- NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
- // FIXME: Add operand bundles for calls.
- // FIXME: Allow commutative matching for intrinsics.
- auto *E =
- new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
- setBasicExpressionInfo(CI, E);
- return E;
- }
- // Return true if some equivalent of instruction Inst dominates instruction U.
- bool NewGVN::someEquivalentDominates(const Instruction *Inst,
- const Instruction *U) const {
- auto *CC = ValueToClass.lookup(Inst);
- // This must be an instruction because we are only called from phi nodes
- // in the case that the value it needs to check against is an instruction.
- // The most likely candidates for dominance are the leader and the next leader.
- // The leader or nextleader will dominate in all cases where there is an
- // equivalent that is higher up in the dom tree.
- // We can't *only* check them, however, because the
- // dominator tree could have an infinite number of non-dominating siblings
- // with instructions that are in the right congruence class.
- // A
- // B C D E F G
- // |
- // H
- // Instruction U could be in H, with equivalents in every other sibling.
- // Depending on the rpo order picked, the leader could be the equivalent in
- // any of these siblings.
- if (!CC)
- return false;
- if (alwaysAvailable(CC->getLeader()))
- return true;
- if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
- return true;
- if (CC->getNextLeader().first &&
- DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
- return true;
- return llvm::any_of(*CC, [&](const Value *Member) {
- return Member != CC->getLeader() &&
- DT->dominates(cast<Instruction>(Member), U);
- });
- }
- // See if we have a congruence class and leader for this operand, and if so,
- // return it. Otherwise, return the operand itself.
- Value *NewGVN::lookupOperandLeader(Value *V) const {
- CongruenceClass *CC = ValueToClass.lookup(V);
- if (CC) {
- // Everything in TOP is represented by poison, as it can be any value.
- // We do have to make sure we get the type right though, so we can't set the
- // RepLeader to poison.
- if (CC == TOPClass)
- return PoisonValue::get(V->getType());
- return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
- }
- return V;
- }
- const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
- auto *CC = getMemoryClass(MA);
- assert(CC->getMemoryLeader() &&
- "Every MemoryAccess should be mapped to a congruence class with a "
- "representative memory access");
- return CC->getMemoryLeader();
- }
- // Return true if the MemoryAccess is really equivalent to everything. This is
- // equivalent to the lattice value "TOP" in most lattices. This is the initial
- // state of all MemoryAccesses.
- bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
- return getMemoryClass(MA) == TOPClass;
- }
- LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
- LoadInst *LI,
- const MemoryAccess *MA) const {
- auto *E =
- new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
- E->allocateOperands(ArgRecycler, ExpressionAllocator);
- E->setType(LoadType);
- // Give store and loads same opcode so they value number together.
- E->setOpcode(0);
- E->op_push_back(PointerOp);
- // TODO: Value number heap versions. We may be able to discover
- // things alias analysis can't on it's own (IE that a store and a
- // load have the same value, and thus, it isn't clobbering the load).
- return E;
- }
- const StoreExpression *
- NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
- auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
- auto *E = new (ExpressionAllocator)
- StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
- E->allocateOperands(ArgRecycler, ExpressionAllocator);
- E->setType(SI->getValueOperand()->getType());
- // Give store and loads same opcode so they value number together.
- E->setOpcode(0);
- E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
- // TODO: Value number heap versions. We may be able to discover
- // things alias analysis can't on it's own (IE that a store and a
- // load have the same value, and thus, it isn't clobbering the load).
- return E;
- }
- const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
- // Unlike loads, we never try to eliminate stores, so we do not check if they
- // are simple and avoid value numbering them.
- auto *SI = cast<StoreInst>(I);
- auto *StoreAccess = getMemoryAccess(SI);
- // Get the expression, if any, for the RHS of the MemoryDef.
- const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
- if (EnableStoreRefinement)
- StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
- // If we bypassed the use-def chains, make sure we add a use.
- StoreRHS = lookupMemoryLeader(StoreRHS);
- if (StoreRHS != StoreAccess->getDefiningAccess())
- addMemoryUsers(StoreRHS, StoreAccess);
- // If we are defined by ourselves, use the live on entry def.
- if (StoreRHS == StoreAccess)
- StoreRHS = MSSA->getLiveOnEntryDef();
- if (SI->isSimple()) {
- // See if we are defined by a previous store expression, it already has a
- // value, and it's the same value as our current store. FIXME: Right now, we
- // only do this for simple stores, we should expand to cover memcpys, etc.
- const auto *LastStore = createStoreExpression(SI, StoreRHS);
- const auto *LastCC = ExpressionToClass.lookup(LastStore);
- // We really want to check whether the expression we matched was a store. No
- // easy way to do that. However, we can check that the class we found has a
- // store, which, assuming the value numbering state is not corrupt, is
- // sufficient, because we must also be equivalent to that store's expression
- // for it to be in the same class as the load.
- if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
- return LastStore;
- // Also check if our value operand is defined by a load of the same memory
- // location, and the memory state is the same as it was then (otherwise, it
- // could have been overwritten later. See test32 in
- // transforms/DeadStoreElimination/simple.ll).
- if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
- if ((lookupOperandLeader(LI->getPointerOperand()) ==
- LastStore->getOperand(0)) &&
- (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
- StoreRHS))
- return LastStore;
- deleteExpression(LastStore);
- }
- // If the store is not equivalent to anything, value number it as a store that
- // produces a unique memory state (instead of using it's MemoryUse, we use
- // it's MemoryDef).
- return createStoreExpression(SI, StoreAccess);
- }
- // See if we can extract the value of a loaded pointer from a load, a store, or
- // a memory instruction.
- const Expression *
- NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
- LoadInst *LI, Instruction *DepInst,
- MemoryAccess *DefiningAccess) const {
- assert((!LI || LI->isSimple()) && "Not a simple load");
- if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
- // Can't forward from non-atomic to atomic without violating memory model.
- // Also don't need to coerce if they are the same type, we will just
- // propagate.
- if (LI->isAtomic() > DepSI->isAtomic() ||
- LoadType == DepSI->getValueOperand()->getType())
- return nullptr;
- int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
- if (Offset >= 0) {
- if (auto *C = dyn_cast<Constant>(
- lookupOperandLeader(DepSI->getValueOperand()))) {
- LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
- << " to constant " << *C << "\n");
- return createConstantExpression(
- getConstantStoreValueForLoad(C, Offset, LoadType, DL));
- }
- }
- } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
- // Can't forward from non-atomic to atomic without violating memory model.
- if (LI->isAtomic() > DepLI->isAtomic())
- return nullptr;
- int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
- if (Offset >= 0) {
- // We can coerce a constant load into a load.
- if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
- if (auto *PossibleConstant =
- getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
- LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
- << " to constant " << *PossibleConstant << "\n");
- return createConstantExpression(PossibleConstant);
- }
- }
- } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
- int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
- if (Offset >= 0) {
- if (auto *PossibleConstant =
- getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
- LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
- << " to constant " << *PossibleConstant << "\n");
- return createConstantExpression(PossibleConstant);
- }
- }
- }
- // All of the below are only true if the loaded pointer is produced
- // by the dependent instruction.
- if (LoadPtr != lookupOperandLeader(DepInst) &&
- !AA->isMustAlias(LoadPtr, DepInst))
- return nullptr;
- // If this load really doesn't depend on anything, then we must be loading an
- // undef value. This can happen when loading for a fresh allocation with no
- // intervening stores, for example. Note that this is only true in the case
- // that the result of the allocation is pointer equal to the load ptr.
- if (isa<AllocaInst>(DepInst)) {
- return createConstantExpression(UndefValue::get(LoadType));
- }
- // If this load occurs either right after a lifetime begin,
- // then the loaded value is undefined.
- else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
- if (II->getIntrinsicID() == Intrinsic::lifetime_start)
- return createConstantExpression(UndefValue::get(LoadType));
- } else if (isAllocationFn(DepInst, TLI))
- if (auto *InitVal = getInitialValueOfAllocation(cast<CallBase>(DepInst),
- TLI, LoadType))
- return createConstantExpression(InitVal);
- return nullptr;
- }
- const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
- auto *LI = cast<LoadInst>(I);
- // We can eliminate in favor of non-simple loads, but we won't be able to
- // eliminate the loads themselves.
- if (!LI->isSimple())
- return nullptr;
- Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
- // Load of undef is UB.
- if (isa<UndefValue>(LoadAddressLeader))
- return createConstantExpression(PoisonValue::get(LI->getType()));
- MemoryAccess *OriginalAccess = getMemoryAccess(I);
- MemoryAccess *DefiningAccess =
- MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
- if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
- if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
- Instruction *DefiningInst = MD->getMemoryInst();
- // If the defining instruction is not reachable, replace with poison.
- if (!ReachableBlocks.count(DefiningInst->getParent()))
- return createConstantExpression(PoisonValue::get(LI->getType()));
- // This will handle stores and memory insts. We only do if it the
- // defining access has a different type, or it is a pointer produced by
- // certain memory operations that cause the memory to have a fixed value
- // (IE things like calloc).
- if (const auto *CoercionResult =
- performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
- DefiningInst, DefiningAccess))
- return CoercionResult;
- }
- }
- const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
- DefiningAccess);
- // If our MemoryLeader is not our defining access, add a use to the
- // MemoryLeader, so that we get reprocessed when it changes.
- if (LE->getMemoryLeader() != DefiningAccess)
- addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
- return LE;
- }
- NewGVN::ExprResult
- NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
- auto *PI = PredInfo->getPredicateInfoFor(I);
- if (!PI)
- return ExprResult::none();
- LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
- const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
- if (!Constraint)
- return ExprResult::none();
- CmpInst::Predicate Predicate = Constraint->Predicate;
- Value *CmpOp0 = I->getOperand(0);
- Value *CmpOp1 = Constraint->OtherOp;
- Value *FirstOp = lookupOperandLeader(CmpOp0);
- Value *SecondOp = lookupOperandLeader(CmpOp1);
- Value *AdditionallyUsedValue = CmpOp0;
- // Sort the ops.
- if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
- std::swap(FirstOp, SecondOp);
- Predicate = CmpInst::getSwappedPredicate(Predicate);
- AdditionallyUsedValue = CmpOp1;
- }
- if (Predicate == CmpInst::ICMP_EQ)
- return ExprResult::some(createVariableOrConstant(FirstOp),
- AdditionallyUsedValue, PI);
- // Handle the special case of floating point.
- if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
- !cast<ConstantFP>(FirstOp)->isZero())
- return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
- AdditionallyUsedValue, PI);
- return ExprResult::none();
- }
- // Evaluate read only and pure calls, and create an expression result.
- NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
- auto *CI = cast<CallInst>(I);
- if (auto *II = dyn_cast<IntrinsicInst>(I)) {
- // Intrinsics with the returned attribute are copies of arguments.
- if (auto *ReturnedValue = II->getReturnedArgOperand()) {
- if (II->getIntrinsicID() == Intrinsic::ssa_copy)
- if (auto Res = performSymbolicPredicateInfoEvaluation(II))
- return Res;
- return ExprResult::some(createVariableOrConstant(ReturnedValue));
- }
- }
- if (AA->doesNotAccessMemory(CI)) {
- return ExprResult::some(
- createCallExpression(CI, TOPClass->getMemoryLeader()));
- } else if (AA->onlyReadsMemory(CI)) {
- if (auto *MA = MSSA->getMemoryAccess(CI)) {
- auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
- return ExprResult::some(createCallExpression(CI, DefiningAccess));
- } else // MSSA determined that CI does not access memory.
- return ExprResult::some(
- createCallExpression(CI, TOPClass->getMemoryLeader()));
- }
- return ExprResult::none();
- }
- // Retrieve the memory class for a given MemoryAccess.
- CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
- auto *Result = MemoryAccessToClass.lookup(MA);
- assert(Result && "Should have found memory class");
- return Result;
- }
- // Update the MemoryAccess equivalence table to say that From is equal to To,
- // and return true if this is different from what already existed in the table.
- bool NewGVN::setMemoryClass(const MemoryAccess *From,
- CongruenceClass *NewClass) {
- assert(NewClass &&
- "Every MemoryAccess should be getting mapped to a non-null class");
- LLVM_DEBUG(dbgs() << "Setting " << *From);
- LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
- LLVM_DEBUG(dbgs() << NewClass->getID()
- << " with current MemoryAccess leader ");
- LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
- auto LookupResult = MemoryAccessToClass.find(From);
- bool Changed = false;
- // If it's already in the table, see if the value changed.
- if (LookupResult != MemoryAccessToClass.end()) {
- auto *OldClass = LookupResult->second;
- if (OldClass != NewClass) {
- // If this is a phi, we have to handle memory member updates.
- if (auto *MP = dyn_cast<MemoryPhi>(From)) {
- OldClass->memory_erase(MP);
- NewClass->memory_insert(MP);
- // This may have killed the class if it had no non-memory members
- if (OldClass->getMemoryLeader() == From) {
- if (OldClass->definesNoMemory()) {
- OldClass->setMemoryLeader(nullptr);
- } else {
- OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
- LLVM_DEBUG(dbgs() << "Memory class leader change for class "
- << OldClass->getID() << " to "
- << *OldClass->getMemoryLeader()
- << " due to removal of a memory member " << *From
- << "\n");
- markMemoryLeaderChangeTouched(OldClass);
- }
- }
- }
- // It wasn't equivalent before, and now it is.
- LookupResult->second = NewClass;
- Changed = true;
- }
- }
- return Changed;
- }
- // Determine if a instruction is cycle-free. That means the values in the
- // instruction don't depend on any expressions that can change value as a result
- // of the instruction. For example, a non-cycle free instruction would be v =
- // phi(0, v+1).
- bool NewGVN::isCycleFree(const Instruction *I) const {
- // In order to compute cycle-freeness, we do SCC finding on the instruction,
- // and see what kind of SCC it ends up in. If it is a singleton, it is
- // cycle-free. If it is not in a singleton, it is only cycle free if the
- // other members are all phi nodes (as they do not compute anything, they are
- // copies).
- auto ICS = InstCycleState.lookup(I);
- if (ICS == ICS_Unknown) {
- SCCFinder.Start(I);
- auto &SCC = SCCFinder.getComponentFor(I);
- // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
- if (SCC.size() == 1)
- InstCycleState.insert({I, ICS_CycleFree});
- else {
- bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
- return isa<PHINode>(V) || isCopyOfAPHI(V);
- });
- ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
- for (auto *Member : SCC)
- if (auto *MemberPhi = dyn_cast<PHINode>(Member))
- InstCycleState.insert({MemberPhi, ICS});
- }
- }
- if (ICS == ICS_Cycle)
- return false;
- return true;
- }
- // Evaluate PHI nodes symbolically and create an expression result.
- const Expression *
- NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
- Instruction *I,
- BasicBlock *PHIBlock) const {
- // True if one of the incoming phi edges is a backedge.
- bool HasBackedge = false;
- // All constant tracks the state of whether all the *original* phi operands
- // This is really shorthand for "this phi cannot cycle due to forward
- // change in value of the phi is guaranteed not to later change the value of
- // the phi. IE it can't be v = phi(undef, v+1)
- bool OriginalOpsConstant = true;
- auto *E = cast<PHIExpression>(createPHIExpression(
- PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
- // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
- // See if all arguments are the same.
- // We track if any were undef because they need special handling.
- bool HasUndef = false, HasPoison = false;
- auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
- if (isa<PoisonValue>(Arg)) {
- HasPoison = true;
- return false;
- }
- if (isa<UndefValue>(Arg)) {
- HasUndef = true;
- return false;
- }
- return true;
- });
- // If we are left with no operands, it's dead.
- if (Filtered.empty()) {
- // If it has undef or poison at this point, it means there are no-non-undef
- // arguments, and thus, the value of the phi node must be undef.
- if (HasUndef) {
- LLVM_DEBUG(
- dbgs() << "PHI Node " << *I
- << " has no non-undef arguments, valuing it as undef\n");
- return createConstantExpression(UndefValue::get(I->getType()));
- }
- if (HasPoison) {
- LLVM_DEBUG(
- dbgs() << "PHI Node " << *I
- << " has no non-poison arguments, valuing it as poison\n");
- return createConstantExpression(PoisonValue::get(I->getType()));
- }
- LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
- deleteExpression(E);
- return createDeadExpression();
- }
- Value *AllSameValue = *(Filtered.begin());
- ++Filtered.begin();
- // Can't use std::equal here, sadly, because filter.begin moves.
- if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
- // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
- // in the worst case).
- if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
- return E;
- // In LLVM's non-standard representation of phi nodes, it's possible to have
- // phi nodes with cycles (IE dependent on other phis that are .... dependent
- // on the original phi node), especially in weird CFG's where some arguments
- // are unreachable, or uninitialized along certain paths. This can cause
- // infinite loops during evaluation. We work around this by not trying to
- // really evaluate them independently, but instead using a variable
- // expression to say if one is equivalent to the other.
- // We also special case undef/poison, so that if we have an undef, we can't
- // use the common value unless it dominates the phi block.
- if (HasPoison || HasUndef) {
- // If we have undef and at least one other value, this is really a
- // multivalued phi, and we need to know if it's cycle free in order to
- // evaluate whether we can ignore the undef. The other parts of this are
- // just shortcuts. If there is no backedge, or all operands are
- // constants, it also must be cycle free.
- if (HasBackedge && !OriginalOpsConstant &&
- !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
- return E;
- // Only have to check for instructions
- if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
- if (!someEquivalentDominates(AllSameInst, I))
- return E;
- }
- // Can't simplify to something that comes later in the iteration.
- // Otherwise, when and if it changes congruence class, we will never catch
- // up. We will always be a class behind it.
- if (isa<Instruction>(AllSameValue) &&
- InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
- return E;
- NumGVNPhisAllSame++;
- LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
- << "\n");
- deleteExpression(E);
- return createVariableOrConstant(AllSameValue);
- }
- return E;
- }
- const Expression *
- NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
- if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
- auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
- if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
- // EI is an extract from one of our with.overflow intrinsics. Synthesize
- // a semantically equivalent expression instead of an extract value
- // expression.
- return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
- WO->getLHS(), WO->getRHS(), I);
- }
- return createAggregateValueExpression(I);
- }
- NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
- assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
- auto *CI = cast<CmpInst>(I);
- // See if our operands are equal to those of a previous predicate, and if so,
- // if it implies true or false.
- auto Op0 = lookupOperandLeader(CI->getOperand(0));
- auto Op1 = lookupOperandLeader(CI->getOperand(1));
- auto OurPredicate = CI->getPredicate();
- if (shouldSwapOperands(Op0, Op1)) {
- std::swap(Op0, Op1);
- OurPredicate = CI->getSwappedPredicate();
- }
- // Avoid processing the same info twice.
- const PredicateBase *LastPredInfo = nullptr;
- // See if we know something about the comparison itself, like it is the target
- // of an assume.
- auto *CmpPI = PredInfo->getPredicateInfoFor(I);
- if (isa_and_nonnull<PredicateAssume>(CmpPI))
- return ExprResult::some(
- createConstantExpression(ConstantInt::getTrue(CI->getType())));
- if (Op0 == Op1) {
- // This condition does not depend on predicates, no need to add users
- if (CI->isTrueWhenEqual())
- return ExprResult::some(
- createConstantExpression(ConstantInt::getTrue(CI->getType())));
- else if (CI->isFalseWhenEqual())
- return ExprResult::some(
- createConstantExpression(ConstantInt::getFalse(CI->getType())));
- }
- // NOTE: Because we are comparing both operands here and below, and using
- // previous comparisons, we rely on fact that predicateinfo knows to mark
- // comparisons that use renamed operands as users of the earlier comparisons.
- // It is *not* enough to just mark predicateinfo renamed operands as users of
- // the earlier comparisons, because the *other* operand may have changed in a
- // previous iteration.
- // Example:
- // icmp slt %a, %b
- // %b.0 = ssa.copy(%b)
- // false branch:
- // icmp slt %c, %b.0
- // %c and %a may start out equal, and thus, the code below will say the second
- // %icmp is false. c may become equal to something else, and in that case the
- // %second icmp *must* be reexamined, but would not if only the renamed
- // %operands are considered users of the icmp.
- // *Currently* we only check one level of comparisons back, and only mark one
- // level back as touched when changes happen. If you modify this code to look
- // back farther through comparisons, you *must* mark the appropriate
- // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
- // we know something just from the operands themselves
- // See if our operands have predicate info, so that we may be able to derive
- // something from a previous comparison.
- for (const auto &Op : CI->operands()) {
- auto *PI = PredInfo->getPredicateInfoFor(Op);
- if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
- if (PI == LastPredInfo)
- continue;
- LastPredInfo = PI;
- // In phi of ops cases, we may have predicate info that we are evaluating
- // in a different context.
- if (!DT->dominates(PBranch->To, getBlockForValue(I)))
- continue;
- // TODO: Along the false edge, we may know more things too, like
- // icmp of
- // same operands is false.
- // TODO: We only handle actual comparison conditions below, not
- // and/or.
- auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
- if (!BranchCond)
- continue;
- auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
- auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
- auto BranchPredicate = BranchCond->getPredicate();
- if (shouldSwapOperands(BranchOp0, BranchOp1)) {
- std::swap(BranchOp0, BranchOp1);
- BranchPredicate = BranchCond->getSwappedPredicate();
- }
- if (BranchOp0 == Op0 && BranchOp1 == Op1) {
- if (PBranch->TrueEdge) {
- // If we know the previous predicate is true and we are in the true
- // edge then we may be implied true or false.
- if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
- OurPredicate)) {
- return ExprResult::some(
- createConstantExpression(ConstantInt::getTrue(CI->getType())),
- PI);
- }
- if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
- OurPredicate)) {
- return ExprResult::some(
- createConstantExpression(ConstantInt::getFalse(CI->getType())),
- PI);
- }
- } else {
- // Just handle the ne and eq cases, where if we have the same
- // operands, we may know something.
- if (BranchPredicate == OurPredicate) {
- // Same predicate, same ops,we know it was false, so this is false.
- return ExprResult::some(
- createConstantExpression(ConstantInt::getFalse(CI->getType())),
- PI);
- } else if (BranchPredicate ==
- CmpInst::getInversePredicate(OurPredicate)) {
- // Inverse predicate, we know the other was false, so this is true.
- return ExprResult::some(
- createConstantExpression(ConstantInt::getTrue(CI->getType())),
- PI);
- }
- }
- }
- }
- }
- // Create expression will take care of simplifyCmpInst
- return createExpression(I);
- }
- // Substitute and symbolize the value before value numbering.
- NewGVN::ExprResult
- NewGVN::performSymbolicEvaluation(Value *V,
- SmallPtrSetImpl<Value *> &Visited) const {
- const Expression *E = nullptr;
- if (auto *C = dyn_cast<Constant>(V))
- E = createConstantExpression(C);
- else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
- E = createVariableExpression(V);
- } else {
- // TODO: memory intrinsics.
- // TODO: Some day, we should do the forward propagation and reassociation
- // parts of the algorithm.
- auto *I = cast<Instruction>(V);
- switch (I->getOpcode()) {
- case Instruction::ExtractValue:
- case Instruction::InsertValue:
- E = performSymbolicAggrValueEvaluation(I);
- break;
- case Instruction::PHI: {
- SmallVector<ValPair, 3> Ops;
- auto *PN = cast<PHINode>(I);
- for (unsigned i = 0; i < PN->getNumOperands(); ++i)
- Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
- // Sort to ensure the invariant createPHIExpression requires is met.
- sortPHIOps(Ops);
- E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
- } break;
- case Instruction::Call:
- return performSymbolicCallEvaluation(I);
- break;
- case Instruction::Store:
- E = performSymbolicStoreEvaluation(I);
- break;
- case Instruction::Load:
- E = performSymbolicLoadEvaluation(I);
- break;
- case Instruction::BitCast:
- case Instruction::AddrSpaceCast:
- return createExpression(I);
- break;
- case Instruction::ICmp:
- case Instruction::FCmp:
- return performSymbolicCmpEvaluation(I);
- break;
- case Instruction::FNeg:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::Select:
- case Instruction::ExtractElement:
- case Instruction::InsertElement:
- case Instruction::GetElementPtr:
- return createExpression(I);
- break;
- case Instruction::ShuffleVector:
- // FIXME: Add support for shufflevector to createExpression.
- return ExprResult::none();
- default:
- return ExprResult::none();
- }
- }
- return ExprResult::some(E);
- }
- // Look up a container of values/instructions in a map, and touch all the
- // instructions in the container. Then erase value from the map.
- template <typename Map, typename KeyType>
- void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
- const auto Result = M.find_as(Key);
- if (Result != M.end()) {
- for (const typename Map::mapped_type::value_type Mapped : Result->second)
- TouchedInstructions.set(InstrToDFSNum(Mapped));
- M.erase(Result);
- }
- }
- void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
- assert(User && To != User);
- if (isa<Instruction>(To))
- AdditionalUsers[To].insert(User);
- }
- void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
- if (Res.ExtraDep && Res.ExtraDep != User)
- addAdditionalUsers(Res.ExtraDep, User);
- Res.ExtraDep = nullptr;
- if (Res.PredDep) {
- if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
- PredicateToUsers[PBranch->Condition].insert(User);
- else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
- PredicateToUsers[PAssume->Condition].insert(User);
- }
- Res.PredDep = nullptr;
- }
- void NewGVN::markUsersTouched(Value *V) {
- // Now mark the users as touched.
- for (auto *User : V->users()) {
- assert(isa<Instruction>(User) && "Use of value not within an instruction?");
- TouchedInstructions.set(InstrToDFSNum(User));
- }
- touchAndErase(AdditionalUsers, V);
- }
- void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
- LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
- MemoryToUsers[To].insert(U);
- }
- void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
- TouchedInstructions.set(MemoryToDFSNum(MA));
- }
- void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
- if (isa<MemoryUse>(MA))
- return;
- for (auto U : MA->users())
- TouchedInstructions.set(MemoryToDFSNum(U));
- touchAndErase(MemoryToUsers, MA);
- }
- // Touch all the predicates that depend on this instruction.
- void NewGVN::markPredicateUsersTouched(Instruction *I) {
- touchAndErase(PredicateToUsers, I);
- }
- // Mark users affected by a memory leader change.
- void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
- for (auto M : CC->memory())
- markMemoryDefTouched(M);
- }
- // Touch the instructions that need to be updated after a congruence class has a
- // leader change, and mark changed values.
- void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
- for (auto M : *CC) {
- if (auto *I = dyn_cast<Instruction>(M))
- TouchedInstructions.set(InstrToDFSNum(I));
- LeaderChanges.insert(M);
- }
- }
- // Give a range of things that have instruction DFS numbers, this will return
- // the member of the range with the smallest dfs number.
- template <class T, class Range>
- T *NewGVN::getMinDFSOfRange(const Range &R) const {
- std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
- for (const auto X : R) {
- auto DFSNum = InstrToDFSNum(X);
- if (DFSNum < MinDFS.second)
- MinDFS = {X, DFSNum};
- }
- return MinDFS.first;
- }
- // This function returns the MemoryAccess that should be the next leader of
- // congruence class CC, under the assumption that the current leader is going to
- // disappear.
- const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
- // TODO: If this ends up to slow, we can maintain a next memory leader like we
- // do for regular leaders.
- // Make sure there will be a leader to find.
- assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
- if (CC->getStoreCount() > 0) {
- if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
- return getMemoryAccess(NL);
- // Find the store with the minimum DFS number.
- auto *V = getMinDFSOfRange<Value>(make_filter_range(
- *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
- return getMemoryAccess(cast<StoreInst>(V));
- }
- assert(CC->getStoreCount() == 0);
- // Given our assertion, hitting this part must mean
- // !OldClass->memory_empty()
- if (CC->memory_size() == 1)
- return *CC->memory_begin();
- return getMinDFSOfRange<const MemoryPhi>(CC->memory());
- }
- // This function returns the next value leader of a congruence class, under the
- // assumption that the current leader is going away. This should end up being
- // the next most dominating member.
- Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
- // We don't need to sort members if there is only 1, and we don't care about
- // sorting the TOP class because everything either gets out of it or is
- // unreachable.
- if (CC->size() == 1 || CC == TOPClass) {
- return *(CC->begin());
- } else if (CC->getNextLeader().first) {
- ++NumGVNAvoidedSortedLeaderChanges;
- return CC->getNextLeader().first;
- } else {
- ++NumGVNSortedLeaderChanges;
- // NOTE: If this ends up to slow, we can maintain a dual structure for
- // member testing/insertion, or keep things mostly sorted, and sort only
- // here, or use SparseBitVector or ....
- return getMinDFSOfRange<Value>(*CC);
- }
- }
- // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
- // the memory members, etc for the move.
- //
- // The invariants of this function are:
- //
- // - I must be moving to NewClass from OldClass
- // - The StoreCount of OldClass and NewClass is expected to have been updated
- // for I already if it is a store.
- // - The OldClass memory leader has not been updated yet if I was the leader.
- void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
- MemoryAccess *InstMA,
- CongruenceClass *OldClass,
- CongruenceClass *NewClass) {
- // If the leader is I, and we had a representative MemoryAccess, it should
- // be the MemoryAccess of OldClass.
- assert((!InstMA || !OldClass->getMemoryLeader() ||
- OldClass->getLeader() != I ||
- MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
- MemoryAccessToClass.lookup(InstMA)) &&
- "Representative MemoryAccess mismatch");
- // First, see what happens to the new class
- if (!NewClass->getMemoryLeader()) {
- // Should be a new class, or a store becoming a leader of a new class.
- assert(NewClass->size() == 1 ||
- (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
- NewClass->setMemoryLeader(InstMA);
- // Mark it touched if we didn't just create a singleton
- LLVM_DEBUG(dbgs() << "Memory class leader change for class "
- << NewClass->getID()
- << " due to new memory instruction becoming leader\n");
- markMemoryLeaderChangeTouched(NewClass);
- }
- setMemoryClass(InstMA, NewClass);
- // Now, fixup the old class if necessary
- if (OldClass->getMemoryLeader() == InstMA) {
- if (!OldClass->definesNoMemory()) {
- OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
- LLVM_DEBUG(dbgs() << "Memory class leader change for class "
- << OldClass->getID() << " to "
- << *OldClass->getMemoryLeader()
- << " due to removal of old leader " << *InstMA << "\n");
- markMemoryLeaderChangeTouched(OldClass);
- } else
- OldClass->setMemoryLeader(nullptr);
- }
- }
- // Move a value, currently in OldClass, to be part of NewClass
- // Update OldClass and NewClass for the move (including changing leaders, etc).
- void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
- CongruenceClass *OldClass,
- CongruenceClass *NewClass) {
- if (I == OldClass->getNextLeader().first)
- OldClass->resetNextLeader();
- OldClass->erase(I);
- NewClass->insert(I);
- if (NewClass->getLeader() != I)
- NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
- // Handle our special casing of stores.
- if (auto *SI = dyn_cast<StoreInst>(I)) {
- OldClass->decStoreCount();
- // Okay, so when do we want to make a store a leader of a class?
- // If we have a store defined by an earlier load, we want the earlier load
- // to lead the class.
- // If we have a store defined by something else, we want the store to lead
- // the class so everything else gets the "something else" as a value.
- // If we have a store as the single member of the class, we want the store
- // as the leader
- if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
- // If it's a store expression we are using, it means we are not equivalent
- // to something earlier.
- if (auto *SE = dyn_cast<StoreExpression>(E)) {
- NewClass->setStoredValue(SE->getStoredValue());
- markValueLeaderChangeTouched(NewClass);
- // Shift the new class leader to be the store
- LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
- << NewClass->getID() << " from "
- << *NewClass->getLeader() << " to " << *SI
- << " because store joined class\n");
- // If we changed the leader, we have to mark it changed because we don't
- // know what it will do to symbolic evaluation.
- NewClass->setLeader(SI);
- }
- // We rely on the code below handling the MemoryAccess change.
- }
- NewClass->incStoreCount();
- }
- // True if there is no memory instructions left in a class that had memory
- // instructions before.
- // If it's not a memory use, set the MemoryAccess equivalence
- auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
- if (InstMA)
- moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
- ValueToClass[I] = NewClass;
- // See if we destroyed the class or need to swap leaders.
- if (OldClass->empty() && OldClass != TOPClass) {
- if (OldClass->getDefiningExpr()) {
- LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
- << " from table\n");
- // We erase it as an exact expression to make sure we don't just erase an
- // equivalent one.
- auto Iter = ExpressionToClass.find_as(
- ExactEqualsExpression(*OldClass->getDefiningExpr()));
- if (Iter != ExpressionToClass.end())
- ExpressionToClass.erase(Iter);
- #ifdef EXPENSIVE_CHECKS
- assert(
- (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
- "We erased the expression we just inserted, which should not happen");
- #endif
- }
- } else if (OldClass->getLeader() == I) {
- // When the leader changes, the value numbering of
- // everything may change due to symbolization changes, so we need to
- // reprocess.
- LLVM_DEBUG(dbgs() << "Value class leader change for class "
- << OldClass->getID() << "\n");
- ++NumGVNLeaderChanges;
- // Destroy the stored value if there are no more stores to represent it.
- // Note that this is basically clean up for the expression removal that
- // happens below. If we remove stores from a class, we may leave it as a
- // class of equivalent memory phis.
- if (OldClass->getStoreCount() == 0) {
- if (OldClass->getStoredValue())
- OldClass->setStoredValue(nullptr);
- }
- OldClass->setLeader(getNextValueLeader(OldClass));
- OldClass->resetNextLeader();
- markValueLeaderChangeTouched(OldClass);
- }
- }
- // For a given expression, mark the phi of ops instructions that could have
- // changed as a result.
- void NewGVN::markPhiOfOpsChanged(const Expression *E) {
- touchAndErase(ExpressionToPhiOfOps, E);
- }
- // Perform congruence finding on a given value numbering expression.
- void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
- // This is guaranteed to return something, since it will at least find
- // TOP.
- CongruenceClass *IClass = ValueToClass.lookup(I);
- assert(IClass && "Should have found a IClass");
- // Dead classes should have been eliminated from the mapping.
- assert(!IClass->isDead() && "Found a dead class");
- CongruenceClass *EClass = nullptr;
- if (const auto *VE = dyn_cast<VariableExpression>(E)) {
- EClass = ValueToClass.lookup(VE->getVariableValue());
- } else if (isa<DeadExpression>(E)) {
- EClass = TOPClass;
- }
- if (!EClass) {
- auto lookupResult = ExpressionToClass.insert({E, nullptr});
- // If it's not in the value table, create a new congruence class.
- if (lookupResult.second) {
- CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
- auto place = lookupResult.first;
- place->second = NewClass;
- // Constants and variables should always be made the leader.
- if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
- NewClass->setLeader(CE->getConstantValue());
- } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
- StoreInst *SI = SE->getStoreInst();
- NewClass->setLeader(SI);
- NewClass->setStoredValue(SE->getStoredValue());
- // The RepMemoryAccess field will be filled in properly by the
- // moveValueToNewCongruenceClass call.
- } else {
- NewClass->setLeader(I);
- }
- assert(!isa<VariableExpression>(E) &&
- "VariableExpression should have been handled already");
- EClass = NewClass;
- LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
- << " using expression " << *E << " at "
- << NewClass->getID() << " and leader "
- << *(NewClass->getLeader()));
- if (NewClass->getStoredValue())
- LLVM_DEBUG(dbgs() << " and stored value "
- << *(NewClass->getStoredValue()));
- LLVM_DEBUG(dbgs() << "\n");
- } else {
- EClass = lookupResult.first->second;
- if (isa<ConstantExpression>(E))
- assert((isa<Constant>(EClass->getLeader()) ||
- (EClass->getStoredValue() &&
- isa<Constant>(EClass->getStoredValue()))) &&
- "Any class with a constant expression should have a "
- "constant leader");
- assert(EClass && "Somehow don't have an eclass");
- assert(!EClass->isDead() && "We accidentally looked up a dead class");
- }
- }
- bool ClassChanged = IClass != EClass;
- bool LeaderChanged = LeaderChanges.erase(I);
- if (ClassChanged || LeaderChanged) {
- LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
- << *E << "\n");
- if (ClassChanged) {
- moveValueToNewCongruenceClass(I, E, IClass, EClass);
- markPhiOfOpsChanged(E);
- }
- markUsersTouched(I);
- if (MemoryAccess *MA = getMemoryAccess(I))
- markMemoryUsersTouched(MA);
- if (auto *CI = dyn_cast<CmpInst>(I))
- markPredicateUsersTouched(CI);
- }
- // If we changed the class of the store, we want to ensure nothing finds the
- // old store expression. In particular, loads do not compare against stored
- // value, so they will find old store expressions (and associated class
- // mappings) if we leave them in the table.
- if (ClassChanged && isa<StoreInst>(I)) {
- auto *OldE = ValueToExpression.lookup(I);
- // It could just be that the old class died. We don't want to erase it if we
- // just moved classes.
- if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
- // Erase this as an exact expression to ensure we don't erase expressions
- // equivalent to it.
- auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
- if (Iter != ExpressionToClass.end())
- ExpressionToClass.erase(Iter);
- }
- }
- ValueToExpression[I] = E;
- }
- // Process the fact that Edge (from, to) is reachable, including marking
- // any newly reachable blocks and instructions for processing.
- void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
- // Check if the Edge was reachable before.
- if (ReachableEdges.insert({From, To}).second) {
- // If this block wasn't reachable before, all instructions are touched.
- if (ReachableBlocks.insert(To).second) {
- LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
- << " marked reachable\n");
- const auto &InstRange = BlockInstRange.lookup(To);
- TouchedInstructions.set(InstRange.first, InstRange.second);
- } else {
- LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
- << " was reachable, but new edge {"
- << getBlockName(From) << "," << getBlockName(To)
- << "} to it found\n");
- // We've made an edge reachable to an existing block, which may
- // impact predicates. Otherwise, only mark the phi nodes as touched, as
- // they are the only thing that depend on new edges. Anything using their
- // values will get propagated to if necessary.
- if (MemoryAccess *MemPhi = getMemoryAccess(To))
- TouchedInstructions.set(InstrToDFSNum(MemPhi));
- // FIXME: We should just add a union op on a Bitvector and
- // SparseBitVector. We can do it word by word faster than we are doing it
- // here.
- for (auto InstNum : RevisitOnReachabilityChange[To])
- TouchedInstructions.set(InstNum);
- }
- }
- }
- // Given a predicate condition (from a switch, cmp, or whatever) and a block,
- // see if we know some constant value for it already.
- Value *NewGVN::findConditionEquivalence(Value *Cond) const {
- auto Result = lookupOperandLeader(Cond);
- return isa<Constant>(Result) ? Result : nullptr;
- }
- // Process the outgoing edges of a block for reachability.
- void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
- // Evaluate reachability of terminator instruction.
- Value *Cond;
- BasicBlock *TrueSucc, *FalseSucc;
- if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
- Value *CondEvaluated = findConditionEquivalence(Cond);
- if (!CondEvaluated) {
- if (auto *I = dyn_cast<Instruction>(Cond)) {
- SmallPtrSet<Value *, 4> Visited;
- auto Res = performSymbolicEvaluation(I, Visited);
- if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
- CondEvaluated = CE->getConstantValue();
- addAdditionalUsers(Res, I);
- } else {
- // Did not use simplification result, no need to add the extra
- // dependency.
- Res.ExtraDep = nullptr;
- }
- } else if (isa<ConstantInt>(Cond)) {
- CondEvaluated = Cond;
- }
- }
- ConstantInt *CI;
- if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
- if (CI->isOne()) {
- LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
- << " evaluated to true\n");
- updateReachableEdge(B, TrueSucc);
- } else if (CI->isZero()) {
- LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
- << " evaluated to false\n");
- updateReachableEdge(B, FalseSucc);
- }
- } else {
- updateReachableEdge(B, TrueSucc);
- updateReachableEdge(B, FalseSucc);
- }
- } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
- // For switches, propagate the case values into the case
- // destinations.
- Value *SwitchCond = SI->getCondition();
- Value *CondEvaluated = findConditionEquivalence(SwitchCond);
- // See if we were able to turn this switch statement into a constant.
- if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
- auto *CondVal = cast<ConstantInt>(CondEvaluated);
- // We should be able to get case value for this.
- auto Case = *SI->findCaseValue(CondVal);
- if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
- // We proved the value is outside of the range of the case.
- // We can't do anything other than mark the default dest as reachable,
- // and go home.
- updateReachableEdge(B, SI->getDefaultDest());
- return;
- }
- // Now get where it goes and mark it reachable.
- BasicBlock *TargetBlock = Case.getCaseSuccessor();
- updateReachableEdge(B, TargetBlock);
- } else {
- for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
- BasicBlock *TargetBlock = SI->getSuccessor(i);
- updateReachableEdge(B, TargetBlock);
- }
- }
- } else {
- // Otherwise this is either unconditional, or a type we have no
- // idea about. Just mark successors as reachable.
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
- BasicBlock *TargetBlock = TI->getSuccessor(i);
- updateReachableEdge(B, TargetBlock);
- }
- // This also may be a memory defining terminator, in which case, set it
- // equivalent only to itself.
- //
- auto *MA = getMemoryAccess(TI);
- if (MA && !isa<MemoryUse>(MA)) {
- auto *CC = ensureLeaderOfMemoryClass(MA);
- if (setMemoryClass(MA, CC))
- markMemoryUsersTouched(MA);
- }
- }
- }
- // Remove the PHI of Ops PHI for I
- void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
- InstrDFS.erase(PHITemp);
- // It's still a temp instruction. We keep it in the array so it gets erased.
- // However, it's no longer used by I, or in the block
- TempToBlock.erase(PHITemp);
- RealToTemp.erase(I);
- // We don't remove the users from the phi node uses. This wastes a little
- // time, but such is life. We could use two sets to track which were there
- // are the start of NewGVN, and which were added, but right nowt he cost of
- // tracking is more than the cost of checking for more phi of ops.
- }
- // Add PHI Op in BB as a PHI of operations version of ExistingValue.
- void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
- Instruction *ExistingValue) {
- InstrDFS[Op] = InstrToDFSNum(ExistingValue);
- AllTempInstructions.insert(Op);
- TempToBlock[Op] = BB;
- RealToTemp[ExistingValue] = Op;
- // Add all users to phi node use, as they are now uses of the phi of ops phis
- // and may themselves be phi of ops.
- for (auto *U : ExistingValue->users())
- if (auto *UI = dyn_cast<Instruction>(U))
- PHINodeUses.insert(UI);
- }
- static bool okayForPHIOfOps(const Instruction *I) {
- if (!EnablePhiOfOps)
- return false;
- return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
- isa<LoadInst>(I);
- }
- bool NewGVN::OpIsSafeForPHIOfOpsHelper(
- Value *V, const BasicBlock *PHIBlock,
- SmallPtrSetImpl<const Value *> &Visited,
- SmallVectorImpl<Instruction *> &Worklist) {
- if (!isa<Instruction>(V))
- return true;
- auto OISIt = OpSafeForPHIOfOps.find(V);
- if (OISIt != OpSafeForPHIOfOps.end())
- return OISIt->second;
- // Keep walking until we either dominate the phi block, or hit a phi, or run
- // out of things to check.
- if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
- OpSafeForPHIOfOps.insert({V, true});
- return true;
- }
- // PHI in the same block.
- if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
- OpSafeForPHIOfOps.insert({V, false});
- return false;
- }
- auto *OrigI = cast<Instruction>(V);
- // When we hit an instruction that reads memory (load, call, etc), we must
- // consider any store that may happen in the loop. For now, we assume the
- // worst: there is a store in the loop that alias with this read.
- // The case where the load is outside the loop is already covered by the
- // dominator check above.
- // TODO: relax this condition
- if (OrigI->mayReadFromMemory())
- return false;
- for (auto *Op : OrigI->operand_values()) {
- if (!isa<Instruction>(Op))
- continue;
- // Stop now if we find an unsafe operand.
- auto OISIt = OpSafeForPHIOfOps.find(OrigI);
- if (OISIt != OpSafeForPHIOfOps.end()) {
- if (!OISIt->second) {
- OpSafeForPHIOfOps.insert({V, false});
- return false;
- }
- continue;
- }
- if (!Visited.insert(Op).second)
- continue;
- Worklist.push_back(cast<Instruction>(Op));
- }
- return true;
- }
- // Return true if this operand will be safe to use for phi of ops.
- //
- // The reason some operands are unsafe is that we are not trying to recursively
- // translate everything back through phi nodes. We actually expect some lookups
- // of expressions to fail. In particular, a lookup where the expression cannot
- // exist in the predecessor. This is true even if the expression, as shown, can
- // be determined to be constant.
- bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
- SmallPtrSetImpl<const Value *> &Visited) {
- SmallVector<Instruction *, 4> Worklist;
- if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
- return false;
- while (!Worklist.empty()) {
- auto *I = Worklist.pop_back_val();
- if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
- return false;
- }
- OpSafeForPHIOfOps.insert({V, true});
- return true;
- }
- // Try to find a leader for instruction TransInst, which is a phi translated
- // version of something in our original program. Visited is used to ensure we
- // don't infinite loop during translations of cycles. OrigInst is the
- // instruction in the original program, and PredBB is the predecessor we
- // translated it through.
- Value *NewGVN::findLeaderForInst(Instruction *TransInst,
- SmallPtrSetImpl<Value *> &Visited,
- MemoryAccess *MemAccess, Instruction *OrigInst,
- BasicBlock *PredBB) {
- unsigned IDFSNum = InstrToDFSNum(OrigInst);
- // Make sure it's marked as a temporary instruction.
- AllTempInstructions.insert(TransInst);
- // and make sure anything that tries to add it's DFS number is
- // redirected to the instruction we are making a phi of ops
- // for.
- TempToBlock.insert({TransInst, PredBB});
- InstrDFS.insert({TransInst, IDFSNum});
- auto Res = performSymbolicEvaluation(TransInst, Visited);
- const Expression *E = Res.Expr;
- addAdditionalUsers(Res, OrigInst);
- InstrDFS.erase(TransInst);
- AllTempInstructions.erase(TransInst);
- TempToBlock.erase(TransInst);
- if (MemAccess)
- TempToMemory.erase(TransInst);
- if (!E)
- return nullptr;
- auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
- if (!FoundVal) {
- ExpressionToPhiOfOps[E].insert(OrigInst);
- LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
- << " in block " << getBlockName(PredBB) << "\n");
- return nullptr;
- }
- if (auto *SI = dyn_cast<StoreInst>(FoundVal))
- FoundVal = SI->getValueOperand();
- return FoundVal;
- }
- // When we see an instruction that is an op of phis, generate the equivalent phi
- // of ops form.
- const Expression *
- NewGVN::makePossiblePHIOfOps(Instruction *I,
- SmallPtrSetImpl<Value *> &Visited) {
- if (!okayForPHIOfOps(I))
- return nullptr;
- if (!Visited.insert(I).second)
- return nullptr;
- // For now, we require the instruction be cycle free because we don't
- // *always* create a phi of ops for instructions that could be done as phi
- // of ops, we only do it if we think it is useful. If we did do it all the
- // time, we could remove the cycle free check.
- if (!isCycleFree(I))
- return nullptr;
- SmallPtrSet<const Value *, 8> ProcessedPHIs;
- // TODO: We don't do phi translation on memory accesses because it's
- // complicated. For a load, we'd need to be able to simulate a new memoryuse,
- // which we don't have a good way of doing ATM.
- auto *MemAccess = getMemoryAccess(I);
- // If the memory operation is defined by a memory operation this block that
- // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
- // can't help, as it would still be killed by that memory operation.
- if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
- MemAccess->getDefiningAccess()->getBlock() == I->getParent())
- return nullptr;
- // Convert op of phis to phi of ops
- SmallPtrSet<const Value *, 10> VisitedOps;
- SmallVector<Value *, 4> Ops(I->operand_values());
- BasicBlock *SamePHIBlock = nullptr;
- PHINode *OpPHI = nullptr;
- if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
- return nullptr;
- for (auto *Op : Ops) {
- if (!isa<PHINode>(Op)) {
- auto *ValuePHI = RealToTemp.lookup(Op);
- if (!ValuePHI)
- continue;
- LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
- Op = ValuePHI;
- }
- OpPHI = cast<PHINode>(Op);
- if (!SamePHIBlock) {
- SamePHIBlock = getBlockForValue(OpPHI);
- } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
- LLVM_DEBUG(
- dbgs()
- << "PHIs for operands are not all in the same block, aborting\n");
- return nullptr;
- }
- // No point in doing this for one-operand phis.
- if (OpPHI->getNumOperands() == 1) {
- OpPHI = nullptr;
- continue;
- }
- }
- if (!OpPHI)
- return nullptr;
- SmallVector<ValPair, 4> PHIOps;
- SmallPtrSet<Value *, 4> Deps;
- auto *PHIBlock = getBlockForValue(OpPHI);
- RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
- for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
- auto *PredBB = OpPHI->getIncomingBlock(PredNum);
- Value *FoundVal = nullptr;
- SmallPtrSet<Value *, 4> CurrentDeps;
- // We could just skip unreachable edges entirely but it's tricky to do
- // with rewriting existing phi nodes.
- if (ReachableEdges.count({PredBB, PHIBlock})) {
- // Clone the instruction, create an expression from it that is
- // translated back into the predecessor, and see if we have a leader.
- Instruction *ValueOp = I->clone();
- if (MemAccess)
- TempToMemory.insert({ValueOp, MemAccess});
- bool SafeForPHIOfOps = true;
- VisitedOps.clear();
- for (auto &Op : ValueOp->operands()) {
- auto *OrigOp = &*Op;
- // When these operand changes, it could change whether there is a
- // leader for us or not, so we have to add additional users.
- if (isa<PHINode>(Op)) {
- Op = Op->DoPHITranslation(PHIBlock, PredBB);
- if (Op != OrigOp && Op != I)
- CurrentDeps.insert(Op);
- } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
- if (getBlockForValue(ValuePHI) == PHIBlock)
- Op = ValuePHI->getIncomingValueForBlock(PredBB);
- }
- // If we phi-translated the op, it must be safe.
- SafeForPHIOfOps =
- SafeForPHIOfOps &&
- (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
- }
- // FIXME: For those things that are not safe we could generate
- // expressions all the way down, and see if this comes out to a
- // constant. For anything where that is true, and unsafe, we should
- // have made a phi-of-ops (or value numbered it equivalent to something)
- // for the pieces already.
- FoundVal = !SafeForPHIOfOps ? nullptr
- : findLeaderForInst(ValueOp, Visited,
- MemAccess, I, PredBB);
- ValueOp->deleteValue();
- if (!FoundVal) {
- // We failed to find a leader for the current ValueOp, but this might
- // change in case of the translated operands change.
- if (SafeForPHIOfOps)
- for (auto Dep : CurrentDeps)
- addAdditionalUsers(Dep, I);
- return nullptr;
- }
- Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
- } else {
- LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
- << getBlockName(PredBB)
- << " because the block is unreachable\n");
- FoundVal = PoisonValue::get(I->getType());
- RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
- }
- PHIOps.push_back({FoundVal, PredBB});
- LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
- << getBlockName(PredBB) << "\n");
- }
- for (auto Dep : Deps)
- addAdditionalUsers(Dep, I);
- sortPHIOps(PHIOps);
- auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
- if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
- LLVM_DEBUG(
- dbgs()
- << "Not creating real PHI of ops because it simplified to existing "
- "value or constant\n");
- // We have leaders for all operands, but do not create a real PHI node with
- // those leaders as operands, so the link between the operands and the
- // PHI-of-ops is not materialized in the IR. If any of those leaders
- // changes, the PHI-of-op may change also, so we need to add the operands as
- // additional users.
- for (auto &O : PHIOps)
- addAdditionalUsers(O.first, I);
- return E;
- }
- auto *ValuePHI = RealToTemp.lookup(I);
- bool NewPHI = false;
- if (!ValuePHI) {
- ValuePHI =
- PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
- addPhiOfOps(ValuePHI, PHIBlock, I);
- NewPHI = true;
- NumGVNPHIOfOpsCreated++;
- }
- if (NewPHI) {
- for (auto PHIOp : PHIOps)
- ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
- } else {
- TempToBlock[ValuePHI] = PHIBlock;
- unsigned int i = 0;
- for (auto PHIOp : PHIOps) {
- ValuePHI->setIncomingValue(i, PHIOp.first);
- ValuePHI->setIncomingBlock(i, PHIOp.second);
- ++i;
- }
- }
- RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
- LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
- << "\n");
- return E;
- }
- // The algorithm initially places the values of the routine in the TOP
- // congruence class. The leader of TOP is the undetermined value `poison`.
- // When the algorithm has finished, values still in TOP are unreachable.
- void NewGVN::initializeCongruenceClasses(Function &F) {
- NextCongruenceNum = 0;
- // Note that even though we use the live on entry def as a representative
- // MemoryAccess, it is *not* the same as the actual live on entry def. We
- // have no real equivalent to poison for MemoryAccesses, and so we really
- // should be checking whether the MemoryAccess is top if we want to know if it
- // is equivalent to everything. Otherwise, what this really signifies is that
- // the access "it reaches all the way back to the beginning of the function"
- // Initialize all other instructions to be in TOP class.
- TOPClass = createCongruenceClass(nullptr, nullptr);
- TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
- // The live on entry def gets put into it's own class
- MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
- createMemoryClass(MSSA->getLiveOnEntryDef());
- for (auto DTN : nodes(DT)) {
- BasicBlock *BB = DTN->getBlock();
- // All MemoryAccesses are equivalent to live on entry to start. They must
- // be initialized to something so that initial changes are noticed. For
- // the maximal answer, we initialize them all to be the same as
- // liveOnEntry.
- auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
- if (MemoryBlockDefs)
- for (const auto &Def : *MemoryBlockDefs) {
- MemoryAccessToClass[&Def] = TOPClass;
- auto *MD = dyn_cast<MemoryDef>(&Def);
- // Insert the memory phis into the member list.
- if (!MD) {
- const MemoryPhi *MP = cast<MemoryPhi>(&Def);
- TOPClass->memory_insert(MP);
- MemoryPhiState.insert({MP, MPS_TOP});
- }
- if (MD && isa<StoreInst>(MD->getMemoryInst()))
- TOPClass->incStoreCount();
- }
- // FIXME: This is trying to discover which instructions are uses of phi
- // nodes. We should move this into one of the myriad of places that walk
- // all the operands already.
- for (auto &I : *BB) {
- if (isa<PHINode>(&I))
- for (auto *U : I.users())
- if (auto *UInst = dyn_cast<Instruction>(U))
- if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
- PHINodeUses.insert(UInst);
- // Don't insert void terminators into the class. We don't value number
- // them, and they just end up sitting in TOP.
- if (I.isTerminator() && I.getType()->isVoidTy())
- continue;
- TOPClass->insert(&I);
- ValueToClass[&I] = TOPClass;
- }
- }
- // Initialize arguments to be in their own unique congruence classes
- for (auto &FA : F.args())
- createSingletonCongruenceClass(&FA);
- }
- void NewGVN::cleanupTables() {
- for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
- LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
- << " has " << CongruenceClasses[i]->size()
- << " members\n");
- // Make sure we delete the congruence class (probably worth switching to
- // a unique_ptr at some point.
- delete CongruenceClasses[i];
- CongruenceClasses[i] = nullptr;
- }
- // Destroy the value expressions
- SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
- AllTempInstructions.end());
- AllTempInstructions.clear();
- // We have to drop all references for everything first, so there are no uses
- // left as we delete them.
- for (auto *I : TempInst) {
- I->dropAllReferences();
- }
- while (!TempInst.empty()) {
- auto *I = TempInst.pop_back_val();
- I->deleteValue();
- }
- ValueToClass.clear();
- ArgRecycler.clear(ExpressionAllocator);
- ExpressionAllocator.Reset();
- CongruenceClasses.clear();
- ExpressionToClass.clear();
- ValueToExpression.clear();
- RealToTemp.clear();
- AdditionalUsers.clear();
- ExpressionToPhiOfOps.clear();
- TempToBlock.clear();
- TempToMemory.clear();
- PHINodeUses.clear();
- OpSafeForPHIOfOps.clear();
- ReachableBlocks.clear();
- ReachableEdges.clear();
- #ifndef NDEBUG
- ProcessedCount.clear();
- #endif
- InstrDFS.clear();
- InstructionsToErase.clear();
- DFSToInstr.clear();
- BlockInstRange.clear();
- TouchedInstructions.clear();
- MemoryAccessToClass.clear();
- PredicateToUsers.clear();
- MemoryToUsers.clear();
- RevisitOnReachabilityChange.clear();
- IntrinsicInstPred.clear();
- }
- // Assign local DFS number mapping to instructions, and leave space for Value
- // PHI's.
- std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
- unsigned Start) {
- unsigned End = Start;
- if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
- InstrDFS[MemPhi] = End++;
- DFSToInstr.emplace_back(MemPhi);
- }
- // Then the real block goes next.
- for (auto &I : *B) {
- // There's no need to call isInstructionTriviallyDead more than once on
- // an instruction. Therefore, once we know that an instruction is dead
- // we change its DFS number so that it doesn't get value numbered.
- if (isInstructionTriviallyDead(&I, TLI)) {
- InstrDFS[&I] = 0;
- LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
- markInstructionForDeletion(&I);
- continue;
- }
- if (isa<PHINode>(&I))
- RevisitOnReachabilityChange[B].set(End);
- InstrDFS[&I] = End++;
- DFSToInstr.emplace_back(&I);
- }
- // All of the range functions taken half-open ranges (open on the end side).
- // So we do not subtract one from count, because at this point it is one
- // greater than the last instruction.
- return std::make_pair(Start, End);
- }
- void NewGVN::updateProcessedCount(const Value *V) {
- #ifndef NDEBUG
- if (ProcessedCount.count(V) == 0) {
- ProcessedCount.insert({V, 1});
- } else {
- ++ProcessedCount[V];
- assert(ProcessedCount[V] < 100 &&
- "Seem to have processed the same Value a lot");
- }
- #endif
- }
- // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
- void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
- // If all the arguments are the same, the MemoryPhi has the same value as the
- // argument. Filter out unreachable blocks and self phis from our operands.
- // TODO: We could do cycle-checking on the memory phis to allow valueizing for
- // self-phi checking.
- const BasicBlock *PHIBlock = MP->getBlock();
- auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
- return cast<MemoryAccess>(U) != MP &&
- !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
- ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
- });
- // If all that is left is nothing, our memoryphi is poison. We keep it as
- // InitialClass. Note: The only case this should happen is if we have at
- // least one self-argument.
- if (Filtered.begin() == Filtered.end()) {
- if (setMemoryClass(MP, TOPClass))
- markMemoryUsersTouched(MP);
- return;
- }
- // Transform the remaining operands into operand leaders.
- // FIXME: mapped_iterator should have a range version.
- auto LookupFunc = [&](const Use &U) {
- return lookupMemoryLeader(cast<MemoryAccess>(U));
- };
- auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
- auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
- // and now check if all the elements are equal.
- // Sadly, we can't use std::equals since these are random access iterators.
- const auto *AllSameValue = *MappedBegin;
- ++MappedBegin;
- bool AllEqual = std::all_of(
- MappedBegin, MappedEnd,
- [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
- if (AllEqual)
- LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
- << "\n");
- else
- LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
- // If it's equal to something, it's in that class. Otherwise, it has to be in
- // a class where it is the leader (other things may be equivalent to it, but
- // it needs to start off in its own class, which means it must have been the
- // leader, and it can't have stopped being the leader because it was never
- // removed).
- CongruenceClass *CC =
- AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
- auto OldState = MemoryPhiState.lookup(MP);
- assert(OldState != MPS_Invalid && "Invalid memory phi state");
- auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
- MemoryPhiState[MP] = NewState;
- if (setMemoryClass(MP, CC) || OldState != NewState)
- markMemoryUsersTouched(MP);
- }
- // Value number a single instruction, symbolically evaluating, performing
- // congruence finding, and updating mappings.
- void NewGVN::valueNumberInstruction(Instruction *I) {
- LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
- if (!I->isTerminator()) {
- const Expression *Symbolized = nullptr;
- SmallPtrSet<Value *, 2> Visited;
- if (DebugCounter::shouldExecute(VNCounter)) {
- auto Res = performSymbolicEvaluation(I, Visited);
- Symbolized = Res.Expr;
- addAdditionalUsers(Res, I);
- // Make a phi of ops if necessary
- if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
- !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
- auto *PHIE = makePossiblePHIOfOps(I, Visited);
- // If we created a phi of ops, use it.
- // If we couldn't create one, make sure we don't leave one lying around
- if (PHIE) {
- Symbolized = PHIE;
- } else if (auto *Op = RealToTemp.lookup(I)) {
- removePhiOfOps(I, Op);
- }
- }
- } else {
- // Mark the instruction as unused so we don't value number it again.
- InstrDFS[I] = 0;
- }
- // If we couldn't come up with a symbolic expression, use the unknown
- // expression
- if (Symbolized == nullptr)
- Symbolized = createUnknownExpression(I);
- performCongruenceFinding(I, Symbolized);
- } else {
- // Handle terminators that return values. All of them produce values we
- // don't currently understand. We don't place non-value producing
- // terminators in a class.
- if (!I->getType()->isVoidTy()) {
- auto *Symbolized = createUnknownExpression(I);
- performCongruenceFinding(I, Symbolized);
- }
- processOutgoingEdges(I, I->getParent());
- }
- }
- // Check if there is a path, using single or equal argument phi nodes, from
- // First to Second.
- bool NewGVN::singleReachablePHIPath(
- SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
- const MemoryAccess *Second) const {
- if (First == Second)
- return true;
- if (MSSA->isLiveOnEntryDef(First))
- return false;
- // This is not perfect, but as we're just verifying here, we can live with
- // the loss of precision. The real solution would be that of doing strongly
- // connected component finding in this routine, and it's probably not worth
- // the complexity for the time being. So, we just keep a set of visited
- // MemoryAccess and return true when we hit a cycle.
- if (Visited.count(First))
- return true;
- Visited.insert(First);
- const auto *EndDef = First;
- for (auto *ChainDef : optimized_def_chain(First)) {
- if (ChainDef == Second)
- return true;
- if (MSSA->isLiveOnEntryDef(ChainDef))
- return false;
- EndDef = ChainDef;
- }
- auto *MP = cast<MemoryPhi>(EndDef);
- auto ReachableOperandPred = [&](const Use &U) {
- return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
- };
- auto FilteredPhiArgs =
- make_filter_range(MP->operands(), ReachableOperandPred);
- SmallVector<const Value *, 32> OperandList;
- llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
- bool Okay = is_splat(OperandList);
- if (Okay)
- return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
- Second);
- return false;
- }
- // Verify the that the memory equivalence table makes sense relative to the
- // congruence classes. Note that this checking is not perfect, and is currently
- // subject to very rare false negatives. It is only useful for
- // testing/debugging.
- void NewGVN::verifyMemoryCongruency() const {
- #ifndef NDEBUG
- // Verify that the memory table equivalence and memory member set match
- for (const auto *CC : CongruenceClasses) {
- if (CC == TOPClass || CC->isDead())
- continue;
- if (CC->getStoreCount() != 0) {
- assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
- "Any class with a store as a leader should have a "
- "representative stored value");
- assert(CC->getMemoryLeader() &&
- "Any congruence class with a store should have a "
- "representative access");
- }
- if (CC->getMemoryLeader())
- assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
- "Representative MemoryAccess does not appear to be reverse "
- "mapped properly");
- for (auto M : CC->memory())
- assert(MemoryAccessToClass.lookup(M) == CC &&
- "Memory member does not appear to be reverse mapped properly");
- }
- // Anything equivalent in the MemoryAccess table should be in the same
- // congruence class.
- // Filter out the unreachable and trivially dead entries, because they may
- // never have been updated if the instructions were not processed.
- auto ReachableAccessPred =
- [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
- bool Result = ReachableBlocks.count(Pair.first->getBlock());
- if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
- MemoryToDFSNum(Pair.first) == 0)
- return false;
- if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
- return !isInstructionTriviallyDead(MemDef->getMemoryInst());
- // We could have phi nodes which operands are all trivially dead,
- // so we don't process them.
- if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
- for (auto &U : MemPHI->incoming_values()) {
- if (auto *I = dyn_cast<Instruction>(&*U)) {
- if (!isInstructionTriviallyDead(I))
- return true;
- }
- }
- return false;
- }
- return true;
- };
- auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
- for (auto KV : Filtered) {
- if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
- auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
- if (FirstMUD && SecondMUD) {
- SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
- assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
- ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
- ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
- "The instructions for these memory operations should have "
- "been in the same congruence class or reachable through"
- "a single argument phi");
- }
- } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
- // We can only sanely verify that MemoryDefs in the operand list all have
- // the same class.
- auto ReachableOperandPred = [&](const Use &U) {
- return ReachableEdges.count(
- {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
- isa<MemoryDef>(U);
- };
- // All arguments should in the same class, ignoring unreachable arguments
- auto FilteredPhiArgs =
- make_filter_range(FirstMP->operands(), ReachableOperandPred);
- SmallVector<const CongruenceClass *, 16> PhiOpClasses;
- std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
- std::back_inserter(PhiOpClasses), [&](const Use &U) {
- const MemoryDef *MD = cast<MemoryDef>(U);
- return ValueToClass.lookup(MD->getMemoryInst());
- });
- assert(is_splat(PhiOpClasses) &&
- "All MemoryPhi arguments should be in the same class");
- }
- }
- #endif
- }
- // Verify that the sparse propagation we did actually found the maximal fixpoint
- // We do this by storing the value to class mapping, touching all instructions,
- // and redoing the iteration to see if anything changed.
- void NewGVN::verifyIterationSettled(Function &F) {
- #ifndef NDEBUG
- LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
- if (DebugCounter::isCounterSet(VNCounter))
- DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
- // Note that we have to store the actual classes, as we may change existing
- // classes during iteration. This is because our memory iteration propagation
- // is not perfect, and so may waste a little work. But it should generate
- // exactly the same congruence classes we have now, with different IDs.
- std::map<const Value *, CongruenceClass> BeforeIteration;
- for (auto &KV : ValueToClass) {
- if (auto *I = dyn_cast<Instruction>(KV.first))
- // Skip unused/dead instructions.
- if (InstrToDFSNum(I) == 0)
- continue;
- BeforeIteration.insert({KV.first, *KV.second});
- }
- TouchedInstructions.set();
- TouchedInstructions.reset(0);
- iterateTouchedInstructions();
- DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
- EqualClasses;
- for (const auto &KV : ValueToClass) {
- if (auto *I = dyn_cast<Instruction>(KV.first))
- // Skip unused/dead instructions.
- if (InstrToDFSNum(I) == 0)
- continue;
- // We could sink these uses, but i think this adds a bit of clarity here as
- // to what we are comparing.
- auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
- auto *AfterCC = KV.second;
- // Note that the classes can't change at this point, so we memoize the set
- // that are equal.
- if (!EqualClasses.count({BeforeCC, AfterCC})) {
- assert(BeforeCC->isEquivalentTo(AfterCC) &&
- "Value number changed after main loop completed!");
- EqualClasses.insert({BeforeCC, AfterCC});
- }
- }
- #endif
- }
- // Verify that for each store expression in the expression to class mapping,
- // only the latest appears, and multiple ones do not appear.
- // Because loads do not use the stored value when doing equality with stores,
- // if we don't erase the old store expressions from the table, a load can find
- // a no-longer valid StoreExpression.
- void NewGVN::verifyStoreExpressions() const {
- #ifndef NDEBUG
- // This is the only use of this, and it's not worth defining a complicated
- // densemapinfo hash/equality function for it.
- std::set<
- std::pair<const Value *,
- std::tuple<const Value *, const CongruenceClass *, Value *>>>
- StoreExpressionSet;
- for (const auto &KV : ExpressionToClass) {
- if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
- // Make sure a version that will conflict with loads is not already there
- auto Res = StoreExpressionSet.insert(
- {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
- SE->getStoredValue())});
- bool Okay = Res.second;
- // It's okay to have the same expression already in there if it is
- // identical in nature.
- // This can happen when the leader of the stored value changes over time.
- if (!Okay)
- Okay = (std::get<1>(Res.first->second) == KV.second) &&
- (lookupOperandLeader(std::get<2>(Res.first->second)) ==
- lookupOperandLeader(SE->getStoredValue()));
- assert(Okay && "Stored expression conflict exists in expression table");
- auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
- assert(ValueExpr && ValueExpr->equals(*SE) &&
- "StoreExpression in ExpressionToClass is not latest "
- "StoreExpression for value");
- }
- }
- #endif
- }
- // This is the main value numbering loop, it iterates over the initial touched
- // instruction set, propagating value numbers, marking things touched, etc,
- // until the set of touched instructions is completely empty.
- void NewGVN::iterateTouchedInstructions() {
- unsigned int Iterations = 0;
- // Figure out where touchedinstructions starts
- int FirstInstr = TouchedInstructions.find_first();
- // Nothing set, nothing to iterate, just return.
- if (FirstInstr == -1)
- return;
- const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
- while (TouchedInstructions.any()) {
- ++Iterations;
- // Walk through all the instructions in all the blocks in RPO.
- // TODO: As we hit a new block, we should push and pop equalities into a
- // table lookupOperandLeader can use, to catch things PredicateInfo
- // might miss, like edge-only equivalences.
- for (unsigned InstrNum : TouchedInstructions.set_bits()) {
- // This instruction was found to be dead. We don't bother looking
- // at it again.
- if (InstrNum == 0) {
- TouchedInstructions.reset(InstrNum);
- continue;
- }
- Value *V = InstrFromDFSNum(InstrNum);
- const BasicBlock *CurrBlock = getBlockForValue(V);
- // If we hit a new block, do reachability processing.
- if (CurrBlock != LastBlock) {
- LastBlock = CurrBlock;
- bool BlockReachable = ReachableBlocks.count(CurrBlock);
- const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
- // If it's not reachable, erase any touched instructions and move on.
- if (!BlockReachable) {
- TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
- LLVM_DEBUG(dbgs() << "Skipping instructions in block "
- << getBlockName(CurrBlock)
- << " because it is unreachable\n");
- continue;
- }
- updateProcessedCount(CurrBlock);
- }
- // Reset after processing (because we may mark ourselves as touched when
- // we propagate equalities).
- TouchedInstructions.reset(InstrNum);
- if (auto *MP = dyn_cast<MemoryPhi>(V)) {
- LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
- valueNumberMemoryPhi(MP);
- } else if (auto *I = dyn_cast<Instruction>(V)) {
- valueNumberInstruction(I);
- } else {
- llvm_unreachable("Should have been a MemoryPhi or Instruction");
- }
- updateProcessedCount(V);
- }
- }
- NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
- }
- // This is the main transformation entry point.
- bool NewGVN::runGVN() {
- if (DebugCounter::isCounterSet(VNCounter))
- StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
- bool Changed = false;
- NumFuncArgs = F.arg_size();
- MSSAWalker = MSSA->getWalker();
- SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
- // Count number of instructions for sizing of hash tables, and come
- // up with a global dfs numbering for instructions.
- unsigned ICount = 1;
- // Add an empty instruction to account for the fact that we start at 1
- DFSToInstr.emplace_back(nullptr);
- // Note: We want ideal RPO traversal of the blocks, which is not quite the
- // same as dominator tree order, particularly with regard whether backedges
- // get visited first or second, given a block with multiple successors.
- // If we visit in the wrong order, we will end up performing N times as many
- // iterations.
- // The dominator tree does guarantee that, for a given dom tree node, it's
- // parent must occur before it in the RPO ordering. Thus, we only need to sort
- // the siblings.
- ReversePostOrderTraversal<Function *> RPOT(&F);
- unsigned Counter = 0;
- for (auto &B : RPOT) {
- auto *Node = DT->getNode(B);
- assert(Node && "RPO and Dominator tree should have same reachability");
- RPOOrdering[Node] = ++Counter;
- }
- // Sort dominator tree children arrays into RPO.
- for (auto &B : RPOT) {
- auto *Node = DT->getNode(B);
- if (Node->getNumChildren() > 1)
- llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
- return RPOOrdering[A] < RPOOrdering[B];
- });
- }
- // Now a standard depth first ordering of the domtree is equivalent to RPO.
- for (auto DTN : depth_first(DT->getRootNode())) {
- BasicBlock *B = DTN->getBlock();
- const auto &BlockRange = assignDFSNumbers(B, ICount);
- BlockInstRange.insert({B, BlockRange});
- ICount += BlockRange.second - BlockRange.first;
- }
- initializeCongruenceClasses(F);
- TouchedInstructions.resize(ICount);
- // Ensure we don't end up resizing the expressionToClass map, as
- // that can be quite expensive. At most, we have one expression per
- // instruction.
- ExpressionToClass.reserve(ICount);
- // Initialize the touched instructions to include the entry block.
- const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
- TouchedInstructions.set(InstRange.first, InstRange.second);
- LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
- << " marked reachable\n");
- ReachableBlocks.insert(&F.getEntryBlock());
- iterateTouchedInstructions();
- verifyMemoryCongruency();
- verifyIterationSettled(F);
- verifyStoreExpressions();
- Changed |= eliminateInstructions(F);
- // Delete all instructions marked for deletion.
- for (Instruction *ToErase : InstructionsToErase) {
- if (!ToErase->use_empty())
- ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
- assert(ToErase->getParent() &&
- "BB containing ToErase deleted unexpectedly!");
- ToErase->eraseFromParent();
- }
- Changed |= !InstructionsToErase.empty();
- // Delete all unreachable blocks.
- auto UnreachableBlockPred = [&](const BasicBlock &BB) {
- return !ReachableBlocks.count(&BB);
- };
- for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
- LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
- << " is unreachable\n");
- deleteInstructionsInBlock(&BB);
- Changed = true;
- }
- cleanupTables();
- return Changed;
- }
- struct NewGVN::ValueDFS {
- int DFSIn = 0;
- int DFSOut = 0;
- int LocalNum = 0;
- // Only one of Def and U will be set.
- // The bool in the Def tells us whether the Def is the stored value of a
- // store.
- PointerIntPair<Value *, 1, bool> Def;
- Use *U = nullptr;
- bool operator<(const ValueDFS &Other) const {
- // It's not enough that any given field be less than - we have sets
- // of fields that need to be evaluated together to give a proper ordering.
- // For example, if you have;
- // DFS (1, 3)
- // Val 0
- // DFS (1, 2)
- // Val 50
- // We want the second to be less than the first, but if we just go field
- // by field, we will get to Val 0 < Val 50 and say the first is less than
- // the second. We only want it to be less than if the DFS orders are equal.
- //
- // Each LLVM instruction only produces one value, and thus the lowest-level
- // differentiator that really matters for the stack (and what we use as as a
- // replacement) is the local dfs number.
- // Everything else in the structure is instruction level, and only affects
- // the order in which we will replace operands of a given instruction.
- //
- // For a given instruction (IE things with equal dfsin, dfsout, localnum),
- // the order of replacement of uses does not matter.
- // IE given,
- // a = 5
- // b = a + a
- // When you hit b, you will have two valuedfs with the same dfsin, out, and
- // localnum.
- // The .val will be the same as well.
- // The .u's will be different.
- // You will replace both, and it does not matter what order you replace them
- // in (IE whether you replace operand 2, then operand 1, or operand 1, then
- // operand 2).
- // Similarly for the case of same dfsin, dfsout, localnum, but different
- // .val's
- // a = 5
- // b = 6
- // c = a + b
- // in c, we will a valuedfs for a, and one for b,with everything the same
- // but .val and .u.
- // It does not matter what order we replace these operands in.
- // You will always end up with the same IR, and this is guaranteed.
- return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
- std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
- Other.U);
- }
- };
- // This function converts the set of members for a congruence class from values,
- // to sets of defs and uses with associated DFS info. The total number of
- // reachable uses for each value is stored in UseCount, and instructions that
- // seem
- // dead (have no non-dead uses) are stored in ProbablyDead.
- void NewGVN::convertClassToDFSOrdered(
- const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
- DenseMap<const Value *, unsigned int> &UseCounts,
- SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
- for (auto D : Dense) {
- // First add the value.
- BasicBlock *BB = getBlockForValue(D);
- // Constants are handled prior to ever calling this function, so
- // we should only be left with instructions as members.
- assert(BB && "Should have figured out a basic block for value");
- ValueDFS VDDef;
- DomTreeNode *DomNode = DT->getNode(BB);
- VDDef.DFSIn = DomNode->getDFSNumIn();
- VDDef.DFSOut = DomNode->getDFSNumOut();
- // If it's a store, use the leader of the value operand, if it's always
- // available, or the value operand. TODO: We could do dominance checks to
- // find a dominating leader, but not worth it ATM.
- if (auto *SI = dyn_cast<StoreInst>(D)) {
- auto Leader = lookupOperandLeader(SI->getValueOperand());
- if (alwaysAvailable(Leader)) {
- VDDef.Def.setPointer(Leader);
- } else {
- VDDef.Def.setPointer(SI->getValueOperand());
- VDDef.Def.setInt(true);
- }
- } else {
- VDDef.Def.setPointer(D);
- }
- assert(isa<Instruction>(D) &&
- "The dense set member should always be an instruction");
- Instruction *Def = cast<Instruction>(D);
- VDDef.LocalNum = InstrToDFSNum(D);
- DFSOrderedSet.push_back(VDDef);
- // If there is a phi node equivalent, add it
- if (auto *PN = RealToTemp.lookup(Def)) {
- auto *PHIE =
- dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
- if (PHIE) {
- VDDef.Def.setInt(false);
- VDDef.Def.setPointer(PN);
- VDDef.LocalNum = 0;
- DFSOrderedSet.push_back(VDDef);
- }
- }
- unsigned int UseCount = 0;
- // Now add the uses.
- for (auto &U : Def->uses()) {
- if (auto *I = dyn_cast<Instruction>(U.getUser())) {
- // Don't try to replace into dead uses
- if (InstructionsToErase.count(I))
- continue;
- ValueDFS VDUse;
- // Put the phi node uses in the incoming block.
- BasicBlock *IBlock;
- if (auto *P = dyn_cast<PHINode>(I)) {
- IBlock = P->getIncomingBlock(U);
- // Make phi node users appear last in the incoming block
- // they are from.
- VDUse.LocalNum = InstrDFS.size() + 1;
- } else {
- IBlock = getBlockForValue(I);
- VDUse.LocalNum = InstrToDFSNum(I);
- }
- // Skip uses in unreachable blocks, as we're going
- // to delete them.
- if (!ReachableBlocks.contains(IBlock))
- continue;
- DomTreeNode *DomNode = DT->getNode(IBlock);
- VDUse.DFSIn = DomNode->getDFSNumIn();
- VDUse.DFSOut = DomNode->getDFSNumOut();
- VDUse.U = &U;
- ++UseCount;
- DFSOrderedSet.emplace_back(VDUse);
- }
- }
- // If there are no uses, it's probably dead (but it may have side-effects,
- // so not definitely dead. Otherwise, store the number of uses so we can
- // track if it becomes dead later).
- if (UseCount == 0)
- ProbablyDead.insert(Def);
- else
- UseCounts[Def] = UseCount;
- }
- }
- // This function converts the set of members for a congruence class from values,
- // to the set of defs for loads and stores, with associated DFS info.
- void NewGVN::convertClassToLoadsAndStores(
- const CongruenceClass &Dense,
- SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
- for (auto D : Dense) {
- if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
- continue;
- BasicBlock *BB = getBlockForValue(D);
- ValueDFS VD;
- DomTreeNode *DomNode = DT->getNode(BB);
- VD.DFSIn = DomNode->getDFSNumIn();
- VD.DFSOut = DomNode->getDFSNumOut();
- VD.Def.setPointer(D);
- // If it's an instruction, use the real local dfs number.
- if (auto *I = dyn_cast<Instruction>(D))
- VD.LocalNum = InstrToDFSNum(I);
- else
- llvm_unreachable("Should have been an instruction");
- LoadsAndStores.emplace_back(VD);
- }
- }
- static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
- patchReplacementInstruction(I, Repl);
- I->replaceAllUsesWith(Repl);
- }
- void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
- LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
- ++NumGVNBlocksDeleted;
- // Delete the instructions backwards, as it has a reduced likelihood of having
- // to update as many def-use and use-def chains. Start after the terminator.
- auto StartPoint = BB->rbegin();
- ++StartPoint;
- // Note that we explicitly recalculate BB->rend() on each iteration,
- // as it may change when we remove the first instruction.
- for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
- Instruction &Inst = *I++;
- if (!Inst.use_empty())
- Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
- if (isa<LandingPadInst>(Inst))
- continue;
- salvageKnowledge(&Inst, AC);
- Inst.eraseFromParent();
- ++NumGVNInstrDeleted;
- }
- // Now insert something that simplifycfg will turn into an unreachable.
- Type *Int8Ty = Type::getInt8Ty(BB->getContext());
- new StoreInst(PoisonValue::get(Int8Ty),
- Constant::getNullValue(Int8Ty->getPointerTo()),
- BB->getTerminator());
- }
- void NewGVN::markInstructionForDeletion(Instruction *I) {
- LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
- InstructionsToErase.insert(I);
- }
- void NewGVN::replaceInstruction(Instruction *I, Value *V) {
- LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
- patchAndReplaceAllUsesWith(I, V);
- // We save the actual erasing to avoid invalidating memory
- // dependencies until we are done with everything.
- markInstructionForDeletion(I);
- }
- namespace {
- // This is a stack that contains both the value and dfs info of where
- // that value is valid.
- class ValueDFSStack {
- public:
- Value *back() const { return ValueStack.back(); }
- std::pair<int, int> dfs_back() const { return DFSStack.back(); }
- void push_back(Value *V, int DFSIn, int DFSOut) {
- ValueStack.emplace_back(V);
- DFSStack.emplace_back(DFSIn, DFSOut);
- }
- bool empty() const { return DFSStack.empty(); }
- bool isInScope(int DFSIn, int DFSOut) const {
- if (empty())
- return false;
- return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
- }
- void popUntilDFSScope(int DFSIn, int DFSOut) {
- // These two should always be in sync at this point.
- assert(ValueStack.size() == DFSStack.size() &&
- "Mismatch between ValueStack and DFSStack");
- while (
- !DFSStack.empty() &&
- !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
- DFSStack.pop_back();
- ValueStack.pop_back();
- }
- }
- private:
- SmallVector<Value *, 8> ValueStack;
- SmallVector<std::pair<int, int>, 8> DFSStack;
- };
- } // end anonymous namespace
- // Given an expression, get the congruence class for it.
- CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
- if (auto *VE = dyn_cast<VariableExpression>(E))
- return ValueToClass.lookup(VE->getVariableValue());
- else if (isa<DeadExpression>(E))
- return TOPClass;
- return ExpressionToClass.lookup(E);
- }
- // Given a value and a basic block we are trying to see if it is available in,
- // see if the value has a leader available in that block.
- Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
- const Instruction *OrigInst,
- const BasicBlock *BB) const {
- // It would already be constant if we could make it constant
- if (auto *CE = dyn_cast<ConstantExpression>(E))
- return CE->getConstantValue();
- if (auto *VE = dyn_cast<VariableExpression>(E)) {
- auto *V = VE->getVariableValue();
- if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
- return VE->getVariableValue();
- }
- auto *CC = getClassForExpression(E);
- if (!CC)
- return nullptr;
- if (alwaysAvailable(CC->getLeader()))
- return CC->getLeader();
- for (auto Member : *CC) {
- auto *MemberInst = dyn_cast<Instruction>(Member);
- if (MemberInst == OrigInst)
- continue;
- // Anything that isn't an instruction is always available.
- if (!MemberInst)
- return Member;
- if (DT->dominates(getBlockForValue(MemberInst), BB))
- return Member;
- }
- return nullptr;
- }
- bool NewGVN::eliminateInstructions(Function &F) {
- // This is a non-standard eliminator. The normal way to eliminate is
- // to walk the dominator tree in order, keeping track of available
- // values, and eliminating them. However, this is mildly
- // pointless. It requires doing lookups on every instruction,
- // regardless of whether we will ever eliminate it. For
- // instructions part of most singleton congruence classes, we know we
- // will never eliminate them.
- // Instead, this eliminator looks at the congruence classes directly, sorts
- // them into a DFS ordering of the dominator tree, and then we just
- // perform elimination straight on the sets by walking the congruence
- // class member uses in order, and eliminate the ones dominated by the
- // last member. This is worst case O(E log E) where E = number of
- // instructions in a single congruence class. In theory, this is all
- // instructions. In practice, it is much faster, as most instructions are
- // either in singleton congruence classes or can't possibly be eliminated
- // anyway (if there are no overlapping DFS ranges in class).
- // When we find something not dominated, it becomes the new leader
- // for elimination purposes.
- // TODO: If we wanted to be faster, We could remove any members with no
- // overlapping ranges while sorting, as we will never eliminate anything
- // with those members, as they don't dominate anything else in our set.
- bool AnythingReplaced = false;
- // Since we are going to walk the domtree anyway, and we can't guarantee the
- // DFS numbers are updated, we compute some ourselves.
- DT->updateDFSNumbers();
- // Go through all of our phi nodes, and kill the arguments associated with
- // unreachable edges.
- auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
- for (auto &Operand : PHI->incoming_values())
- if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
- LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
- << " for block "
- << getBlockName(PHI->getIncomingBlock(Operand))
- << " with poison due to it being unreachable\n");
- Operand.set(PoisonValue::get(PHI->getType()));
- }
- };
- // Replace unreachable phi arguments.
- // At this point, RevisitOnReachabilityChange only contains:
- //
- // 1. PHIs
- // 2. Temporaries that will convert to PHIs
- // 3. Operations that are affected by an unreachable edge but do not fit into
- // 1 or 2 (rare).
- // So it is a slight overshoot of what we want. We could make it exact by
- // using two SparseBitVectors per block.
- DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
- for (auto &KV : ReachableEdges)
- ReachablePredCount[KV.getEnd()]++;
- for (auto &BBPair : RevisitOnReachabilityChange) {
- for (auto InstNum : BBPair.second) {
- auto *Inst = InstrFromDFSNum(InstNum);
- auto *PHI = dyn_cast<PHINode>(Inst);
- PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
- if (!PHI)
- continue;
- auto *BB = BBPair.first;
- if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
- ReplaceUnreachablePHIArgs(PHI, BB);
- }
- }
- // Map to store the use counts
- DenseMap<const Value *, unsigned int> UseCounts;
- for (auto *CC : reverse(CongruenceClasses)) {
- LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
- << "\n");
- // Track the equivalent store info so we can decide whether to try
- // dead store elimination.
- SmallVector<ValueDFS, 8> PossibleDeadStores;
- SmallPtrSet<Instruction *, 8> ProbablyDead;
- if (CC->isDead() || CC->empty())
- continue;
- // Everything still in the TOP class is unreachable or dead.
- if (CC == TOPClass) {
- for (auto M : *CC) {
- auto *VTE = ValueToExpression.lookup(M);
- if (VTE && isa<DeadExpression>(VTE))
- markInstructionForDeletion(cast<Instruction>(M));
- assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
- InstructionsToErase.count(cast<Instruction>(M))) &&
- "Everything in TOP should be unreachable or dead at this "
- "point");
- }
- continue;
- }
- assert(CC->getLeader() && "We should have had a leader");
- // If this is a leader that is always available, and it's a
- // constant or has no equivalences, just replace everything with
- // it. We then update the congruence class with whatever members
- // are left.
- Value *Leader =
- CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
- if (alwaysAvailable(Leader)) {
- CongruenceClass::MemberSet MembersLeft;
- for (auto M : *CC) {
- Value *Member = M;
- // Void things have no uses we can replace.
- if (Member == Leader || !isa<Instruction>(Member) ||
- Member->getType()->isVoidTy()) {
- MembersLeft.insert(Member);
- continue;
- }
- LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
- << *Member << "\n");
- auto *I = cast<Instruction>(Member);
- assert(Leader != I && "About to accidentally remove our leader");
- replaceInstruction(I, Leader);
- AnythingReplaced = true;
- }
- CC->swap(MembersLeft);
- } else {
- // If this is a singleton, we can skip it.
- if (CC->size() != 1 || RealToTemp.count(Leader)) {
- // This is a stack because equality replacement/etc may place
- // constants in the middle of the member list, and we want to use
- // those constant values in preference to the current leader, over
- // the scope of those constants.
- ValueDFSStack EliminationStack;
- // Convert the members to DFS ordered sets and then merge them.
- SmallVector<ValueDFS, 8> DFSOrderedSet;
- convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
- // Sort the whole thing.
- llvm::sort(DFSOrderedSet);
- for (auto &VD : DFSOrderedSet) {
- int MemberDFSIn = VD.DFSIn;
- int MemberDFSOut = VD.DFSOut;
- Value *Def = VD.Def.getPointer();
- bool FromStore = VD.Def.getInt();
- Use *U = VD.U;
- // We ignore void things because we can't get a value from them.
- if (Def && Def->getType()->isVoidTy())
- continue;
- auto *DefInst = dyn_cast_or_null<Instruction>(Def);
- if (DefInst && AllTempInstructions.count(DefInst)) {
- auto *PN = cast<PHINode>(DefInst);
- // If this is a value phi and that's the expression we used, insert
- // it into the program
- // remove from temp instruction list.
- AllTempInstructions.erase(PN);
- auto *DefBlock = getBlockForValue(Def);
- LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
- << " into block "
- << getBlockName(getBlockForValue(Def)) << "\n");
- PN->insertBefore(&DefBlock->front());
- Def = PN;
- NumGVNPHIOfOpsEliminations++;
- }
- if (EliminationStack.empty()) {
- LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
- } else {
- LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
- << EliminationStack.dfs_back().first << ","
- << EliminationStack.dfs_back().second << ")\n");
- }
- LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
- << MemberDFSOut << ")\n");
- // First, we see if we are out of scope or empty. If so,
- // and there equivalences, we try to replace the top of
- // stack with equivalences (if it's on the stack, it must
- // not have been eliminated yet).
- // Then we synchronize to our current scope, by
- // popping until we are back within a DFS scope that
- // dominates the current member.
- // Then, what happens depends on a few factors
- // If the stack is now empty, we need to push
- // If we have a constant or a local equivalence we want to
- // start using, we also push.
- // Otherwise, we walk along, processing members who are
- // dominated by this scope, and eliminate them.
- bool ShouldPush = Def && EliminationStack.empty();
- bool OutOfScope =
- !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
- if (OutOfScope || ShouldPush) {
- // Sync to our current scope.
- EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
- bool ShouldPush = Def && EliminationStack.empty();
- if (ShouldPush) {
- EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
- }
- }
- // Skip the Def's, we only want to eliminate on their uses. But mark
- // dominated defs as dead.
- if (Def) {
- // For anything in this case, what and how we value number
- // guarantees that any side-effets that would have occurred (ie
- // throwing, etc) can be proven to either still occur (because it's
- // dominated by something that has the same side-effects), or never
- // occur. Otherwise, we would not have been able to prove it value
- // equivalent to something else. For these things, we can just mark
- // it all dead. Note that this is different from the "ProbablyDead"
- // set, which may not be dominated by anything, and thus, are only
- // easy to prove dead if they are also side-effect free. Note that
- // because stores are put in terms of the stored value, we skip
- // stored values here. If the stored value is really dead, it will
- // still be marked for deletion when we process it in its own class.
- if (!EliminationStack.empty() && Def != EliminationStack.back() &&
- isa<Instruction>(Def) && !FromStore)
- markInstructionForDeletion(cast<Instruction>(Def));
- continue;
- }
- // At this point, we know it is a Use we are trying to possibly
- // replace.
- assert(isa<Instruction>(U->get()) &&
- "Current def should have been an instruction");
- assert(isa<Instruction>(U->getUser()) &&
- "Current user should have been an instruction");
- // If the thing we are replacing into is already marked to be dead,
- // this use is dead. Note that this is true regardless of whether
- // we have anything dominating the use or not. We do this here
- // because we are already walking all the uses anyway.
- Instruction *InstUse = cast<Instruction>(U->getUser());
- if (InstructionsToErase.count(InstUse)) {
- auto &UseCount = UseCounts[U->get()];
- if (--UseCount == 0) {
- ProbablyDead.insert(cast<Instruction>(U->get()));
- }
- }
- // If we get to this point, and the stack is empty we must have a use
- // with nothing we can use to eliminate this use, so just skip it.
- if (EliminationStack.empty())
- continue;
- Value *DominatingLeader = EliminationStack.back();
- auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
- bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
- if (isSSACopy)
- DominatingLeader = II->getOperand(0);
- // Don't replace our existing users with ourselves.
- if (U->get() == DominatingLeader)
- continue;
- LLVM_DEBUG(dbgs()
- << "Found replacement " << *DominatingLeader << " for "
- << *U->get() << " in " << *(U->getUser()) << "\n");
- // If we replaced something in an instruction, handle the patching of
- // metadata. Skip this if we are replacing predicateinfo with its
- // original operand, as we already know we can just drop it.
- auto *ReplacedInst = cast<Instruction>(U->get());
- auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
- if (!PI || DominatingLeader != PI->OriginalOp)
- patchReplacementInstruction(ReplacedInst, DominatingLeader);
- U->set(DominatingLeader);
- // This is now a use of the dominating leader, which means if the
- // dominating leader was dead, it's now live!
- auto &LeaderUseCount = UseCounts[DominatingLeader];
- // It's about to be alive again.
- if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
- ProbablyDead.erase(cast<Instruction>(DominatingLeader));
- // For copy instructions, we use their operand as a leader,
- // which means we remove a user of the copy and it may become dead.
- if (isSSACopy) {
- unsigned &IIUseCount = UseCounts[II];
- if (--IIUseCount == 0)
- ProbablyDead.insert(II);
- }
- ++LeaderUseCount;
- AnythingReplaced = true;
- }
- }
- }
- // At this point, anything still in the ProbablyDead set is actually dead if
- // would be trivially dead.
- for (auto *I : ProbablyDead)
- if (wouldInstructionBeTriviallyDead(I))
- markInstructionForDeletion(I);
- // Cleanup the congruence class.
- CongruenceClass::MemberSet MembersLeft;
- for (auto *Member : *CC)
- if (!isa<Instruction>(Member) ||
- !InstructionsToErase.count(cast<Instruction>(Member)))
- MembersLeft.insert(Member);
- CC->swap(MembersLeft);
- // If we have possible dead stores to look at, try to eliminate them.
- if (CC->getStoreCount() > 0) {
- convertClassToLoadsAndStores(*CC, PossibleDeadStores);
- llvm::sort(PossibleDeadStores);
- ValueDFSStack EliminationStack;
- for (auto &VD : PossibleDeadStores) {
- int MemberDFSIn = VD.DFSIn;
- int MemberDFSOut = VD.DFSOut;
- Instruction *Member = cast<Instruction>(VD.Def.getPointer());
- if (EliminationStack.empty() ||
- !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
- // Sync to our current scope.
- EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
- if (EliminationStack.empty()) {
- EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
- continue;
- }
- }
- // We already did load elimination, so nothing to do here.
- if (isa<LoadInst>(Member))
- continue;
- assert(!EliminationStack.empty());
- Instruction *Leader = cast<Instruction>(EliminationStack.back());
- (void)Leader;
- assert(DT->dominates(Leader->getParent(), Member->getParent()));
- // Member is dominater by Leader, and thus dead
- LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
- << " that is dominated by " << *Leader << "\n");
- markInstructionForDeletion(Member);
- CC->erase(Member);
- ++NumGVNDeadStores;
- }
- }
- }
- return AnythingReplaced;
- }
- // This function provides global ranking of operations so that we can place them
- // in a canonical order. Note that rank alone is not necessarily enough for a
- // complete ordering, as constants all have the same rank. However, generally,
- // we will simplify an operation with all constants so that it doesn't matter
- // what order they appear in.
- unsigned int NewGVN::getRank(const Value *V) const {
- // Prefer constants to undef to anything else
- // Undef is a constant, have to check it first.
- // Prefer poison to undef as it's less defined.
- // Prefer smaller constants to constantexprs
- // Note that the order here matters because of class inheritance
- if (isa<ConstantExpr>(V))
- return 3;
- if (isa<PoisonValue>(V))
- return 1;
- if (isa<UndefValue>(V))
- return 2;
- if (isa<Constant>(V))
- return 0;
- if (auto *A = dyn_cast<Argument>(V))
- return 4 + A->getArgNo();
- // Need to shift the instruction DFS by number of arguments + 5 to account for
- // the constant and argument ranking above.
- unsigned Result = InstrToDFSNum(V);
- if (Result > 0)
- return 5 + NumFuncArgs + Result;
- // Unreachable or something else, just return a really large number.
- return ~0;
- }
- // This is a function that says whether two commutative operations should
- // have their order swapped when canonicalizing.
- bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
- // Because we only care about a total ordering, and don't rewrite expressions
- // in this order, we order by rank, which will give a strict weak ordering to
- // everything but constants, and then we order by pointer address.
- return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
- }
- bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
- const IntrinsicInst *I) const {
- auto LookupResult = IntrinsicInstPred.find(I);
- if (shouldSwapOperands(A, B)) {
- if (LookupResult == IntrinsicInstPred.end())
- IntrinsicInstPred.insert({I, B});
- else
- LookupResult->second = B;
- return true;
- }
- if (LookupResult != IntrinsicInstPred.end()) {
- auto *SeenPredicate = LookupResult->second;
- if (SeenPredicate) {
- if (SeenPredicate == B)
- return true;
- else
- LookupResult->second = nullptr;
- }
- }
- return false;
- }
- namespace {
- class NewGVNLegacyPass : public FunctionPass {
- public:
- // Pass identification, replacement for typeid.
- static char ID;
- NewGVNLegacyPass() : FunctionPass(ID) {
- initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- private:
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- }
- };
- } // end anonymous namespace
- bool NewGVNLegacyPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
- &getAnalysis<AAResultsWrapperPass>().getAAResults(),
- &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
- F.getParent()->getDataLayout())
- .runGVN();
- }
- char NewGVNLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
- false)
- // createGVNPass - The public interface to this file.
- FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
- PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
- // Apparently the order in which we get these results matter for
- // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
- // the same order here, just in case.
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
- bool Changed =
- NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
- .runGVN();
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- return PA;
- }
|