1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705 |
- //===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Analysis/Analyses/CalledOnceCheck.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/Attr.h"
- #include "clang/AST/Decl.h"
- #include "clang/AST/DeclBase.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/OperationKinds.h"
- #include "clang/AST/ParentMap.h"
- #include "clang/AST/RecursiveASTVisitor.h"
- #include "clang/AST/Stmt.h"
- #include "clang/AST/StmtObjC.h"
- #include "clang/AST/StmtVisitor.h"
- #include "clang/AST/Type.h"
- #include "clang/Analysis/AnalysisDeclContext.h"
- #include "clang/Analysis/CFG.h"
- #include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
- #include "clang/Basic/Builtins.h"
- #include "clang/Basic/IdentifierTable.h"
- #include "clang/Basic/LLVM.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/BitmaskEnum.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PointerIntPair.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/ErrorHandling.h"
- #include <memory>
- using namespace clang;
- namespace {
- static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
- template <class T>
- using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
- static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
- template <class T>
- using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
- constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
- "completionHandler", "completion", "withCompletionHandler",
- "withCompletion", "completionBlock", "withCompletionBlock",
- "replyTo", "reply", "withReplyTo"};
- constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
- "WithCompletionHandler", "WithCompletion", "WithCompletionBlock",
- "WithReplyTo", "WithReply"};
- constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
- "error", "cancel", "shouldCall", "done", "OK", "success"};
- struct KnownCalledOnceParameter {
- llvm::StringLiteral FunctionName;
- unsigned ParamIndex;
- };
- constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = {
- {llvm::StringLiteral{"dispatch_async"}, 1},
- {llvm::StringLiteral{"dispatch_async_and_wait"}, 1},
- {llvm::StringLiteral{"dispatch_after"}, 2},
- {llvm::StringLiteral{"dispatch_sync"}, 1},
- {llvm::StringLiteral{"dispatch_once"}, 1},
- {llvm::StringLiteral{"dispatch_barrier_async"}, 1},
- {llvm::StringLiteral{"dispatch_barrier_async_and_wait"}, 1},
- {llvm::StringLiteral{"dispatch_barrier_sync"}, 1}};
- class ParameterStatus {
- public:
- // Status kind is basically the main part of parameter's status.
- // The kind represents our knowledge (so far) about a tracked parameter
- // in the context of this analysis.
- //
- // Since we want to report on missing and extraneous calls, we need to
- // track the fact whether paramater was called or not. This automatically
- // decides two kinds: `NotCalled` and `Called`.
- //
- // One of the erroneous situations is the case when parameter is called only
- // on some of the paths. We could've considered it `NotCalled`, but we want
- // to report double call warnings even if these two calls are not guaranteed
- // to happen in every execution. We also don't want to have it as `Called`
- // because not calling tracked parameter on all of the paths is an error
- // on its own. For these reasons, we need to have a separate kind,
- // `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
- // confusion.
- //
- // Two violations of calling parameter more than once and not calling it on
- // every path are not, however, mutually exclusive. In situations where both
- // violations take place, we prefer to report ONLY double call. It's always
- // harder to pinpoint a bug that has arisen when a user neglects to take the
- // right action (and therefore, no action is taken), than when a user takes
- // the wrong action. And, in order to remember that we already reported
- // a double call, we need another kind: `Reported`.
- //
- // Our analysis is intra-procedural and, while in the perfect world,
- // developers only use tracked parameters to call them, in the real world,
- // the picture might be different. Parameters can be stored in global
- // variables or leaked into other functions that we know nothing about.
- // We try to be lenient and trust users. Another kind `Escaped` reflects
- // such situations. We don't know if it gets called there or not, but we
- // should always think of `Escaped` as the best possible option.
- //
- // Some of the paths in the analyzed functions might end with a call
- // to noreturn functions. Such paths are not required to have parameter
- // calls and we want to track that. For the purposes of better diagnostics,
- // we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
- //
- // Additionally, we have `NotVisited` kind that tells us nothing about
- // a tracked parameter, but is used for tracking analyzed (aka visited)
- // basic blocks.
- //
- // If we consider `|` to be a JOIN operation of two kinds coming from
- // two different paths, the following properties must hold:
- //
- // 1. for any Kind K: K | K == K
- // Joining two identical kinds should result in the same kind.
- //
- // 2. for any Kind K: Reported | K == Reported
- // Doesn't matter on which path it was reported, it still is.
- //
- // 3. for any Kind K: NoReturn | K == K
- // We can totally ignore noreturn paths during merges.
- //
- // 4. DefinitelyCalled | NotCalled == MaybeCalled
- // Called on one path, not called on another - that's simply
- // a definition for MaybeCalled.
- //
- // 5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
- // Escaped | K == K
- // Escaped mirrors other statuses after joins.
- // Every situation, when we join any of the listed kinds K,
- // is a violation. For this reason, in order to assume the
- // best outcome for this escape, we consider it to be the
- // same as the other path.
- //
- // 6. for any Kind K in [DefinitelyCalled, NotCalled]:
- // MaybeCalled | K == MaybeCalled
- // MaybeCalled should basically stay after almost every join.
- enum Kind {
- // No-return paths should be absolutely transparent for the analysis.
- // 0x0 is the identity element for selected join operation (binary or).
- NoReturn = 0x0, /* 0000 */
- // Escaped marks situations when marked parameter escaped into
- // another function (so we can assume that it was possibly called there).
- Escaped = 0x1, /* 0001 */
- // Parameter was definitely called once at this point.
- DefinitelyCalled = 0x3, /* 0011 */
- // Kinds less or equal to NON_ERROR_STATUS are not considered errors.
- NON_ERROR_STATUS = DefinitelyCalled,
- // Parameter was not yet called.
- NotCalled = 0x5, /* 0101 */
- // Parameter was not called at least on one path leading to this point,
- // while there is also at least one path that it gets called.
- MaybeCalled = 0x7, /* 0111 */
- // Parameter was not yet analyzed.
- NotVisited = 0x8, /* 1000 */
- // We already reported a violation and stopped tracking calls for this
- // parameter.
- Reported = 0x15, /* 1111 */
- LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)
- };
- constexpr ParameterStatus() = default;
- /* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
- assert(!seenAnyCalls(K) && "Can't initialize status without a call");
- }
- ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
- assert(seenAnyCalls(K) && "This kind is not supposed to have a call");
- }
- const Expr &getCall() const {
- assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call");
- return *Call;
- }
- static bool seenAnyCalls(Kind K) {
- return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
- }
- bool seenAnyCalls() const { return seenAnyCalls(getKind()); }
- static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
- bool isErrorStatus() const { return isErrorStatus(getKind()); }
- Kind getKind() const { return StatusKind; }
- void join(const ParameterStatus &Other) {
- // If we have a pointer already, let's keep it.
- // For the purposes of the analysis, it doesn't really matter
- // which call we report.
- //
- // If we don't have a pointer, let's take whatever gets joined.
- if (!Call) {
- Call = Other.Call;
- }
- // Join kinds.
- StatusKind |= Other.getKind();
- }
- bool operator==(const ParameterStatus &Other) const {
- // We compare only kinds, pointers on their own is only additional
- // information.
- return getKind() == Other.getKind();
- }
- private:
- // It would've been a perfect place to use llvm::PointerIntPair, but
- // unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
- Kind StatusKind = NotVisited;
- const Expr *Call = nullptr;
- };
- /// State aggregates statuses of all tracked parameters.
- class State {
- public:
- State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
- : ParamData(Size, K) {}
- /// Return status of a parameter with the given index.
- /// \{
- ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
- const ParameterStatus &getStatusFor(unsigned Index) const {
- return ParamData[Index];
- }
- /// \}
- /// Return true if parameter with the given index can be called.
- bool seenAnyCalls(unsigned Index) const {
- return getStatusFor(Index).seenAnyCalls();
- }
- /// Return a reference that we consider a call.
- ///
- /// Should only be used for parameters that can be called.
- const Expr &getCallFor(unsigned Index) const {
- return getStatusFor(Index).getCall();
- }
- /// Return status kind of parameter with the given index.
- ParameterStatus::Kind getKindFor(unsigned Index) const {
- return getStatusFor(Index).getKind();
- }
- bool isVisited() const {
- return llvm::all_of(ParamData, [](const ParameterStatus &S) {
- return S.getKind() != ParameterStatus::NotVisited;
- });
- }
- // Join other state into the current state.
- void join(const State &Other) {
- assert(ParamData.size() == Other.ParamData.size() &&
- "Couldn't join statuses with different sizes");
- for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
- std::get<0>(Pair).join(std::get<1>(Pair));
- }
- }
- using iterator = ParamSizedVector<ParameterStatus>::iterator;
- using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;
- iterator begin() { return ParamData.begin(); }
- iterator end() { return ParamData.end(); }
- const_iterator begin() const { return ParamData.begin(); }
- const_iterator end() const { return ParamData.end(); }
- bool operator==(const State &Other) const {
- return ParamData == Other.ParamData;
- }
- private:
- ParamSizedVector<ParameterStatus> ParamData;
- };
- /// A simple class that finds DeclRefExpr in the given expression.
- ///
- /// However, we don't want to find ANY nested DeclRefExpr skipping whatever
- /// expressions on our way. Only certain expressions considered "no-op"
- /// for our task are indeed skipped.
- class DeclRefFinder
- : public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
- public:
- /// Find a DeclRefExpr in the given expression.
- ///
- /// In its most basic form (ShouldRetrieveFromComparisons == false),
- /// this function can be simply reduced to the following question:
- ///
- /// - If expression E is used as a function argument, could we say
- /// that DeclRefExpr nested in E is used as an argument?
- ///
- /// According to this rule, we can say that parens, casts and dereferencing
- /// (dereferencing only applied to function pointers, but this is our case)
- /// can be skipped.
- ///
- /// When we should look into comparisons the question changes to:
- ///
- /// - If expression E is used as a condition, could we say that
- /// DeclRefExpr is being checked?
- ///
- /// And even though, these are two different questions, they have quite a lot
- /// in common. Actually, we can say that whatever expression answers
- /// positively the first question also fits the second question as well.
- ///
- /// In addition, we skip binary operators == and !=, and unary opeartor !.
- static const DeclRefExpr *find(const Expr *E,
- bool ShouldRetrieveFromComparisons = false) {
- return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
- }
- const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }
- const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
- switch (UO->getOpcode()) {
- case UO_LNot:
- // We care about logical not only if we care about comparisons.
- if (!ShouldRetrieveFromComparisons)
- return nullptr;
- LLVM_FALLTHROUGH;
- // Function pointer/references can be dereferenced before a call.
- // That doesn't make it, however, any different from a regular call.
- // For this reason, dereference operation is a "no-op".
- case UO_Deref:
- return Visit(UO->getSubExpr());
- default:
- return nullptr;
- }
- }
- const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
- if (!ShouldRetrieveFromComparisons)
- return nullptr;
- switch (BO->getOpcode()) {
- case BO_EQ:
- case BO_NE: {
- const DeclRefExpr *LHS = Visit(BO->getLHS());
- return LHS ? LHS : Visit(BO->getRHS());
- }
- default:
- return nullptr;
- }
- }
- const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
- return Visit(OVE->getSourceExpr());
- }
- const DeclRefExpr *VisitCallExpr(const CallExpr *CE) {
- if (!ShouldRetrieveFromComparisons)
- return nullptr;
- // We want to see through some of the boolean builtin functions
- // that we are likely to see in conditions.
- switch (CE->getBuiltinCallee()) {
- case Builtin::BI__builtin_expect:
- case Builtin::BI__builtin_expect_with_probability: {
- assert(CE->getNumArgs() >= 2);
- const DeclRefExpr *Candidate = Visit(CE->getArg(0));
- return Candidate != nullptr ? Candidate : Visit(CE->getArg(1));
- }
- case Builtin::BI__builtin_unpredictable:
- return Visit(CE->getArg(0));
- default:
- return nullptr;
- }
- }
- const DeclRefExpr *VisitExpr(const Expr *E) {
- // It is a fallback method that gets called whenever the actual type
- // of the given expression is not covered.
- //
- // We first check if we have anything to skip. And then repeat the whole
- // procedure for a nested expression instead.
- const Expr *DeclutteredExpr = E->IgnoreParenCasts();
- return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
- }
- private:
- DeclRefFinder(bool ShouldRetrieveFromComparisons)
- : ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}
- bool ShouldRetrieveFromComparisons;
- };
- const DeclRefExpr *findDeclRefExpr(const Expr *In,
- bool ShouldRetrieveFromComparisons = false) {
- return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
- }
- const ParmVarDecl *
- findReferencedParmVarDecl(const Expr *In,
- bool ShouldRetrieveFromComparisons = false) {
- if (const DeclRefExpr *DR =
- findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
- return dyn_cast<ParmVarDecl>(DR->getDecl());
- }
- return nullptr;
- }
- /// Return conditions expression of a statement if it has one.
- const Expr *getCondition(const Stmt *S) {
- if (!S) {
- return nullptr;
- }
- if (const auto *If = dyn_cast<IfStmt>(S)) {
- return If->getCond();
- }
- if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
- return Ternary->getCond();
- }
- return nullptr;
- }
- /// A small helper class that collects all named identifiers in the given
- /// expression. It traverses it recursively, so names from deeper levels
- /// of the AST will end up in the results.
- /// Results might have duplicate names, if this is a problem, convert to
- /// string sets afterwards.
- class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
- public:
- static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
- using NameCollection =
- llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;
- static NameCollection collect(const Expr *From) {
- NamesCollector Impl;
- Impl.TraverseStmt(const_cast<Expr *>(From));
- return Impl.Result;
- }
- bool VisitDeclRefExpr(const DeclRefExpr *E) {
- Result.push_back(E->getDecl()->getName());
- return true;
- }
- bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
- llvm::StringRef Name;
- if (E->isImplicitProperty()) {
- ObjCMethodDecl *PropertyMethodDecl = nullptr;
- if (E->isMessagingGetter()) {
- PropertyMethodDecl = E->getImplicitPropertyGetter();
- } else {
- PropertyMethodDecl = E->getImplicitPropertySetter();
- }
- assert(PropertyMethodDecl &&
- "Implicit property must have associated declaration");
- Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
- } else {
- assert(E->isExplicitProperty());
- Name = E->getExplicitProperty()->getName();
- }
- Result.push_back(Name);
- return true;
- }
- private:
- NamesCollector() = default;
- NameCollection Result;
- };
- /// Check whether the given expression mentions any of conventional names.
- bool mentionsAnyOfConventionalNames(const Expr *E) {
- NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);
- return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
- return llvm::any_of(
- CONVENTIONAL_CONDITIONS,
- [ConditionName](const llvm::StringLiteral &Conventional) {
- return ConditionName.contains_insensitive(Conventional);
- });
- });
- }
- /// Clarification is a simple pair of a reason why parameter is not called
- /// on every path and a statement to blame.
- struct Clarification {
- NeverCalledReason Reason;
- const Stmt *Location;
- };
- /// A helper class that can produce a clarification based on the given pair
- /// of basic blocks.
- class NotCalledClarifier
- : public ConstStmtVisitor<NotCalledClarifier,
- llvm::Optional<Clarification>> {
- public:
- /// The main entrypoint for the class, the function that tries to find the
- /// clarification of how to explain which sub-path starts with a CFG edge
- /// from Conditional to SuccWithoutCall.
- ///
- /// This means that this function has one precondition:
- /// SuccWithoutCall should be a successor block for Conditional.
- ///
- /// Because clarification is not needed for non-trivial pairs of blocks
- /// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
- /// results only for such cases. For this very reason, the parent basic
- /// block, Conditional, is named that way, so it is clear what kind of
- /// block is expected.
- static llvm::Optional<Clarification>
- clarify(const CFGBlock *Conditional, const CFGBlock *SuccWithoutCall) {
- if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
- return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
- }
- return llvm::None;
- }
- llvm::Optional<Clarification> VisitIfStmt(const IfStmt *If) {
- return VisitBranchingBlock(If, NeverCalledReason::IfThen);
- }
- llvm::Optional<Clarification>
- VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
- return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
- }
- llvm::Optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
- const Stmt *CaseToBlame = SuccInQuestion->getLabel();
- if (!CaseToBlame) {
- // If interesting basic block is not labeled, it means that this
- // basic block does not represent any of the cases.
- return Clarification{NeverCalledReason::SwitchSkipped, Switch};
- }
- for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
- Case = Case->getNextSwitchCase()) {
- if (Case == CaseToBlame) {
- return Clarification{NeverCalledReason::Switch, Case};
- }
- }
- llvm_unreachable("Found unexpected switch structure");
- }
- llvm::Optional<Clarification> VisitForStmt(const ForStmt *For) {
- return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
- }
- llvm::Optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
- return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
- }
- llvm::Optional<Clarification>
- VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
- assert(Parent->succ_size() == 2 &&
- "Branching block should have exactly two successors");
- unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
- NeverCalledReason ActualReason =
- updateForSuccessor(DefaultReason, SuccessorIndex);
- return Clarification{ActualReason, Terminator};
- }
- llvm::Optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
- // We don't want to report on short-curcuit logical operations.
- return llvm::None;
- }
- llvm::Optional<Clarification> VisitStmt(const Stmt *Terminator) {
- // If we got here, we didn't have a visit function for more derived
- // classes of statement that this terminator actually belongs to.
- //
- // This is not a good scenario and should not happen in practice, but
- // at least we'll warn the user.
- return Clarification{NeverCalledReason::FallbackReason, Terminator};
- }
- static unsigned getSuccessorIndex(const CFGBlock *Parent,
- const CFGBlock *Child) {
- CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
- assert(It != Parent->succ_end() &&
- "Given blocks should be in parent-child relationship");
- return It - Parent->succ_begin();
- }
- static NeverCalledReason
- updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
- unsigned SuccessorIndex) {
- assert(SuccessorIndex <= 1);
- unsigned RawReason =
- static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
- assert(RawReason <=
- static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE));
- return static_cast<NeverCalledReason>(RawReason);
- }
- private:
- NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
- : Parent(Parent), SuccInQuestion(SuccInQuestion) {}
- const CFGBlock *Parent, *SuccInQuestion;
- };
- class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
- public:
- static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
- bool CheckConventionalParameters) {
- CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
- }
- private:
- CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
- bool CheckConventionalParameters)
- : FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
- CheckConventionalParameters(CheckConventionalParameters),
- CurrentState(0) {
- initDataStructures();
- assert((size() == 0 || !States.empty()) &&
- "Data structures are inconsistent");
- }
- //===----------------------------------------------------------------------===//
- // Initializing functions
- //===----------------------------------------------------------------------===//
- void initDataStructures() {
- const Decl *AnalyzedDecl = AC.getDecl();
- if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
- findParamsToTrack(Function);
- } else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
- findParamsToTrack(Method);
- } else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
- findCapturesToTrack(Block);
- findParamsToTrack(Block);
- }
- // Have something to track, let's init states for every block from the CFG.
- if (size() != 0) {
- States =
- CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
- }
- }
- void findCapturesToTrack(const BlockDecl *Block) {
- for (const auto &Capture : Block->captures()) {
- if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
- // Parameter DeclContext is its owning function or method.
- const DeclContext *ParamContext = P->getDeclContext();
- if (shouldBeCalledOnce(ParamContext, P)) {
- TrackedParams.push_back(P);
- }
- }
- }
- }
- template <class FunctionLikeDecl>
- void findParamsToTrack(const FunctionLikeDecl *Function) {
- for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
- if (shouldBeCalledOnce(Function, Index)) {
- TrackedParams.push_back(Function->getParamDecl(Index));
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Main logic 'check' functions
- //===----------------------------------------------------------------------===//
- void check() {
- // Nothing to check here: we don't have marked parameters.
- if (size() == 0 || isPossiblyEmptyImpl())
- return;
- assert(
- llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&
- "None of the blocks should be 'visited' before the analysis");
- // For our task, both backward and forward approaches suite well.
- // However, in order to report better diagnostics, we decided to go with
- // backward analysis.
- //
- // Let's consider the following CFG and how forward and backward analyses
- // will work for it.
- //
- // FORWARD: | BACKWARD:
- // #1 | #1
- // +---------+ | +-----------+
- // | if | | |MaybeCalled|
- // +---------+ | +-----------+
- // |NotCalled| | | if |
- // +---------+ | +-----------+
- // / \ | / \
- // #2 / \ #3 | #2 / \ #3
- // +----------------+ +---------+ | +----------------+ +---------+
- // | foo() | | ... | | |DefinitelyCalled| |NotCalled|
- // +----------------+ +---------+ | +----------------+ +---------+
- // |DefinitelyCalled| |NotCalled| | | foo() | | ... |
- // +----------------+ +---------+ | +----------------+ +---------+
- // \ / | \ /
- // \ #4 / | \ #4 /
- // +-----------+ | +---------+
- // | ... | | |NotCalled|
- // +-----------+ | +---------+
- // |MaybeCalled| | | ... |
- // +-----------+ | +---------+
- //
- // The most natural way to report lacking call in the block #3 would be to
- // message that the false branch of the if statement in the block #1 doesn't
- // have a call. And while with the forward approach we'll need to find a
- // least common ancestor or something like that to find the 'if' to blame,
- // backward analysis gives it to us out of the box.
- BackwardDataflowWorklist Worklist(FunctionCFG, AC);
- // Let's visit EXIT.
- const CFGBlock *Exit = &FunctionCFG.getExit();
- assignState(Exit, State(size(), ParameterStatus::NotCalled));
- Worklist.enqueuePredecessors(Exit);
- while (const CFGBlock *BB = Worklist.dequeue()) {
- assert(BB && "Worklist should filter out null blocks");
- check(BB);
- assert(CurrentState.isVisited() &&
- "After the check, basic block should be visited");
- // Traverse successor basic blocks if the status of this block
- // has changed.
- if (assignState(BB, CurrentState)) {
- Worklist.enqueuePredecessors(BB);
- }
- }
- // Check that we have all tracked parameters at the last block.
- // As we are performing a backward version of the analysis,
- // it should be the ENTRY block.
- checkEntry(&FunctionCFG.getEntry());
- }
- void check(const CFGBlock *BB) {
- // We start with a state 'inherited' from all the successors.
- CurrentState = joinSuccessors(BB);
- assert(CurrentState.isVisited() &&
- "Shouldn't start with a 'not visited' state");
- // This is the 'exit' situation, broken promises are probably OK
- // in such scenarios.
- if (BB->hasNoReturnElement()) {
- markNoReturn();
- // This block still can have calls (even multiple calls) and
- // for this reason there is no early return here.
- }
- // We use a backward dataflow propagation and for this reason we
- // should traverse basic blocks bottom-up.
- for (const CFGElement &Element : llvm::reverse(*BB)) {
- if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
- check(S->getStmt());
- }
- }
- }
- void check(const Stmt *S) { Visit(S); }
- void checkEntry(const CFGBlock *Entry) {
- // We finalize this algorithm with the ENTRY block because
- // we use a backward version of the analysis. This is where
- // we can judge that some of the tracked parameters are not called on
- // every path from ENTRY to EXIT.
- const State &EntryStatus = getState(Entry);
- llvm::BitVector NotCalledOnEveryPath(size(), false);
- llvm::BitVector NotUsedOnEveryPath(size(), false);
- // Check if there are no calls of the marked parameter at all
- for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
- const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
- switch (IndexedStatus.value().getKind()) {
- case ParameterStatus::NotCalled:
- // If there were places where this parameter escapes (aka being used),
- // we can provide a more useful diagnostic by pointing at the exact
- // branches where it is not even mentioned.
- if (!hasEverEscaped(IndexedStatus.index())) {
- // This parameter is was not used at all, so we should report the
- // most generic version of the warning.
- if (isCaptured(Parameter)) {
- // We want to specify that it was captured by the block.
- Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
- !isExplicitlyMarked(Parameter));
- } else {
- Handler.handleNeverCalled(Parameter,
- !isExplicitlyMarked(Parameter));
- }
- } else {
- // Mark it as 'interesting' to figure out which paths don't even
- // have escapes.
- NotUsedOnEveryPath[IndexedStatus.index()] = true;
- }
- break;
- case ParameterStatus::MaybeCalled:
- // If we have 'maybe called' at this point, we have an error
- // that there is at least one path where this parameter
- // is not called.
- //
- // However, reporting the warning with only that information can be
- // too vague for the users. For this reason, we mark such parameters
- // as "interesting" for further analysis.
- NotCalledOnEveryPath[IndexedStatus.index()] = true;
- break;
- default:
- break;
- }
- }
- // Early exit if we don't have parameters for extra analysis...
- if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none() &&
- // ... or if we've seen variables with cleanup functions.
- // We can't reason that we've seen every path in this case,
- // and thus abandon reporting any warnings that imply that.
- !FunctionHasCleanupVars)
- return;
- // We are looking for a pair of blocks A, B so that the following is true:
- // * A is a predecessor of B
- // * B is marked as NotCalled
- // * A has at least one successor marked as either
- // Escaped or DefinitelyCalled
- //
- // In that situation, it is guaranteed that B is the first block of the path
- // where the user doesn't call or use parameter in question.
- //
- // For this reason, branch A -> B can be used for reporting.
- //
- // This part of the algorithm is guarded by a condition that the function
- // does indeed have a violation of contract. For this reason, we can
- // spend more time to find a good spot to place the warning.
- //
- // The following algorithm has the worst case complexity of O(V + E),
- // where V is the number of basic blocks in FunctionCFG,
- // E is the number of edges between blocks in FunctionCFG.
- for (const CFGBlock *BB : FunctionCFG) {
- if (!BB)
- continue;
- const State &BlockState = getState(BB);
- for (unsigned Index : llvm::seq(0u, size())) {
- // We don't want to use 'isLosingCall' here because we want to report
- // the following situation as well:
- //
- // MaybeCalled
- // | ... |
- // MaybeCalled NotCalled
- //
- // Even though successor is not 'DefinitelyCalled', it is still useful
- // to report it, it is still a path without a call.
- if (NotCalledOnEveryPath[Index] &&
- BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {
- findAndReportNotCalledBranches(BB, Index);
- } else if (NotUsedOnEveryPath[Index] &&
- isLosingEscape(BlockState, BB, Index)) {
- findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
- }
- }
- }
- }
- /// Check potential call of a tracked parameter.
- void checkDirectCall(const CallExpr *Call) {
- if (auto Index = getIndexOfCallee(Call)) {
- processCallFor(*Index, Call);
- }
- }
- /// Check the call expression for being an indirect call of one of the tracked
- /// parameters. It is indirect in the sense that this particular call is not
- /// calling the parameter itself, but rather uses it as the argument.
- template <class CallLikeExpr>
- void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
- // CallExpr::arguments does not interact nicely with llvm::enumerate.
- llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
- CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
- // Let's check if any of the call arguments is a point of interest.
- for (const auto &Argument : llvm::enumerate(Arguments)) {
- if (auto Index = getIndexOfExpression(Argument.value())) {
- if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
- // If the corresponding parameter is marked as 'called_once' we should
- // consider it as a call.
- processCallFor(*Index, CallOrMessage);
- } else {
- // Otherwise, we mark this parameter as escaped, which can be
- // interpreted both as called or not called depending on the context.
- processEscapeFor(*Index);
- }
- // Otherwise, let's keep the state as it is.
- }
- }
- }
- /// Process call of the parameter with the given index
- void processCallFor(unsigned Index, const Expr *Call) {
- ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
- if (CurrentParamStatus.seenAnyCalls()) {
- // At this point, this parameter was called, so this is a second call.
- const ParmVarDecl *Parameter = getParameter(Index);
- Handler.handleDoubleCall(
- Parameter, &CurrentState.getCallFor(Index), Call,
- !isExplicitlyMarked(Parameter),
- // We are sure that the second call is definitely
- // going to happen if the status is 'DefinitelyCalled'.
- CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);
- // Mark this parameter as already reported on, so we don't repeat
- // warnings.
- CurrentParamStatus = ParameterStatus::Reported;
- } else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
- // If we didn't report anything yet, let's mark this parameter
- // as called.
- ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
- CurrentParamStatus = Called;
- }
- }
- /// Process escape of the parameter with the given index
- void processEscapeFor(unsigned Index) {
- ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);
- // Escape overrides whatever error we think happened.
- if (CurrentParamStatus.isErrorStatus()) {
- CurrentParamStatus = ParameterStatus::Escaped;
- }
- }
- void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
- bool IsEscape = false) {
- for (const CFGBlock *Succ : Parent->succs()) {
- if (!Succ)
- continue;
- if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
- assert(Parent->succ_size() >= 2 &&
- "Block should have at least two successors at this point");
- if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
- const ParmVarDecl *Parameter = getParameter(Index);
- Handler.handleNeverCalled(
- Parameter, AC.getDecl(), Clarification->Location,
- Clarification->Reason, !IsEscape, !isExplicitlyMarked(Parameter));
- }
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Predicate functions to check parameters
- //===----------------------------------------------------------------------===//
- /// Return true if parameter is explicitly marked as 'called_once'.
- static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
- return Parameter->hasAttr<CalledOnceAttr>();
- }
- /// Return true if the given name matches conventional pattens.
- static bool isConventional(llvm::StringRef Name) {
- return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
- }
- /// Return true if the given name has conventional suffixes.
- static bool hasConventionalSuffix(llvm::StringRef Name) {
- return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
- return Name.endswith(Suffix);
- });
- }
- /// Return true if the given type can be used for conventional parameters.
- static bool isConventional(QualType Ty) {
- if (!Ty->isBlockPointerType()) {
- return false;
- }
- QualType BlockType = Ty->castAs<BlockPointerType>()->getPointeeType();
- // Completion handlers should have a block type with void return type.
- return BlockType->castAs<FunctionType>()->getReturnType()->isVoidType();
- }
- /// Return true if the only parameter of the function is conventional.
- static bool isOnlyParameterConventional(const FunctionDecl *Function) {
- IdentifierInfo *II = Function->getIdentifier();
- return Function->getNumParams() == 1 && II &&
- hasConventionalSuffix(II->getName());
- }
- /// Return true/false if 'swift_async' attribute states that the given
- /// parameter is conventionally called once.
- /// Return llvm::None if the given declaration doesn't have 'swift_async'
- /// attribute.
- static llvm::Optional<bool> isConventionalSwiftAsync(const Decl *D,
- unsigned ParamIndex) {
- if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
- if (A->getKind() == SwiftAsyncAttr::None) {
- return false;
- }
- return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
- }
- return llvm::None;
- }
- /// Return true if the specified selector represents init method.
- static bool isInitMethod(Selector MethodSelector) {
- return MethodSelector.getMethodFamily() == OMF_init;
- }
- /// Return true if the specified selector piece matches conventions.
- static bool isConventionalSelectorPiece(Selector MethodSelector,
- unsigned PieceIndex,
- QualType PieceType) {
- if (!isConventional(PieceType) || isInitMethod(MethodSelector)) {
- return false;
- }
- if (MethodSelector.getNumArgs() == 1) {
- assert(PieceIndex == 0);
- return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
- }
- llvm::StringRef PieceName = MethodSelector.getNameForSlot(PieceIndex);
- return isConventional(PieceName) || hasConventionalSuffix(PieceName);
- }
- bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
- return isExplicitlyMarked(Parameter) ||
- (CheckConventionalParameters &&
- (isConventional(Parameter->getName()) ||
- hasConventionalSuffix(Parameter->getName())) &&
- isConventional(Parameter->getType()));
- }
- bool shouldBeCalledOnce(const DeclContext *ParamContext,
- const ParmVarDecl *Param) {
- unsigned ParamIndex = Param->getFunctionScopeIndex();
- if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
- return shouldBeCalledOnce(Function, ParamIndex);
- }
- if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
- return shouldBeCalledOnce(Method, ParamIndex);
- }
- return shouldBeCalledOnce(Param);
- }
- bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
- return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
- }
- bool shouldBeCalledOnce(const FunctionDecl *Function,
- unsigned ParamIndex) const {
- if (ParamIndex >= Function->getNumParams()) {
- return false;
- }
- // 'swift_async' goes first and overrides anything else.
- if (auto ConventionalAsync =
- isConventionalSwiftAsync(Function, ParamIndex)) {
- return ConventionalAsync.getValue();
- }
- return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
- (CheckConventionalParameters &&
- isOnlyParameterConventional(Function));
- }
- bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
- unsigned ParamIndex) const {
- Selector MethodSelector = Method->getSelector();
- if (ParamIndex >= MethodSelector.getNumArgs()) {
- return false;
- }
- // 'swift_async' goes first and overrides anything else.
- if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
- return ConventionalAsync.getValue();
- }
- const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
- return shouldBeCalledOnce(Parameter) ||
- (CheckConventionalParameters &&
- isConventionalSelectorPiece(MethodSelector, ParamIndex,
- Parameter->getType()));
- }
- bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
- const FunctionDecl *Function = Call->getDirectCallee();
- return Function && shouldBeCalledOnce(Function, ParamIndex);
- }
- bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
- unsigned ParamIndex) const {
- const ObjCMethodDecl *Method = Message->getMethodDecl();
- return Method && ParamIndex < Method->param_size() &&
- shouldBeCalledOnce(Method, ParamIndex);
- }
- //===----------------------------------------------------------------------===//
- // Utility methods
- //===----------------------------------------------------------------------===//
- bool isCaptured(const ParmVarDecl *Parameter) const {
- if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
- return Block->capturesVariable(Parameter);
- }
- return false;
- }
- // Return a call site where the block is called exactly once or null otherwise
- const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const {
- ParentMap &PM = AC.getParentMap();
- // We don't want to track the block through assignments and so on, instead
- // we simply see how the block used and if it's used directly in a call,
- // we decide based on call to what it is.
- //
- // In order to do this, we go up the parents of the block looking for
- // a call or a message expressions. These might not be immediate parents
- // of the actual block expression due to casts and parens, so we skip them.
- for (const Stmt *Prev = Block, *Current = PM.getParent(Block);
- Current != nullptr; Prev = Current, Current = PM.getParent(Current)) {
- // Skip no-op (for our case) operations.
- if (isa<CastExpr>(Current) || isa<ParenExpr>(Current))
- continue;
- // At this point, Prev represents our block as an immediate child of the
- // call.
- if (const auto *Call = dyn_cast<CallExpr>(Current)) {
- // It might be the call of the Block itself...
- if (Call->getCallee() == Prev)
- return Call;
- // ...or it can be an indirect call of the block.
- return shouldBlockArgumentBeCalledOnce(Call, Prev) ? Call : nullptr;
- }
- if (const auto *Message = dyn_cast<ObjCMessageExpr>(Current)) {
- return shouldBlockArgumentBeCalledOnce(Message, Prev) ? Message
- : nullptr;
- }
- break;
- }
- return nullptr;
- }
- template <class CallLikeExpr>
- bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage,
- const Stmt *BlockArgument) const {
- // CallExpr::arguments does not interact nicely with llvm::enumerate.
- llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
- CallOrMessage->getArgs(), CallOrMessage->getNumArgs());
- for (const auto &Argument : llvm::enumerate(Arguments)) {
- if (Argument.value() == BlockArgument) {
- return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index());
- }
- }
- return false;
- }
- bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call,
- unsigned ParamIndex) const {
- const FunctionDecl *Function = Call->getDirectCallee();
- return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) ||
- shouldBeCalledOnce(Call, ParamIndex);
- }
- bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message,
- unsigned ParamIndex) const {
- // At the moment, we don't have any Obj-C methods we want to specifically
- // check in here.
- return shouldBeCalledOnce(Message, ParamIndex);
- }
- static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function,
- unsigned ParamIndex) {
- // There is a list of important API functions that while not following
- // conventions nor being directly annotated, still guarantee that the
- // callback parameter will be called exactly once.
- //
- // Here we check if this is the case.
- return Function &&
- llvm::any_of(KNOWN_CALLED_ONCE_PARAMETERS,
- [Function, ParamIndex](
- const KnownCalledOnceParameter &Reference) {
- return Reference.FunctionName ==
- Function->getName() &&
- Reference.ParamIndex == ParamIndex;
- });
- }
- /// Return true if the analyzed function is actually a default implementation
- /// of the method that has to be overriden.
- ///
- /// These functions can have tracked parameters, but wouldn't call them
- /// because they are not designed to perform any meaningful actions.
- ///
- /// There are a couple of flavors of such default implementations:
- /// 1. Empty methods or methods with a single return statement
- /// 2. Methods that have one block with a call to no return function
- /// 3. Methods with only assertion-like operations
- bool isPossiblyEmptyImpl() const {
- if (!isa<ObjCMethodDecl>(AC.getDecl())) {
- // We care only about functions that are not supposed to be called.
- // Only methods can be overriden.
- return false;
- }
- // Case #1 (without return statements)
- if (FunctionCFG.size() == 2) {
- // Method has only two blocks: ENTRY and EXIT.
- // This is equivalent to empty function.
- return true;
- }
- // Case #2
- if (FunctionCFG.size() == 3) {
- const CFGBlock &Entry = FunctionCFG.getEntry();
- if (Entry.succ_empty()) {
- return false;
- }
- const CFGBlock *OnlyBlock = *Entry.succ_begin();
- // Method has only one block, let's see if it has a no-return
- // element.
- if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
- return true;
- }
- // Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
- }
- // Cases #1 (return statements) and #3.
- //
- // It is hard to detect that something is an assertion or came
- // from assertion. Here we use a simple heuristic:
- //
- // - If it came from a macro, it can be an assertion.
- //
- // Additionally, we can't assume a number of basic blocks or the CFG's
- // structure because assertions might include loops and conditions.
- return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
- if (!BB) {
- // Unreachable blocks are totally fine.
- return true;
- }
- // Return statements can have sub-expressions that are represented as
- // separate statements of a basic block. We should allow this.
- // This parent map will be initialized with a parent tree for all
- // subexpressions of the block's return statement (if it has one).
- std::unique_ptr<ParentMap> ReturnChildren;
- return llvm::all_of(
- llvm::reverse(*BB), // we should start with return statements, if we
- // have any, i.e. from the bottom of the block
- [&ReturnChildren](const CFGElement &Element) {
- if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
- const Stmt *SuspiciousStmt = S->getStmt();
- if (isa<ReturnStmt>(SuspiciousStmt)) {
- // Let's initialize this structure to test whether
- // some further statement is a part of this return.
- ReturnChildren = std::make_unique<ParentMap>(
- const_cast<Stmt *>(SuspiciousStmt));
- // Return statements are allowed as part of #1.
- return true;
- }
- return SuspiciousStmt->getBeginLoc().isMacroID() ||
- (ReturnChildren &&
- ReturnChildren->hasParent(SuspiciousStmt));
- }
- return true;
- });
- });
- }
- /// Check if parameter with the given index has ever escaped.
- bool hasEverEscaped(unsigned Index) const {
- return llvm::any_of(States, [Index](const State &StateForOneBB) {
- return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
- });
- }
- /// Return status stored for the given basic block.
- /// \{
- State &getState(const CFGBlock *BB) {
- assert(BB);
- return States[BB->getBlockID()];
- }
- const State &getState(const CFGBlock *BB) const {
- assert(BB);
- return States[BB->getBlockID()];
- }
- /// \}
- /// Assign status to the given basic block.
- ///
- /// Returns true when the stored status changed.
- bool assignState(const CFGBlock *BB, const State &ToAssign) {
- State &Current = getState(BB);
- if (Current == ToAssign) {
- return false;
- }
- Current = ToAssign;
- return true;
- }
- /// Join all incoming statuses for the given basic block.
- State joinSuccessors(const CFGBlock *BB) const {
- auto Succs =
- llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
- return Succ && this->getState(Succ).isVisited();
- });
- // We came to this block from somewhere after all.
- assert(!Succs.empty() &&
- "Basic block should have at least one visited successor");
- State Result = getState(*Succs.begin());
- for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
- Result.join(getState(Succ));
- }
- if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
- handleConditional(BB, Condition, Result);
- }
- return Result;
- }
- void handleConditional(const CFGBlock *BB, const Expr *Condition,
- State &ToAlter) const {
- handleParameterCheck(BB, Condition, ToAlter);
- if (SuppressOnConventionalErrorPaths) {
- handleConventionalCheck(BB, Condition, ToAlter);
- }
- }
- void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
- State &ToAlter) const {
- // In this function, we try to deal with the following pattern:
- //
- // if (parameter)
- // parameter(...);
- //
- // It's not good to show a warning here because clearly 'parameter'
- // couldn't and shouldn't be called on the 'else' path.
- //
- // Let's check if this if statement has a check involving one of
- // the tracked parameters.
- if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
- Condition,
- /* ShouldRetrieveFromComparisons = */ true)) {
- if (const auto Index = getIndex(*Parameter)) {
- ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);
- // We don't want to deep dive into semantics of the check and
- // figure out if that check was for null or something else.
- // We simply trust the user that they know what they are doing.
- //
- // For this reason, in the following loop we look for the
- // best-looking option.
- for (const CFGBlock *Succ : BB->succs()) {
- if (!Succ)
- continue;
- const ParameterStatus &StatusInSucc =
- getState(Succ).getStatusFor(*Index);
- if (StatusInSucc.isErrorStatus()) {
- continue;
- }
- // Let's use this status instead.
- CurrentStatus = StatusInSucc;
- if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
- // This is the best option to have and we already found it.
- break;
- }
- // If we found 'Escaped' first, we still might find 'DefinitelyCalled'
- // on the other branch. And we prefer the latter.
- }
- }
- }
- }
- void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
- State &ToAlter) const {
- // Even when the analysis is technically correct, it is a widespread pattern
- // not to call completion handlers in some scenarios. These usually have
- // typical conditional names, such as 'error' or 'cancel'.
- if (!mentionsAnyOfConventionalNames(Condition)) {
- return;
- }
- for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
- const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
- // Conventions do not apply to explicitly marked parameters.
- if (isExplicitlyMarked(Parameter)) {
- continue;
- }
- ParameterStatus &CurrentStatus = IndexedStatus.value();
- // If we did find that on one of the branches the user uses the callback
- // and doesn't on the other path, we believe that they know what they are
- // doing and trust them.
- //
- // There are two possible scenarios for that:
- // 1. Current status is 'MaybeCalled' and one of the branches is
- // 'DefinitelyCalled'
- // 2. Current status is 'NotCalled' and one of the branches is 'Escaped'
- if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
- isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
- CurrentStatus = ParameterStatus::Escaped;
- }
- }
- }
- bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
- unsigned ParameterIndex) const {
- // Let's check if the block represents DefinitelyCalled -> MaybeCalled
- // transition.
- return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
- ParameterStatus::MaybeCalled,
- ParameterStatus::DefinitelyCalled);
- }
- bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
- unsigned ParameterIndex) const {
- // Let's check if the block represents Escaped -> NotCalled transition.
- return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
- ParameterStatus::NotCalled, ParameterStatus::Escaped);
- }
- bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
- unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
- ParameterStatus::Kind BeforeJoin) const {
- assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&
- ParameterStatus::isErrorStatus(AfterJoin) &&
- "It's not a losing join if statuses do not represent "
- "correct-to-error transition");
- const ParameterStatus &CurrentStatus =
- StateAfterJoin.getStatusFor(ParameterIndex);
- return CurrentStatus.getKind() == AfterJoin &&
- anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
- }
- /// Return true if any of the successors of the given basic block has
- /// a specified status for the given parameter.
- bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
- ParameterStatus::Kind ToFind) const {
- return llvm::any_of(
- Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
- return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
- });
- }
- /// Check given expression that was discovered to escape.
- void checkEscapee(const Expr *E) {
- if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
- checkEscapee(*Parameter);
- }
- }
- /// Check given parameter that was discovered to escape.
- void checkEscapee(const ParmVarDecl &Parameter) {
- if (auto Index = getIndex(Parameter)) {
- processEscapeFor(*Index);
- }
- }
- /// Mark all parameters in the current state as 'no-return'.
- void markNoReturn() {
- for (ParameterStatus &PS : CurrentState) {
- PS = ParameterStatus::NoReturn;
- }
- }
- /// Check if the given assignment represents suppression and act on it.
- void checkSuppression(const BinaryOperator *Assignment) {
- // Suppression has the following form:
- // parameter = 0;
- // 0 can be of any form (NULL, nil, etc.)
- if (auto Index = getIndexOfExpression(Assignment->getLHS())) {
- // We don't care what is written in the RHS, it could be whatever
- // we can interpret as 0.
- if (auto Constant =
- Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
- AC.getASTContext())) {
- ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);
- if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
- // Even though this suppression mechanism is introduced to tackle
- // false positives for multiple calls, the fact that the user has
- // to use suppression can also tell us that we couldn't figure out
- // how different paths cancel each other out. And if that is true,
- // we will most certainly have false positives about parameters not
- // being called on certain paths.
- //
- // For this reason, we abandon tracking this parameter altogether.
- CurrentParamStatus = ParameterStatus::Reported;
- }
- }
- }
- }
- public:
- //===----------------------------------------------------------------------===//
- // Tree traversal methods
- //===----------------------------------------------------------------------===//
- void VisitCallExpr(const CallExpr *Call) {
- // This call might be a direct call, i.e. a parameter call...
- checkDirectCall(Call);
- // ... or an indirect call, i.e. when parameter is an argument.
- checkIndirectCall(Call);
- }
- void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
- // The most common situation that we are defending against here is
- // copying a tracked parameter.
- if (const Expr *Receiver = Message->getInstanceReceiver()) {
- checkEscapee(Receiver);
- }
- // Message expressions unlike calls, could not be direct.
- checkIndirectCall(Message);
- }
- void VisitBlockExpr(const BlockExpr *Block) {
- // Block expressions are tricky. It is a very common practice to capture
- // completion handlers by blocks and use them there.
- // For this reason, it is important to analyze blocks and report warnings
- // for completion handler misuse in blocks.
- //
- // However, it can be quite difficult to track how the block itself is being
- // used. The full precise anlysis of that will be similar to alias analysis
- // for completion handlers and can be too heavyweight for a compile-time
- // diagnostic. Instead, we judge about the immediate use of the block.
- //
- // Here, we try to find a call expression where we know due to conventions,
- // annotations, or other reasons that the block is called once and only
- // once.
- const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block);
- // We need to report this information to the handler because in the
- // situation when we know that the block is called exactly once, we can be
- // stricter in terms of reported diagnostics.
- if (CalledOnceCallSite) {
- Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block->getBlockDecl());
- } else {
- Handler.handleBlockWithNoGuarantees(Block->getBlockDecl());
- }
- for (const auto &Capture : Block->getBlockDecl()->captures()) {
- if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
- if (auto Index = getIndex(*Param)) {
- if (CalledOnceCallSite) {
- // The call site of a block can be considered a call site of the
- // captured parameter we track.
- processCallFor(*Index, CalledOnceCallSite);
- } else {
- // We still should consider this block as an escape for parameter,
- // if we don't know about its call site or the number of time it
- // can be invoked.
- processEscapeFor(*Index);
- }
- }
- }
- }
- }
- void VisitBinaryOperator(const BinaryOperator *Op) {
- if (Op->getOpcode() == clang::BO_Assign) {
- // Let's check if one of the tracked parameters is assigned into
- // something, and if it is we don't want to track extra variables, so we
- // consider it as an escapee.
- checkEscapee(Op->getRHS());
- // Let's check whether this assignment is a suppression.
- checkSuppression(Op);
- }
- }
- void VisitDeclStmt(const DeclStmt *DS) {
- // Variable initialization is not assignment and should be handled
- // separately.
- //
- // Multiple declarations can be a part of declaration statement.
- for (const auto *Declaration : DS->getDeclGroup()) {
- if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
- if (Var->getInit()) {
- checkEscapee(Var->getInit());
- }
- if (Var->hasAttr<CleanupAttr>()) {
- FunctionHasCleanupVars = true;
- }
- }
- }
- }
- void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
- // We consider '(void)parameter' as a manual no-op escape.
- // It should be used to explicitly tell the analysis that this parameter
- // is intentionally not called on this path.
- if (Cast->getType().getCanonicalType()->isVoidType()) {
- checkEscapee(Cast->getSubExpr());
- }
- }
- void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
- // It is OK not to call marked parameters on exceptional paths.
- markNoReturn();
- }
- private:
- unsigned size() const { return TrackedParams.size(); }
- llvm::Optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
- return getIndexOfExpression(Call->getCallee());
- }
- llvm::Optional<unsigned> getIndexOfExpression(const Expr *E) const {
- if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
- return getIndex(*Parameter);
- }
- return llvm::None;
- }
- llvm::Optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
- // Expected number of parameters that we actually track is 1.
- //
- // Also, the maximum number of declared parameters could not be on a scale
- // of hundreds of thousands.
- //
- // In this setting, linear search seems reasonable and even performs better
- // than bisection.
- ParamSizedVector<const ParmVarDecl *>::const_iterator It =
- llvm::find(TrackedParams, &Parameter);
- if (It != TrackedParams.end()) {
- return It - TrackedParams.begin();
- }
- return llvm::None;
- }
- const ParmVarDecl *getParameter(unsigned Index) const {
- assert(Index < TrackedParams.size());
- return TrackedParams[Index];
- }
- const CFG &FunctionCFG;
- AnalysisDeclContext &AC;
- CalledOnceCheckHandler &Handler;
- bool CheckConventionalParameters;
- // As of now, we turn this behavior off. So, we still are going to report
- // missing calls on paths that look like it was intentional.
- // Technically such reports are true positives, but they can make some users
- // grumpy because of the sheer number of warnings.
- // It can be turned back on if we decide that we want to have the other way
- // around.
- bool SuppressOnConventionalErrorPaths = false;
- // The user can annotate variable declarations with cleanup functions, which
- // essentially imposes a custom destructor logic on that variable.
- // It is possible to use it, however, to call tracked parameters on all exits
- // from the function. For this reason, we track the fact that the function
- // actually has these.
- bool FunctionHasCleanupVars = false;
- State CurrentState;
- ParamSizedVector<const ParmVarDecl *> TrackedParams;
- CFGSizedVector<State> States;
- };
- } // end anonymous namespace
- namespace clang {
- void checkCalledOnceParameters(AnalysisDeclContext &AC,
- CalledOnceCheckHandler &Handler,
- bool CheckConventionalParameters) {
- CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
- }
- } // end namespace clang
|