123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364 |
- //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs loop invariant code motion, attempting to remove as much
- // code from the body of a loop as possible. It does this by either hoisting
- // code into the preheader block, or by sinking code to the exit blocks if it is
- // safe. This pass also promotes must-aliased memory locations in the loop to
- // live in registers, thus hoisting and sinking "invariant" loads and stores.
- //
- // Hoisting operations out of loops is a canonicalization transform. It
- // enables and simplifies subsequent optimizations in the middle-end.
- // Rematerialization of hoisted instructions to reduce register pressure is the
- // responsibility of the back-end, which has more accurate information about
- // register pressure and also handles other optimizations than LICM that
- // increase live-ranges.
- //
- // This pass uses alias analysis for two purposes:
- //
- // 1. Moving loop invariant loads and calls out of loops. If we can determine
- // that a load or call inside of a loop never aliases anything stored to,
- // we can hoist it or sink it like any other instruction.
- // 2. Scalar Promotion of Memory - If there is a store instruction inside of
- // the loop, we try to move the store to happen AFTER the loop instead of
- // inside of the loop. This can only happen if a few conditions are true:
- // A. The pointer stored through is loop invariant
- // B. There are no stores or loads in the loop which _may_ alias the
- // pointer. There are no calls in the loop which mod/ref the pointer.
- // If these conditions are true, we can promote the loads and stores in the
- // loop of the pointer to use a temporary alloca'd variable. We then use
- // the SSAUpdater to construct the appropriate SSA form for the value.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LICM.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/PredIteratorCache.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Scalar/LoopPassManager.h"
- #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include <algorithm>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "licm"
- STATISTIC(NumCreatedBlocks, "Number of blocks created");
- STATISTIC(NumClonedBranches, "Number of branches cloned");
- STATISTIC(NumSunk, "Number of instructions sunk out of loop");
- STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
- STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
- STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
- STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
- /// Memory promotion is enabled by default.
- static cl::opt<bool>
- DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
- cl::desc("Disable memory promotion in LICM pass"));
- static cl::opt<bool> ControlFlowHoisting(
- "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
- cl::desc("Enable control flow (and PHI) hoisting in LICM"));
- static cl::opt<uint32_t> MaxNumUsesTraversed(
- "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
- cl::desc("Max num uses visited for identifying load "
- "invariance in loop using invariant start (default = 8)"));
- // Experimental option to allow imprecision in LICM in pathological cases, in
- // exchange for faster compile. This is to be removed if MemorySSA starts to
- // address the same issue. This flag applies only when LICM uses MemorySSA
- // instead on AliasSetTracker. LICM calls MemorySSAWalker's
- // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
- // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
- // which may not be precise, since optimizeUses is capped. The result is
- // correct, but we may not get as "far up" as possible to get which access is
- // clobbering the one queried.
- cl::opt<unsigned> llvm::SetLicmMssaOptCap(
- "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
- cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
- "for faster compile. Caps the MemorySSA clobbering calls."));
- // Experimentally, memory promotion carries less importance than sinking and
- // hoisting. Limit when we do promotion when using MemorySSA, in order to save
- // compile time.
- cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
- "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
- cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
- "effect. When MSSA in LICM is enabled, then this is the maximum "
- "number of accesses allowed to be present in a loop in order to "
- "enable memory promotion."));
- static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
- static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop,
- bool LoopNestMode);
- static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE);
- static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- BlockFrequencyInfo *BFI, const Loop *CurLoop,
- ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
- OptimizationRemarkEmitter *ORE);
- static bool isSafeToExecuteUnconditionally(
- Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
- const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
- bool AllowSpeculation);
- static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
- AliasSetTracker *CurAST, Loop *CurLoop,
- AAResults *AA);
- static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
- Loop *CurLoop, Instruction &I,
- SinkAndHoistLICMFlags &Flags);
- static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
- MemoryUse &MU);
- static Instruction *cloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
- static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU);
- static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
- static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
- function_ref<void(Instruction *)> Fn);
- static SmallVector<SmallSetVector<Value *, 8>, 0>
- collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
- namespace {
- struct LoopInvariantCodeMotion {
- bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
- BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
- OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
- LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap,
- bool LicmAllowSpeculation)
- : LicmMssaOptCap(LicmMssaOptCap),
- LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
- LicmAllowSpeculation(LicmAllowSpeculation) {}
- private:
- unsigned LicmMssaOptCap;
- unsigned LicmMssaNoAccForPromotionCap;
- bool LicmAllowSpeculation;
- };
- struct LegacyLICMPass : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
- LegacyLICMPass(
- unsigned LicmMssaOptCap = SetLicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
- bool LicmAllowSpeculation = true)
- : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- LicmAllowSpeculation) {
- initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
- LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
- << L->getHeader()->getNameOrAsOperand() << "\n");
- auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
- bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
- BlockFrequencyInfo *BFI =
- hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
- : nullptr;
- // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
- return LICM.runOnLoop(
- L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
- &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
- &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
- *L->getHeader()->getParent()),
- &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent()),
- SE ? &SE->getSE() : nullptr, MSSA, &ORE);
- }
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
- AU.addPreserved<LazyBlockFrequencyInfoPass>();
- AU.addPreserved<LazyBranchProbabilityInfoPass>();
- }
- private:
- LoopInvariantCodeMotion LICM;
- };
- } // namespace
- PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- if (!AR.MSSA)
- report_fatal_error("LICM requires MemorySSA (loop-mssa)");
- // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
- LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- LicmAllowSpeculation);
- if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
- &AR.SE, AR.MSSA, &ORE))
- return PreservedAnalyses::all();
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &) {
- if (!AR.MSSA)
- report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
- // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(LN.getParent());
- LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- LicmAllowSpeculation);
- Loop &OutermostLoop = LN.getOutermostLoop();
- bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
- &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
- if (!Changed)
- return PreservedAnalyses::all();
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- char LegacyLICMPass::ID = 0;
- INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
- INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
- false)
- Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
- Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap,
- bool LicmAllowSpeculation) {
- return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- LicmAllowSpeculation);
- }
- llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
- MemorySSA *MSSA)
- : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
- IsSink, L, MSSA) {}
- llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
- unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
- Loop *L, MemorySSA *MSSA)
- : LicmMssaOptCap(LicmMssaOptCap),
- LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
- IsSink(IsSink) {
- assert(((L != nullptr) == (MSSA != nullptr)) &&
- "Unexpected values for SinkAndHoistLICMFlags");
- if (!MSSA)
- return;
- unsigned AccessCapCount = 0;
- for (auto *BB : L->getBlocks())
- if (const auto *Accesses = MSSA->getBlockAccesses(BB))
- for (const auto &MA : *Accesses) {
- (void)MA;
- ++AccessCapCount;
- if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
- NoOfMemAccTooLarge = true;
- return;
- }
- }
- }
- /// Hoist expressions out of the specified loop. Note, alias info for inner
- /// loop is not preserved so it is not a good idea to run LICM multiple
- /// times on one loop.
- bool LoopInvariantCodeMotion::runOnLoop(
- Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
- BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
- ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
- bool LoopNestMode) {
- bool Changed = false;
- assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
- // If this loop has metadata indicating that LICM is not to be performed then
- // just exit.
- if (hasDisableLICMTransformsHint(L)) {
- return false;
- }
- // Don't sink stores from loops with coroutine suspend instructions.
- // LICM would sink instructions into the default destination of
- // the coroutine switch. The default destination of the switch is to
- // handle the case where the coroutine is suspended, by which point the
- // coroutine frame may have been destroyed. No instruction can be sunk there.
- // FIXME: This would unfortunately hurt the performance of coroutines, however
- // there is currently no general solution for this. Similar issues could also
- // potentially happen in other passes where instructions are being moved
- // across that edge.
- bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
- return llvm::any_of(*BB, [](Instruction &I) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
- return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
- });
- });
- MemorySSAUpdater MSSAU(MSSA);
- SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- /*IsSink=*/true, L, MSSA);
- // Get the preheader block to move instructions into...
- BasicBlock *Preheader = L->getLoopPreheader();
- // Compute loop safety information.
- ICFLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(L);
- // We want to visit all of the instructions in this loop... that are not parts
- // of our subloops (they have already had their invariants hoisted out of
- // their loop, into this loop, so there is no need to process the BODIES of
- // the subloops).
- //
- // Traverse the body of the loop in depth first order on the dominator tree so
- // that we are guaranteed to see definitions before we see uses. This allows
- // us to sink instructions in one pass, without iteration. After sinking
- // instructions, we perform another pass to hoist them out of the loop.
- if (L->hasDedicatedExits())
- Changed |= LoopNestMode
- ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
- DT, BFI, TLI, TTI, L, &MSSAU,
- &SafetyInfo, Flags, ORE)
- : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
- TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
- Flags.setIsSink(false);
- if (Preheader)
- Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
- &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
- LicmAllowSpeculation);
- // Now that all loop invariants have been removed from the loop, promote any
- // memory references to scalars that we can.
- // Don't sink stores from loops without dedicated block exits. Exits
- // containing indirect branches are not transformed by loop simplify,
- // make sure we catch that. An additional load may be generated in the
- // preheader for SSA updater, so also avoid sinking when no preheader
- // is available.
- if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
- !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
- // Figure out the loop exits and their insertion points
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- // We can't insert into a catchswitch.
- bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
- return isa<CatchSwitchInst>(Exit->getTerminator());
- });
- if (!HasCatchSwitch) {
- SmallVector<Instruction *, 8> InsertPts;
- SmallVector<MemoryAccess *, 8> MSSAInsertPts;
- InsertPts.reserve(ExitBlocks.size());
- MSSAInsertPts.reserve(ExitBlocks.size());
- for (BasicBlock *ExitBlock : ExitBlocks) {
- InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
- MSSAInsertPts.push_back(nullptr);
- }
- PredIteratorCache PIC;
- // Promoting one set of accesses may make the pointers for another set
- // loop invariant, so run this in a loop (with the MaybePromotable set
- // decreasing in size over time).
- bool Promoted = false;
- bool LocalPromoted;
- do {
- LocalPromoted = false;
- for (const SmallSetVector<Value *, 8> &PointerMustAliases :
- collectPromotionCandidates(MSSA, AA, L)) {
- LocalPromoted |= promoteLoopAccessesToScalars(
- PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
- DT, TLI, L, &MSSAU, &SafetyInfo, ORE, LicmAllowSpeculation);
- }
- Promoted |= LocalPromoted;
- } while (LocalPromoted);
- // Once we have promoted values across the loop body we have to
- // recursively reform LCSSA as any nested loop may now have values defined
- // within the loop used in the outer loop.
- // FIXME: This is really heavy handed. It would be a bit better to use an
- // SSAUpdater strategy during promotion that was LCSSA aware and reformed
- // it as it went.
- if (Promoted)
- formLCSSARecursively(*L, *DT, LI, SE);
- Changed |= Promoted;
- }
- }
- // Check that neither this loop nor its parent have had LCSSA broken. LICM is
- // specifically moving instructions across the loop boundary and so it is
- // especially in need of basic functional correctness checking here.
- assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
- assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
- "Parent loop not left in LCSSA form after LICM!");
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- if (Changed && SE)
- SE->forgetLoopDispositions(L);
- return Changed;
- }
- /// Walk the specified region of the CFG (defined by all blocks dominated by
- /// the specified block, and that are in the current loop) in reverse depth
- /// first order w.r.t the DominatorTree. This allows us to visit uses before
- /// definitions, allowing us to sink a loop body in one pass without iteration.
- ///
- bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
- DominatorTree *DT, BlockFrequencyInfo *BFI,
- TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
- Loop *CurLoop, MemorySSAUpdater *MSSAU,
- ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to sinkRegion.");
- // We want to visit children before parents. We will enque all the parents
- // before their children in the worklist and process the worklist in reverse
- // order.
- SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
- bool Changed = false;
- for (DomTreeNode *DTN : reverse(Worklist)) {
- BasicBlock *BB = DTN->getBlock();
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (inSubLoop(BB, CurLoop, LI))
- continue;
- for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
- Instruction &I = *--II;
- // The instruction is not used in the loop if it is dead. In this case,
- // we just delete it instead of sinking it.
- if (isInstructionTriviallyDead(&I, TLI)) {
- LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
- salvageKnowledge(&I);
- salvageDebugInfo(I);
- ++II;
- eraseInstruction(I, *SafetyInfo, MSSAU);
- Changed = true;
- continue;
- }
- // Check to see if we can sink this instruction to the exit blocks
- // of the loop. We can do this if the all users of the instruction are
- // outside of the loop. In this case, it doesn't even matter if the
- // operands of the instruction are loop invariant.
- //
- bool FreeInLoop = false;
- bool LoopNestMode = OutermostLoop != nullptr;
- if (!I.mayHaveSideEffects() &&
- isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
- SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
- &Flags, ORE)) {
- if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
- if (!FreeInLoop) {
- ++II;
- salvageDebugInfo(I);
- eraseInstruction(I, *SafetyInfo, MSSAU);
- }
- Changed = true;
- }
- }
- }
- }
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- return Changed;
- }
- bool llvm::sinkRegionForLoopNest(
- DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
- BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
- Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
- bool Changed = false;
- SmallPriorityWorklist<Loop *, 4> Worklist;
- Worklist.insert(CurLoop);
- appendLoopsToWorklist(*CurLoop, Worklist);
- while (!Worklist.empty()) {
- Loop *L = Worklist.pop_back_val();
- Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
- TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
- }
- return Changed;
- }
- namespace {
- // This is a helper class for hoistRegion to make it able to hoist control flow
- // in order to be able to hoist phis. The way this works is that we initially
- // start hoisting to the loop preheader, and when we see a loop invariant branch
- // we make note of this. When we then come to hoist an instruction that's
- // conditional on such a branch we duplicate the branch and the relevant control
- // flow, then hoist the instruction into the block corresponding to its original
- // block in the duplicated control flow.
- class ControlFlowHoister {
- private:
- // Information about the loop we are hoisting from
- LoopInfo *LI;
- DominatorTree *DT;
- Loop *CurLoop;
- MemorySSAUpdater *MSSAU;
- // A map of blocks in the loop to the block their instructions will be hoisted
- // to.
- DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
- // The branches that we can hoist, mapped to the block that marks a
- // convergence point of their control flow.
- DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
- public:
- ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
- MemorySSAUpdater *MSSAU)
- : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
- void registerPossiblyHoistableBranch(BranchInst *BI) {
- // We can only hoist conditional branches with loop invariant operands.
- if (!ControlFlowHoisting || !BI->isConditional() ||
- !CurLoop->hasLoopInvariantOperands(BI))
- return;
- // The branch destinations need to be in the loop, and we don't gain
- // anything by duplicating conditional branches with duplicate successors,
- // as it's essentially the same as an unconditional branch.
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
- TrueDest == FalseDest)
- return;
- // We can hoist BI if one branch destination is the successor of the other,
- // or both have common successor which we check by seeing if the
- // intersection of their successors is non-empty.
- // TODO: This could be expanded to allowing branches where both ends
- // eventually converge to a single block.
- SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
- TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
- FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
- BasicBlock *CommonSucc = nullptr;
- if (TrueDestSucc.count(FalseDest)) {
- CommonSucc = FalseDest;
- } else if (FalseDestSucc.count(TrueDest)) {
- CommonSucc = TrueDest;
- } else {
- set_intersect(TrueDestSucc, FalseDestSucc);
- // If there's one common successor use that.
- if (TrueDestSucc.size() == 1)
- CommonSucc = *TrueDestSucc.begin();
- // If there's more than one pick whichever appears first in the block list
- // (we can't use the value returned by TrueDestSucc.begin() as it's
- // unpredicatable which element gets returned).
- else if (!TrueDestSucc.empty()) {
- Function *F = TrueDest->getParent();
- auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
- auto It = llvm::find_if(*F, IsSucc);
- assert(It != F->end() && "Could not find successor in function");
- CommonSucc = &*It;
- }
- }
- // The common successor has to be dominated by the branch, as otherwise
- // there will be some other path to the successor that will not be
- // controlled by this branch so any phi we hoist would be controlled by the
- // wrong condition. This also takes care of avoiding hoisting of loop back
- // edges.
- // TODO: In some cases this could be relaxed if the successor is dominated
- // by another block that's been hoisted and we can guarantee that the
- // control flow has been replicated exactly.
- if (CommonSucc && DT->dominates(BI, CommonSucc))
- HoistableBranches[BI] = CommonSucc;
- }
- bool canHoistPHI(PHINode *PN) {
- // The phi must have loop invariant operands.
- if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
- return false;
- // We can hoist phis if the block they are in is the target of hoistable
- // branches which cover all of the predecessors of the block.
- SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
- BasicBlock *BB = PN->getParent();
- for (BasicBlock *PredBB : predecessors(BB))
- PredecessorBlocks.insert(PredBB);
- // If we have less predecessor blocks than predecessors then the phi will
- // have more than one incoming value for the same block which we can't
- // handle.
- // TODO: This could be handled be erasing some of the duplicate incoming
- // values.
- if (PredecessorBlocks.size() != pred_size(BB))
- return false;
- for (auto &Pair : HoistableBranches) {
- if (Pair.second == BB) {
- // Which blocks are predecessors via this branch depends on if the
- // branch is triangle-like or diamond-like.
- if (Pair.first->getSuccessor(0) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- } else if (Pair.first->getSuccessor(1) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- } else {
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- }
- }
- }
- // PredecessorBlocks will now be empty if for every predecessor of BB we
- // found a hoistable branch source.
- return PredecessorBlocks.empty();
- }
- BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
- if (!ControlFlowHoisting)
- return CurLoop->getLoopPreheader();
- // If BB has already been hoisted, return that
- if (HoistDestinationMap.count(BB))
- return HoistDestinationMap[BB];
- // Check if this block is conditional based on a pending branch
- auto HasBBAsSuccessor =
- [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
- return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
- Pair.first->getSuccessor(1) == BB);
- };
- auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
- // If not involved in a pending branch, hoist to preheader
- BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
- if (It == HoistableBranches.end()) {
- LLVM_DEBUG(dbgs() << "LICM using "
- << InitialPreheader->getNameOrAsOperand()
- << " as hoist destination for "
- << BB->getNameOrAsOperand() << "\n");
- HoistDestinationMap[BB] = InitialPreheader;
- return InitialPreheader;
- }
- BranchInst *BI = It->first;
- assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
- HoistableBranches.end() &&
- "BB is expected to be the target of at most one branch");
- LLVMContext &C = BB->getContext();
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- BasicBlock *CommonSucc = HoistableBranches[BI];
- BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
- // Create hoisted versions of blocks that currently don't have them
- auto CreateHoistedBlock = [&](BasicBlock *Orig) {
- if (HoistDestinationMap.count(Orig))
- return HoistDestinationMap[Orig];
- BasicBlock *New =
- BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
- HoistDestinationMap[Orig] = New;
- DT->addNewBlock(New, HoistTarget);
- if (CurLoop->getParentLoop())
- CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
- ++NumCreatedBlocks;
- LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
- << " as hoist destination for " << Orig->getName()
- << "\n");
- return New;
- };
- BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
- BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
- BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
- // Link up these blocks with branches.
- if (!HoistCommonSucc->getTerminator()) {
- // The new common successor we've generated will branch to whatever that
- // hoist target branched to.
- BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
- assert(TargetSucc && "Expected hoist target to have a single successor");
- HoistCommonSucc->moveBefore(TargetSucc);
- BranchInst::Create(TargetSucc, HoistCommonSucc);
- }
- if (!HoistTrueDest->getTerminator()) {
- HoistTrueDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistTrueDest);
- }
- if (!HoistFalseDest->getTerminator()) {
- HoistFalseDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistFalseDest);
- }
- // If BI is being cloned to what was originally the preheader then
- // HoistCommonSucc will now be the new preheader.
- if (HoistTarget == InitialPreheader) {
- // Phis in the loop header now need to use the new preheader.
- InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
- MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
- HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
- // The new preheader dominates the loop header.
- DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
- DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
- DT->changeImmediateDominator(HeaderNode, PreheaderNode);
- // The preheader hoist destination is now the new preheader, with the
- // exception of the hoist destination of this branch.
- for (auto &Pair : HoistDestinationMap)
- if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
- Pair.second = HoistCommonSucc;
- }
- // Now finally clone BI.
- ReplaceInstWithInst(
- HoistTarget->getTerminator(),
- BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
- ++NumClonedBranches;
- assert(CurLoop->getLoopPreheader() &&
- "Hoisting blocks should not have destroyed preheader");
- return HoistDestinationMap[BB];
- }
- };
- } // namespace
- /// Walk the specified region of the CFG (defined by all blocks dominated by
- /// the specified block, and that are in the current loop) in depth first
- /// order w.r.t the DominatorTree. This allows us to visit definitions before
- /// uses, allowing us to hoist a loop body in one pass without iteration.
- ///
- bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
- DominatorTree *DT, BlockFrequencyInfo *BFI,
- TargetLibraryInfo *TLI, Loop *CurLoop,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
- ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE, bool LoopNestMode,
- bool AllowSpeculation) {
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to hoistRegion.");
- ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
- // Keep track of instructions that have been hoisted, as they may need to be
- // re-hoisted if they end up not dominating all of their uses.
- SmallVector<Instruction *, 16> HoistedInstructions;
- // For PHI hoisting to work we need to hoist blocks before their successors.
- // We can do this by iterating through the blocks in the loop in reverse
- // post-order.
- LoopBlocksRPO Worklist(CurLoop);
- Worklist.perform(LI);
- bool Changed = false;
- for (BasicBlock *BB : Worklist) {
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
- continue;
- for (Instruction &I : llvm::make_early_inc_range(*BB)) {
- // Try constant folding this instruction. If all the operands are
- // constants, it is technically hoistable, but it would be better to
- // just fold it.
- if (Constant *C = ConstantFoldInstruction(
- &I, I.getModule()->getDataLayout(), TLI)) {
- LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
- << '\n');
- // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
- I.replaceAllUsesWith(C);
- if (isInstructionTriviallyDead(&I, TLI))
- eraseInstruction(I, *SafetyInfo, MSSAU);
- Changed = true;
- continue;
- }
- // Try hoisting the instruction out to the preheader. We can only do
- // this if all of the operands of the instruction are loop invariant and
- // if it is safe to hoist the instruction. We also check block frequency
- // to make sure instruction only gets hoisted into colder blocks.
- // TODO: It may be safe to hoist if we are hoisting to a conditional block
- // and we have accurately duplicated the control flow from the loop header
- // to that block.
- if (CurLoop->hasLoopInvariantOperands(&I) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
- true, &Flags, ORE) &&
- isSafeToExecuteUnconditionally(
- I, DT, TLI, CurLoop, SafetyInfo, ORE,
- CurLoop->getLoopPreheader()->getTerminator(), AllowSpeculation)) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
- // Attempt to remove floating point division out of the loop by
- // converting it to a reciprocal multiplication.
- if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
- CurLoop->isLoopInvariant(I.getOperand(1))) {
- auto Divisor = I.getOperand(1);
- auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
- auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
- ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
- ReciprocalDivisor->insertBefore(&I);
- auto Product =
- BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
- Product->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(Product, I.getParent());
- Product->insertAfter(&I);
- I.replaceAllUsesWith(Product);
- eraseInstruction(I, *SafetyInfo, MSSAU);
- hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
- SafetyInfo, MSSAU, SE, ORE);
- HoistedInstructions.push_back(ReciprocalDivisor);
- Changed = true;
- continue;
- }
- auto IsInvariantStart = [&](Instruction &I) {
- using namespace PatternMatch;
- return I.use_empty() &&
- match(&I, m_Intrinsic<Intrinsic::invariant_start>());
- };
- auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
- return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
- SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
- };
- if ((IsInvariantStart(I) || isGuard(&I)) &&
- CurLoop->hasLoopInvariantOperands(&I) &&
- MustExecuteWithoutWritesBefore(I)) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
- if (PHINode *PN = dyn_cast<PHINode>(&I)) {
- if (CFH.canHoistPHI(PN)) {
- // Redirect incoming blocks first to ensure that we create hoisted
- // versions of those blocks before we hoist the phi.
- for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
- PN->setIncomingBlock(
- i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
- hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
- Changed = true;
- continue;
- }
- }
- // Remember possibly hoistable branches so we can actually hoist them
- // later if needed.
- if (BranchInst *BI = dyn_cast<BranchInst>(&I))
- CFH.registerPossiblyHoistableBranch(BI);
- }
- }
- // If we hoisted instructions to a conditional block they may not dominate
- // their uses that weren't hoisted (such as phis where some operands are not
- // loop invariant). If so make them unconditional by moving them to their
- // immediate dominator. We iterate through the instructions in reverse order
- // which ensures that when we rehoist an instruction we rehoist its operands,
- // and also keep track of where in the block we are rehoisting to to make sure
- // that we rehoist instructions before the instructions that use them.
- Instruction *HoistPoint = nullptr;
- if (ControlFlowHoisting) {
- for (Instruction *I : reverse(HoistedInstructions)) {
- if (!llvm::all_of(I->uses(),
- [&](Use &U) { return DT->dominates(I, U); })) {
- BasicBlock *Dominator =
- DT->getNode(I->getParent())->getIDom()->getBlock();
- if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
- if (HoistPoint)
- assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
- "New hoist point expected to dominate old hoist point");
- HoistPoint = Dominator->getTerminator();
- }
- LLVM_DEBUG(dbgs() << "LICM rehoisting to "
- << HoistPoint->getParent()->getNameOrAsOperand()
- << ": " << *I << "\n");
- moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
- HoistPoint = I;
- Changed = true;
- }
- }
- }
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Now that we've finished hoisting make sure that LI and DT are still
- // valid.
- #ifdef EXPENSIVE_CHECKS
- if (Changed) {
- assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
- "Dominator tree verification failed");
- LI->verify(*DT);
- }
- #endif
- return Changed;
- }
- // Return true if LI is invariant within scope of the loop. LI is invariant if
- // CurLoop is dominated by an invariant.start representing the same memory
- // location and size as the memory location LI loads from, and also the
- // invariant.start has no uses.
- static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
- Loop *CurLoop) {
- Value *Addr = LI->getOperand(0);
- const DataLayout &DL = LI->getModule()->getDataLayout();
- const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
- // It is not currently possible for clang to generate an invariant.start
- // intrinsic with scalable vector types because we don't support thread local
- // sizeless types and we don't permit sizeless types in structs or classes.
- // Furthermore, even if support is added for this in future the intrinsic
- // itself is defined to have a size of -1 for variable sized objects. This
- // makes it impossible to verify if the intrinsic envelops our region of
- // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
- // types would have a -1 parameter, but the former is clearly double the size
- // of the latter.
- if (LocSizeInBits.isScalable())
- return false;
- // if the type is i8 addrspace(x)*, we know this is the type of
- // llvm.invariant.start operand
- auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
- LI->getPointerAddressSpace());
- unsigned BitcastsVisited = 0;
- // Look through bitcasts until we reach the i8* type (this is invariant.start
- // operand type).
- while (Addr->getType() != PtrInt8Ty) {
- auto *BC = dyn_cast<BitCastInst>(Addr);
- // Avoid traversing high number of bitcast uses.
- if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
- return false;
- Addr = BC->getOperand(0);
- }
- // If we've ended up at a global/constant, bail. We shouldn't be looking at
- // uselists for non-local Values in a loop pass.
- if (isa<Constant>(Addr))
- return false;
- unsigned UsesVisited = 0;
- // Traverse all uses of the load operand value, to see if invariant.start is
- // one of the uses, and whether it dominates the load instruction.
- for (auto *U : Addr->users()) {
- // Avoid traversing for Load operand with high number of users.
- if (++UsesVisited > MaxNumUsesTraversed)
- return false;
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- // If there are escaping uses of invariant.start instruction, the load maybe
- // non-invariant.
- if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
- !II->use_empty())
- continue;
- ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
- // The intrinsic supports having a -1 argument for variable sized objects
- // so we should check for that here.
- if (InvariantSize->isNegative())
- continue;
- uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
- // Confirm the invariant.start location size contains the load operand size
- // in bits. Also, the invariant.start should dominate the load, and we
- // should not hoist the load out of a loop that contains this dominating
- // invariant.start.
- if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
- DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
- return true;
- }
- return false;
- }
- namespace {
- /// Return true if-and-only-if we know how to (mechanically) both hoist and
- /// sink a given instruction out of a loop. Does not address legality
- /// concerns such as aliasing or speculation safety.
- bool isHoistableAndSinkableInst(Instruction &I) {
- // Only these instructions are hoistable/sinkable.
- return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
- isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
- isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
- isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
- isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
- isa<InsertValueInst>(I) || isa<FreezeInst>(I));
- }
- /// Return true if all of the alias sets within this AST are known not to
- /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
- bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
- const Loop *L) {
- if (CurAST) {
- for (AliasSet &AS : *CurAST) {
- if (!AS.isForwardingAliasSet() && AS.isMod()) {
- return false;
- }
- }
- return true;
- } else { /*MSSAU*/
- for (auto *BB : L->getBlocks())
- if (MSSAU->getMemorySSA()->getBlockDefs(BB))
- return false;
- return true;
- }
- }
- /// Return true if I is the only Instruction with a MemoryAccess in L.
- bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
- const MemorySSAUpdater *MSSAU) {
- for (auto *BB : L->getBlocks())
- if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
- int NotAPhi = 0;
- for (const auto &Acc : *Accs) {
- if (isa<MemoryPhi>(&Acc))
- continue;
- const auto *MUD = cast<MemoryUseOrDef>(&Acc);
- if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
- return false;
- }
- }
- return true;
- }
- }
- bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
- Loop *CurLoop, AliasSetTracker *CurAST,
- MemorySSAUpdater *MSSAU,
- bool TargetExecutesOncePerLoop,
- SinkAndHoistLICMFlags *Flags,
- OptimizationRemarkEmitter *ORE) {
- assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
- "Either AliasSetTracker or MemorySSA should be initialized.");
- // If we don't understand the instruction, bail early.
- if (!isHoistableAndSinkableInst(I))
- return false;
- MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
- if (MSSA)
- assert(Flags != nullptr && "Flags cannot be null.");
- // Loads have extra constraints we have to verify before we can hoist them.
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (!LI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic loads!
- // Loads from constant memory are always safe to move, even if they end up
- // in the same alias set as something that ends up being modified.
- if (AA->pointsToConstantMemory(LI->getOperand(0)))
- return true;
- if (LI->hasMetadata(LLVMContext::MD_invariant_load))
- return true;
- if (LI->isAtomic() && !TargetExecutesOncePerLoop)
- return false; // Don't risk duplicating unordered loads
- // This checks for an invariant.start dominating the load.
- if (isLoadInvariantInLoop(LI, DT, CurLoop))
- return true;
- bool Invalidated;
- if (CurAST)
- Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
- CurLoop, AA);
- else
- Invalidated = pointerInvalidatedByLoopWithMSSA(
- MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
- // Check loop-invariant address because this may also be a sinkable load
- // whose address is not necessarily loop-invariant.
- if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
- << "failed to move load with loop-invariant address "
- "because the loop may invalidate its value";
- });
- return !Invalidated;
- } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- // Don't sink or hoist dbg info; it's legal, but not useful.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
- // Don't sink calls which can throw.
- if (CI->mayThrow())
- return false;
- // Convergent attribute has been used on operations that involve
- // inter-thread communication which results are implicitly affected by the
- // enclosing control flows. It is not safe to hoist or sink such operations
- // across control flow.
- if (CI->isConvergent())
- return false;
- using namespace PatternMatch;
- if (match(CI, m_Intrinsic<Intrinsic::assume>()))
- // Assumes don't actually alias anything or throw
- return true;
- if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
- // Widenable conditions don't actually alias anything or throw
- return true;
- // Handle simple cases by querying alias analysis.
- FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
- if (Behavior == FMRB_DoesNotAccessMemory)
- return true;
- if (AAResults::onlyReadsMemory(Behavior)) {
- // A readonly argmemonly function only reads from memory pointed to by
- // it's arguments with arbitrary offsets. If we can prove there are no
- // writes to this memory in the loop, we can hoist or sink.
- if (AAResults::onlyAccessesArgPointees(Behavior)) {
- // TODO: expand to writeable arguments
- for (Value *Op : CI->args())
- if (Op->getType()->isPointerTy()) {
- bool Invalidated;
- if (CurAST)
- Invalidated = pointerInvalidatedByLoop(
- MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
- else
- Invalidated = pointerInvalidatedByLoopWithMSSA(
- MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
- *Flags);
- if (Invalidated)
- return false;
- }
- return true;
- }
- // If this call only reads from memory and there are no writes to memory
- // in the loop, we can hoist or sink the call as appropriate.
- if (isReadOnly(CurAST, MSSAU, CurLoop))
- return true;
- }
- // FIXME: This should use mod/ref information to see if we can hoist or
- // sink the call.
- return false;
- } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
- // Fences alias (most) everything to provide ordering. For the moment,
- // just give up if there are any other memory operations in the loop.
- if (CurAST) {
- auto Begin = CurAST->begin();
- assert(Begin != CurAST->end() && "must contain FI");
- if (std::next(Begin) != CurAST->end())
- // constant memory for instance, TODO: handle better
- return false;
- auto *UniqueI = Begin->getUniqueInstruction();
- if (!UniqueI)
- // other memory op, give up
- return false;
- (void)FI; // suppress unused variable warning
- assert(UniqueI == FI && "AS must contain FI");
- return true;
- } else // MSSAU
- return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
- } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic store!
- // We can only hoist a store that we can prove writes a value which is not
- // read or overwritten within the loop. For those cases, we fallback to
- // load store promotion instead. TODO: We can extend this to cases where
- // there is exactly one write to the location and that write dominates an
- // arbitrary number of reads in the loop.
- if (CurAST) {
- auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
- if (AS.isRef() || !AS.isMustAlias())
- // Quick exit test, handled by the full path below as well.
- return false;
- auto *UniqueI = AS.getUniqueInstruction();
- if (!UniqueI)
- // other memory op, give up
- return false;
- assert(UniqueI == SI && "AS must contain SI");
- return true;
- } else { // MSSAU
- if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
- return true;
- // If there are more accesses than the Promotion cap or no "quota" to
- // check clobber, then give up as we're not walking a list that long.
- if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
- return false;
- // If there are interfering Uses (i.e. their defining access is in the
- // loop), or ordered loads (stored as Defs!), don't move this store.
- // Could do better here, but this is conservatively correct.
- // TODO: Cache set of Uses on the first walk in runOnLoop, update when
- // moving accesses. Can also extend to dominating uses.
- auto *SIMD = MSSA->getMemoryAccess(SI);
- for (auto *BB : CurLoop->getBlocks())
- if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
- for (const auto &MA : *Accesses)
- if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
- auto *MD = MU->getDefiningAccess();
- if (!MSSA->isLiveOnEntryDef(MD) &&
- CurLoop->contains(MD->getBlock()))
- return false;
- // Disable hoisting past potentially interfering loads. Optimized
- // Uses may point to an access outside the loop, as getClobbering
- // checks the previous iteration when walking the backedge.
- // FIXME: More precise: no Uses that alias SI.
- if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
- return false;
- } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
- if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
- (void)LI; // Silence warning.
- assert(!LI->isUnordered() && "Expected unordered load");
- return false;
- }
- // Any call, while it may not be clobbering SI, it may be a use.
- if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
- // Check if the call may read from the memory location written
- // to by SI. Check CI's attributes and arguments; the number of
- // such checks performed is limited above by NoOfMemAccTooLarge.
- ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
- if (isModOrRefSet(MRI))
- return false;
- }
- }
- }
- auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
- Flags->incrementClobberingCalls();
- // If there are no clobbering Defs in the loop, store is safe to hoist.
- return MSSA->isLiveOnEntryDef(Source) ||
- !CurLoop->contains(Source->getBlock());
- }
- }
- assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
- // We've established mechanical ability and aliasing, it's up to the caller
- // to check fault safety
- return true;
- }
- /// Returns true if a PHINode is a trivially replaceable with an
- /// Instruction.
- /// This is true when all incoming values are that instruction.
- /// This pattern occurs most often with LCSSA PHI nodes.
- ///
- static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
- for (const Value *IncValue : PN.incoming_values())
- if (IncValue != &I)
- return false;
- return true;
- }
- /// Return true if the instruction is free in the loop.
- static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const TargetTransformInfo *TTI) {
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
- TargetTransformInfo::TCC_Free)
- return false;
- // For a GEP, we cannot simply use getUserCost because currently it
- // optimistically assumes that a GEP will fold into addressing mode
- // regardless of its users.
- const BasicBlock *BB = GEP->getParent();
- for (const User *U : GEP->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (CurLoop->contains(UI) &&
- (BB != UI->getParent() ||
- (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
- return false;
- }
- return true;
- } else
- return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
- TargetTransformInfo::TCC_Free;
- }
- /// Return true if the only users of this instruction are outside of
- /// the loop. If this is true, we can sink the instruction to the exit
- /// blocks of the loop.
- ///
- /// We also return true if the instruction could be folded away in lowering.
- /// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
- static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop,
- bool LoopNestMode) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
- bool IsFree = isFreeInLoop(I, CurLoop, TTI);
- for (const User *U : I.users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- const BasicBlock *BB = PN->getParent();
- // We cannot sink uses in catchswitches.
- if (isa<CatchSwitchInst>(BB->getTerminator()))
- return false;
- // We need to sink a callsite to a unique funclet. Avoid sinking if the
- // phi use is too muddled.
- if (isa<CallInst>(I))
- if (!BlockColors.empty() &&
- BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
- return false;
- if (LoopNestMode) {
- while (isa<PHINode>(UI) && UI->hasOneUser() &&
- UI->getNumOperands() == 1) {
- if (!CurLoop->contains(UI))
- break;
- UI = cast<Instruction>(UI->user_back());
- }
- }
- }
- if (CurLoop->contains(UI)) {
- if (IsFree) {
- FreeInLoop = true;
- continue;
- }
- return false;
- }
- }
- return true;
- }
- static Instruction *cloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
- Instruction *New;
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
- // Sinking call-sites need to be handled differently from other
- // instructions. The cloned call-site needs a funclet bundle operand
- // appropriate for its location in the CFG.
- SmallVector<OperandBundleDef, 1> OpBundles;
- for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
- BundleIdx != BundleEnd; ++BundleIdx) {
- OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
- if (Bundle.getTagID() == LLVMContext::OB_funclet)
- continue;
- OpBundles.emplace_back(Bundle);
- }
- if (!BlockColors.empty()) {
- const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
- assert(CV.size() == 1 && "non-unique color for exit block!");
- BasicBlock *BBColor = CV.front();
- Instruction *EHPad = BBColor->getFirstNonPHI();
- if (EHPad->isEHPad())
- OpBundles.emplace_back("funclet", EHPad);
- }
- New = CallInst::Create(CI, OpBundles);
- } else {
- New = I.clone();
- }
- ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
- if (!I.getName().empty())
- New->setName(I.getName() + ".le");
- if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
- // Create a new MemoryAccess and let MemorySSA set its defining access.
- MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
- New, nullptr, New->getParent(), MemorySSA::Beginning);
- if (NewMemAcc) {
- if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
- MSSAU->insertDef(MemDef, /*RenameUses=*/true);
- else {
- auto *MemUse = cast<MemoryUse>(NewMemAcc);
- MSSAU->insertUse(MemUse, /*RenameUses=*/true);
- }
- }
- }
- // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
- // this is particularly cheap because we can rip off the PHI node that we're
- // replacing for the number and blocks of the predecessors.
- // OPT: If this shows up in a profile, we can instead finish sinking all
- // invariant instructions, and then walk their operands to re-establish
- // LCSSA. That will eliminate creating PHI nodes just to nuke them when
- // sinking bottom-up.
- for (Use &Op : New->operands())
- if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
- auto *OInst = cast<Instruction>(Op.get());
- PHINode *OpPN =
- PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
- OInst->getName() + ".lcssa", &ExitBlock.front());
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
- Op = OpPN;
- }
- return New;
- }
- static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU) {
- if (MSSAU)
- MSSAU->removeMemoryAccess(&I);
- SafetyInfo.removeInstruction(&I);
- I.eraseFromParent();
- }
- static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU,
- ScalarEvolution *SE) {
- SafetyInfo.removeInstruction(&I);
- SafetyInfo.insertInstructionTo(&I, Dest.getParent());
- I.moveBefore(&Dest);
- if (MSSAU)
- if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
- MSSAU->getMemorySSA()->getMemoryAccess(&I)))
- MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
- MemorySSA::BeforeTerminator);
- if (SE)
- SE->forgetValue(&I);
- }
- static Instruction *sinkThroughTriviallyReplaceablePHI(
- PHINode *TPN, Instruction *I, LoopInfo *LI,
- SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
- const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
- MemorySSAUpdater *MSSAU) {
- assert(isTriviallyReplaceablePHI(*TPN, *I) &&
- "Expect only trivially replaceable PHI");
- BasicBlock *ExitBlock = TPN->getParent();
- Instruction *New;
- auto It = SunkCopies.find(ExitBlock);
- if (It != SunkCopies.end())
- New = It->second;
- else
- New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
- *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
- return New;
- }
- static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
- BasicBlock *BB = PN->getParent();
- if (!BB->canSplitPredecessors())
- return false;
- // It's not impossible to split EHPad blocks, but if BlockColors already exist
- // it require updating BlockColors for all offspring blocks accordingly. By
- // skipping such corner case, we can make updating BlockColors after splitting
- // predecessor fairly simple.
- if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
- return false;
- for (BasicBlock *BBPred : predecessors(BB)) {
- if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
- isa<CallBrInst>(BBPred->getTerminator()))
- return false;
- }
- return true;
- }
- static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
- LoopInfo *LI, const Loop *CurLoop,
- LoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU) {
- #ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- #endif
- BasicBlock *ExitBB = PN->getParent();
- assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
- // Split predecessors of the loop exit to make instructions in the loop are
- // exposed to exit blocks through trivially replaceable PHIs while keeping the
- // loop in the canonical form where each predecessor of each exit block should
- // be contained within the loop. For example, this will convert the loop below
- // from
- //
- // LB1:
- // %v1 =
- // br %LE, %LB2
- // LB2:
- // %v2 =
- // br %LE, %LB1
- // LE:
- // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
- //
- // to
- //
- // LB1:
- // %v1 =
- // br %LE.split, %LB2
- // LB2:
- // %v2 =
- // br %LE.split2, %LB1
- // LE.split:
- // %p1 = phi [%v1, %LB1] <-- trivially replaceable
- // br %LE
- // LE.split2:
- // %p2 = phi [%v2, %LB2] <-- trivially replaceable
- // br %LE
- // LE:
- // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
- //
- const auto &BlockColors = SafetyInfo->getBlockColors();
- SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
- while (!PredBBs.empty()) {
- BasicBlock *PredBB = *PredBBs.begin();
- assert(CurLoop->contains(PredBB) &&
- "Expect all predecessors are in the loop");
- if (PN->getBasicBlockIndex(PredBB) >= 0) {
- BasicBlock *NewPred = SplitBlockPredecessors(
- ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
- // Since we do not allow splitting EH-block with BlockColors in
- // canSplitPredecessors(), we can simply assign predecessor's color to
- // the new block.
- if (!BlockColors.empty())
- // Grab a reference to the ColorVector to be inserted before getting the
- // reference to the vector we are copying because inserting the new
- // element in BlockColors might cause the map to be reallocated.
- SafetyInfo->copyColors(NewPred, PredBB);
- }
- PredBBs.remove(PredBB);
- }
- }
- /// When an instruction is found to only be used outside of the loop, this
- /// function moves it to the exit blocks and patches up SSA form as needed.
- /// This method is guaranteed to remove the original instruction from its
- /// position, and may either delete it or move it to outside of the loop.
- ///
- static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- BlockFrequencyInfo *BFI, const Loop *CurLoop,
- ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
- OptimizationRemarkEmitter *ORE) {
- bool Changed = false;
- LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
- // Iterate over users to be ready for actual sinking. Replace users via
- // unreachable blocks with undef and make all user PHIs trivially replaceable.
- SmallPtrSet<Instruction *, 8> VisitedUsers;
- for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
- auto *User = cast<Instruction>(*UI);
- Use &U = UI.getUse();
- ++UI;
- if (VisitedUsers.count(User) || CurLoop->contains(User))
- continue;
- if (!DT->isReachableFromEntry(User->getParent())) {
- U = UndefValue::get(I.getType());
- Changed = true;
- continue;
- }
- // The user must be a PHI node.
- PHINode *PN = cast<PHINode>(User);
- // Surprisingly, instructions can be used outside of loops without any
- // exits. This can only happen in PHI nodes if the incoming block is
- // unreachable.
- BasicBlock *BB = PN->getIncomingBlock(U);
- if (!DT->isReachableFromEntry(BB)) {
- U = UndefValue::get(I.getType());
- Changed = true;
- continue;
- }
- VisitedUsers.insert(PN);
- if (isTriviallyReplaceablePHI(*PN, I))
- continue;
- if (!canSplitPredecessors(PN, SafetyInfo))
- return Changed;
- // Split predecessors of the PHI so that we can make users trivially
- // replaceable.
- splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
- // Should rebuild the iterators, as they may be invalidated by
- // splitPredecessorsOfLoopExit().
- UI = I.user_begin();
- UE = I.user_end();
- }
- if (VisitedUsers.empty())
- return Changed;
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
- << "sinking " << ore::NV("Inst", &I);
- });
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumSunk;
- #ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
- #endif
- // Clones of this instruction. Don't create more than one per exit block!
- SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
- // If this instruction is only used outside of the loop, then all users are
- // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
- // the instruction.
- // First check if I is worth sinking for all uses. Sink only when it is worth
- // across all uses.
- SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
- for (auto *UI : Users) {
- auto *User = cast<Instruction>(UI);
- if (CurLoop->contains(User))
- continue;
- PHINode *PN = cast<PHINode>(User);
- assert(ExitBlockSet.count(PN->getParent()) &&
- "The LCSSA PHI is not in an exit block!");
- // The PHI must be trivially replaceable.
- Instruction *New = sinkThroughTriviallyReplaceablePHI(
- PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
- PN->replaceAllUsesWith(New);
- eraseInstruction(*PN, *SafetyInfo, nullptr);
- Changed = true;
- }
- return Changed;
- }
- /// When an instruction is found to only use loop invariant operands that
- /// is safe to hoist, this instruction is called to do the dirty work.
- ///
- static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE) {
- LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
- << I << "\n");
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
- << ore::NV("Inst", &I);
- });
- // Metadata can be dependent on conditions we are hoisting above.
- // Conservatively strip all metadata on the instruction unless we were
- // guaranteed to execute I if we entered the loop, in which case the metadata
- // is valid in the loop preheader.
- // Similarly, If I is a call and it is not guaranteed to execute in the loop,
- // then moving to the preheader means we should strip attributes on the call
- // that can cause UB since we may be hoisting above conditions that allowed
- // inferring those attributes. They may not be valid at the preheader.
- if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
- // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
- // time in isGuaranteedToExecute if we don't actually have anything to
- // drop. It is a compile time optimization, not required for correctness.
- !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
- I.dropUndefImplyingAttrsAndUnknownMetadata();
- if (isa<PHINode>(I))
- // Move the new node to the end of the phi list in the destination block.
- moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
- else
- // Move the new node to the destination block, before its terminator.
- moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
- I.updateLocationAfterHoist();
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumHoisted;
- }
- /// Only sink or hoist an instruction if it is not a trapping instruction,
- /// or if the instruction is known not to trap when moved to the preheader.
- /// or if it is a trapping instruction and is guaranteed to execute.
- static bool isSafeToExecuteUnconditionally(
- Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
- const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
- bool AllowSpeculation) {
- if (AllowSpeculation && isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
- return true;
- bool GuaranteedToExecute =
- SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
- if (!GuaranteedToExecute) {
- auto *LI = dyn_cast<LoadInst>(&Inst);
- if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
- << "failed to hoist load with loop-invariant address "
- "because load is conditionally executed";
- });
- }
- return GuaranteedToExecute;
- }
- namespace {
- class LoopPromoter : public LoadAndStorePromoter {
- Value *SomePtr; // Designated pointer to store to.
- const SmallSetVector<Value *, 8> &PointerMustAliases;
- SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
- SmallVectorImpl<Instruction *> &LoopInsertPts;
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
- PredIteratorCache &PredCache;
- MemorySSAUpdater *MSSAU;
- LoopInfo &LI;
- DebugLoc DL;
- Align Alignment;
- bool UnorderedAtomic;
- AAMDNodes AATags;
- ICFLoopSafetyInfo &SafetyInfo;
- bool CanInsertStoresInExitBlocks;
- // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
- // (if legal) if doing so would add an out-of-loop use to an instruction
- // defined in-loop.
- Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
- if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
- return V;
- Instruction *I = cast<Instruction>(V);
- // We need to create an LCSSA PHI node for the incoming value and
- // store that.
- PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
- I->getName() + ".lcssa", &BB->front());
- for (BasicBlock *Pred : PredCache.get(BB))
- PN->addIncoming(I, Pred);
- return PN;
- }
- public:
- LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
- const SmallSetVector<Value *, 8> &PMA,
- SmallVectorImpl<BasicBlock *> &LEB,
- SmallVectorImpl<Instruction *> &LIP,
- SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
- MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
- Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
- ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
- : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
- LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
- PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
- Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
- SafetyInfo(SafetyInfo),
- CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks) {}
- bool isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction *> &) const override {
- Value *Ptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- Ptr = LI->getOperand(0);
- else
- Ptr = cast<StoreInst>(I)->getPointerOperand();
- return PointerMustAliases.count(Ptr);
- }
- void insertStoresInLoopExitBlocks() {
- // Insert stores after in the loop exit blocks. Each exit block gets a
- // store of the live-out values that feed them. Since we've already told
- // the SSA updater about the defs in the loop and the preheader
- // definition, it is all set and we can start using it.
- for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = LoopExitBlocks[i];
- Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
- LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
- Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
- Instruction *InsertPos = LoopInsertPts[i];
- StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
- if (UnorderedAtomic)
- NewSI->setOrdering(AtomicOrdering::Unordered);
- NewSI->setAlignment(Alignment);
- NewSI->setDebugLoc(DL);
- if (AATags)
- NewSI->setAAMetadata(AATags);
- MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
- MemoryAccess *NewMemAcc;
- if (!MSSAInsertPoint) {
- NewMemAcc = MSSAU->createMemoryAccessInBB(
- NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
- } else {
- NewMemAcc =
- MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
- }
- MSSAInsertPts[i] = NewMemAcc;
- MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
- // FIXME: true for safety, false may still be correct.
- }
- }
- void doExtraRewritesBeforeFinalDeletion() override {
- if (CanInsertStoresInExitBlocks)
- insertStoresInLoopExitBlocks();
- }
- void instructionDeleted(Instruction *I) const override {
- SafetyInfo.removeInstruction(I);
- MSSAU->removeMemoryAccess(I);
- }
- bool shouldDelete(Instruction *I) const override {
- if (isa<StoreInst>(I))
- return CanInsertStoresInExitBlocks;
- return true;
- }
- };
- bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
- DominatorTree *DT) {
- // We can perform the captured-before check against any instruction in the
- // loop header, as the loop header is reachable from any instruction inside
- // the loop.
- // TODO: ReturnCaptures=true shouldn't be necessary here.
- return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
- /* StoreCaptures */ true,
- L->getHeader()->getTerminator(), DT);
- }
- /// Return true if we can prove that a caller cannot inspect the object if an
- /// unwind occurs inside the loop.
- bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
- DominatorTree *DT) {
- bool RequiresNoCaptureBeforeUnwind;
- if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
- return false;
- return !RequiresNoCaptureBeforeUnwind ||
- isNotCapturedBeforeOrInLoop(Object, L, DT);
- }
- } // namespace
- /// Try to promote memory values to scalars by sinking stores out of the
- /// loop and moving loads to before the loop. We do this by looping over
- /// the stores in the loop, looking for stores to Must pointers which are
- /// loop invariant.
- ///
- bool llvm::promoteLoopAccessesToScalars(
- const SmallSetVector<Value *, 8> &PointerMustAliases,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- SmallVectorImpl<Instruction *> &InsertPts,
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
- LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
- Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE, bool AllowSpeculation) {
- // Verify inputs.
- assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
- SafetyInfo != nullptr &&
- "Unexpected Input to promoteLoopAccessesToScalars");
- Value *SomePtr = *PointerMustAliases.begin();
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
- // It is not safe to promote a load/store from the loop if the load/store is
- // conditional. For example, turning:
- //
- // for () { if (c) *P += 1; }
- //
- // into:
- //
- // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
- //
- // is not safe, because *P may only be valid to access if 'c' is true.
- //
- // The safety property divides into two parts:
- // p1) The memory may not be dereferenceable on entry to the loop. In this
- // case, we can't insert the required load in the preheader.
- // p2) The memory model does not allow us to insert a store along any dynamic
- // path which did not originally have one.
- //
- // If at least one store is guaranteed to execute, both properties are
- // satisfied, and promotion is legal.
- //
- // This, however, is not a necessary condition. Even if no store/load is
- // guaranteed to execute, we can still establish these properties.
- // We can establish (p1) by proving that hoisting the load into the preheader
- // is safe (i.e. proving dereferenceability on all paths through the loop). We
- // can use any access within the alias set to prove dereferenceability,
- // since they're all must alias.
- //
- // There are two ways establish (p2):
- // a) Prove the location is thread-local. In this case the memory model
- // requirement does not apply, and stores are safe to insert.
- // b) Prove a store dominates every exit block. In this case, if an exit
- // blocks is reached, the original dynamic path would have taken us through
- // the store, so inserting a store into the exit block is safe. Note that this
- // is different from the store being guaranteed to execute. For instance,
- // if an exception is thrown on the first iteration of the loop, the original
- // store is never executed, but the exit blocks are not executed either.
- bool DereferenceableInPH = false;
- bool SafeToInsertStore = false;
- bool FoundLoadToPromote = false;
- SmallVector<Instruction *, 64> LoopUses;
- // We start with an alignment of one and try to find instructions that allow
- // us to prove better alignment.
- Align Alignment;
- // Keep track of which types of access we see
- bool SawUnorderedAtomic = false;
- bool SawNotAtomic = false;
- AAMDNodes AATags;
- const DataLayout &MDL = Preheader->getModule()->getDataLayout();
- bool IsKnownThreadLocalObject = false;
- if (SafetyInfo->anyBlockMayThrow()) {
- // If a loop can throw, we have to insert a store along each unwind edge.
- // That said, we can't actually make the unwind edge explicit. Therefore,
- // we have to prove that the store is dead along the unwind edge. We do
- // this by proving that the caller can't have a reference to the object
- // after return and thus can't possibly load from the object.
- Value *Object = getUnderlyingObject(SomePtr);
- if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
- return false;
- // Subtlety: Alloca's aren't visible to callers, but *are* potentially
- // visible to other threads if captured and used during their lifetimes.
- IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
- }
- // Check that all accesses to pointers in the aliass set use the same type.
- // We cannot (yet) promote a memory location that is loaded and stored in
- // different sizes. While we are at it, collect alignment and AA info.
- Type *AccessTy = nullptr;
- for (Value *ASIV : PointerMustAliases) {
- for (User *U : ASIV->users()) {
- // Ignore instructions that are outside the loop.
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !CurLoop->contains(UI))
- continue;
- // If there is an non-load/store instruction in the loop, we can't promote
- // it.
- if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
- if (!Load->isUnordered())
- return false;
- SawUnorderedAtomic |= Load->isAtomic();
- SawNotAtomic |= !Load->isAtomic();
- FoundLoadToPromote = true;
- Align InstAlignment = Load->getAlign();
- // Note that proving a load safe to speculate requires proving
- // sufficient alignment at the target location. Proving it guaranteed
- // to execute does as well. Thus we can increase our guaranteed
- // alignment as well.
- if (!DereferenceableInPH || (InstAlignment > Alignment))
- if (isSafeToExecuteUnconditionally(
- *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
- Preheader->getTerminator(), AllowSpeculation)) {
- DereferenceableInPH = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
- // Stores *of* the pointer are not interesting, only stores *to* the
- // pointer.
- if (UI->getOperand(1) != ASIV)
- continue;
- if (!Store->isUnordered())
- return false;
- SawUnorderedAtomic |= Store->isAtomic();
- SawNotAtomic |= !Store->isAtomic();
- // If the store is guaranteed to execute, both properties are satisfied.
- // We may want to check if a store is guaranteed to execute even if we
- // already know that promotion is safe, since it may have higher
- // alignment than any other guaranteed stores, in which case we can
- // raise the alignment on the promoted store.
- Align InstAlignment = Store->getAlign();
- if (!DereferenceableInPH || !SafeToInsertStore ||
- (InstAlignment > Alignment)) {
- if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
- DereferenceableInPH = true;
- SafeToInsertStore = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- }
- // If a store dominates all exit blocks, it is safe to sink.
- // As explained above, if an exit block was executed, a dominating
- // store must have been executed at least once, so we are not
- // introducing stores on paths that did not have them.
- // Note that this only looks at explicit exit blocks. If we ever
- // start sinking stores into unwind edges (see above), this will break.
- if (!SafeToInsertStore)
- SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
- return DT->dominates(Store->getParent(), Exit);
- });
- // If the store is not guaranteed to execute, we may still get
- // deref info through it.
- if (!DereferenceableInPH) {
- DereferenceableInPH = isDereferenceableAndAlignedPointer(
- Store->getPointerOperand(), Store->getValueOperand()->getType(),
- Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
- }
- } else
- return false; // Not a load or store.
- if (!AccessTy)
- AccessTy = getLoadStoreType(UI);
- else if (AccessTy != getLoadStoreType(UI))
- return false;
- // Merge the AA tags.
- if (LoopUses.empty()) {
- // On the first load/store, just take its AA tags.
- AATags = UI->getAAMetadata();
- } else if (AATags) {
- AATags = AATags.merge(UI->getAAMetadata());
- }
- LoopUses.push_back(UI);
- }
- }
- // If we found both an unordered atomic instruction and a non-atomic memory
- // access, bail. We can't blindly promote non-atomic to atomic since we
- // might not be able to lower the result. We can't downgrade since that
- // would violate memory model. Also, align 0 is an error for atomics.
- if (SawUnorderedAtomic && SawNotAtomic)
- return false;
- // If we're inserting an atomic load in the preheader, we must be able to
- // lower it. We're only guaranteed to be able to lower naturally aligned
- // atomics.
- if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
- return false;
- // If we couldn't prove we can hoist the load, bail.
- if (!DereferenceableInPH)
- return false;
- // We know we can hoist the load, but don't have a guaranteed store.
- // Check whether the location is thread-local. If it is, then we can insert
- // stores along paths which originally didn't have them without violating the
- // memory model.
- if (!SafeToInsertStore) {
- if (IsKnownThreadLocalObject)
- SafeToInsertStore = true;
- else {
- Value *Object = getUnderlyingObject(SomePtr);
- SafeToInsertStore =
- (isNoAliasCall(Object) || isa<AllocaInst>(Object)) &&
- isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
- }
- }
- // If we've still failed to prove we can sink the store, hoist the load
- // only, if possible.
- if (!SafeToInsertStore && !FoundLoadToPromote)
- // If we cannot hoist the load either, give up.
- return false;
- // Lets do the promotion!
- if (SafeToInsertStore)
- LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
- << '\n');
- else
- LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
- << '\n');
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
- LoopUses[0])
- << "Moving accesses to memory location out of the loop";
- });
- ++NumPromoted;
- // Look at all the loop uses, and try to merge their locations.
- std::vector<const DILocation *> LoopUsesLocs;
- for (auto U : LoopUses)
- LoopUsesLocs.push_back(U->getDebugLoc().get());
- auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
- // We use the SSAUpdater interface to insert phi nodes as required.
- SmallVector<PHINode *, 16> NewPHIs;
- SSAUpdater SSA(&NewPHIs);
- LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
- Alignment, SawUnorderedAtomic, AATags, *SafetyInfo,
- SafeToInsertStore);
- // Set up the preheader to have a definition of the value. It is the live-out
- // value from the preheader that uses in the loop will use.
- LoadInst *PreheaderLoad = new LoadInst(
- AccessTy, SomePtr, SomePtr->getName() + ".promoted",
- Preheader->getTerminator());
- if (SawUnorderedAtomic)
- PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
- PreheaderLoad->setAlignment(Alignment);
- PreheaderLoad->setDebugLoc(DebugLoc());
- if (AATags)
- PreheaderLoad->setAAMetadata(AATags);
- SSA.AddAvailableValue(Preheader, PreheaderLoad);
- MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
- PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
- MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
- MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Rewrite all the loads in the loop and remember all the definitions from
- // stores in the loop.
- Promoter.run(LoopUses);
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // If the SSAUpdater didn't use the load in the preheader, just zap it now.
- if (PreheaderLoad->use_empty())
- eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
- return true;
- }
- static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
- function_ref<void(Instruction *)> Fn) {
- for (const BasicBlock *BB : L->blocks())
- if (const auto *Accesses = MSSA->getBlockAccesses(BB))
- for (const auto &Access : *Accesses)
- if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
- Fn(MUD->getMemoryInst());
- }
- static SmallVector<SmallSetVector<Value *, 8>, 0>
- collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
- AliasSetTracker AST(*AA);
- auto IsPotentiallyPromotable = [L](const Instruction *I) {
- if (const auto *SI = dyn_cast<StoreInst>(I))
- return L->isLoopInvariant(SI->getPointerOperand());
- if (const auto *LI = dyn_cast<LoadInst>(I))
- return L->isLoopInvariant(LI->getPointerOperand());
- return false;
- };
- // Populate AST with potentially promotable accesses and remove them from
- // MaybePromotable, so they will not be checked again on the next iteration.
- SmallPtrSet<Value *, 16> AttemptingPromotion;
- foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
- if (IsPotentiallyPromotable(I)) {
- AttemptingPromotion.insert(I);
- AST.add(I);
- }
- });
- // We're only interested in must-alias sets that contain a mod.
- SmallVector<const AliasSet *, 8> Sets;
- for (AliasSet &AS : AST)
- if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
- Sets.push_back(&AS);
- if (Sets.empty())
- return {}; // Nothing to promote...
- // Discard any sets for which there is an aliasing non-promotable access.
- foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
- if (AttemptingPromotion.contains(I))
- return;
- llvm::erase_if(Sets, [&](const AliasSet *AS) {
- return AS->aliasesUnknownInst(I, *AA);
- });
- });
- SmallVector<SmallSetVector<Value *, 8>, 0> Result;
- for (const AliasSet *Set : Sets) {
- SmallSetVector<Value *, 8> PointerMustAliases;
- for (const auto &ASI : *Set)
- PointerMustAliases.insert(ASI.getValue());
- Result.push_back(std::move(PointerMustAliases));
- }
- return Result;
- }
- static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
- AliasSetTracker *CurAST, Loop *CurLoop,
- AAResults *AA) {
- return CurAST->getAliasSetFor(MemLoc).isMod();
- }
- bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
- Loop *CurLoop, Instruction &I,
- SinkAndHoistLICMFlags &Flags) {
- // For hoisting, use the walker to determine safety
- if (!Flags.getIsSink()) {
- MemoryAccess *Source;
- // See declaration of SetLicmMssaOptCap for usage details.
- if (Flags.tooManyClobberingCalls())
- Source = MU->getDefiningAccess();
- else {
- Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
- Flags.incrementClobberingCalls();
- }
- return !MSSA->isLiveOnEntryDef(Source) &&
- CurLoop->contains(Source->getBlock());
- }
- // For sinking, we'd need to check all Defs below this use. The getClobbering
- // call will look on the backedge of the loop, but will check aliasing with
- // the instructions on the previous iteration.
- // For example:
- // for (i ... )
- // load a[i] ( Use (LoE)
- // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
- // i++;
- // The load sees no clobbering inside the loop, as the backedge alias check
- // does phi translation, and will check aliasing against store a[i-1].
- // However sinking the load outside the loop, below the store is incorrect.
- // For now, only sink if there are no Defs in the loop, and the existing ones
- // precede the use and are in the same block.
- // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
- // needs PostDominatorTreeAnalysis.
- // FIXME: More precise: no Defs that alias this Use.
- if (Flags.tooManyMemoryAccesses())
- return true;
- for (auto *BB : CurLoop->getBlocks())
- if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
- return true;
- // When sinking, the source block may not be part of the loop so check it.
- if (!CurLoop->contains(&I))
- return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
- return false;
- }
- bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
- MemoryUse &MU) {
- if (const auto *Accesses = MSSA.getBlockDefs(&BB))
- for (const auto &MA : *Accesses)
- if (const auto *MD = dyn_cast<MemoryDef>(&MA))
- if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
- return true;
- return false;
- }
- /// Little predicate that returns true if the specified basic block is in
- /// a subloop of the current one, not the current one itself.
- ///
- static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
- assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
- return LI->getLoopFor(BB) != CurLoop;
- }
|