123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699 |
- /* ztrsm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublecomplex c_b1 = {1.,0.};
- /* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag,
- integer *m, integer *n, doublecomplex *alpha, doublecomplex *a,
- integer *lda, doublecomplex *b, integer *ldb)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5,
- i__6, i__7;
- doublecomplex z__1, z__2, z__3;
- /* Builtin functions */
- void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
- doublecomplex *, doublecomplex *);
- /* Local variables */
- integer i__, j, k, info;
- doublecomplex temp;
- logical lside;
- extern logical lsame_(char *, char *);
- integer nrowa;
- logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- logical noconj, nounit;
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* ZTRSM solves one of the matrix equations */
- /* op( A )*X = alpha*B, or X*op( A ) = alpha*B, */
- /* where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
- /* non-unit, upper or lower triangular matrix and op( A ) is one of */
- /* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). */
- /* The matrix X is overwritten on B. */
- /* Arguments */
- /* ========== */
- /* SIDE - CHARACTER*1. */
- /* On entry, SIDE specifies whether op( A ) appears on the left */
- /* or right of X as follows: */
- /* SIDE = 'L' or 'l' op( A )*X = alpha*B. */
- /* SIDE = 'R' or 'r' X*op( A ) = alpha*B. */
- /* Unchanged on exit. */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the matrix A is an upper or */
- /* lower triangular matrix as follows: */
- /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
- /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
- /* Unchanged on exit. */
- /* TRANSA - CHARACTER*1. */
- /* On entry, TRANSA specifies the form of op( A ) to be used in */
- /* the matrix multiplication as follows: */
- /* TRANSA = 'N' or 'n' op( A ) = A. */
- /* TRANSA = 'T' or 't' op( A ) = A'. */
- /* TRANSA = 'C' or 'c' op( A ) = conjg( A' ). */
- /* Unchanged on exit. */
- /* DIAG - CHARACTER*1. */
- /* On entry, DIAG specifies whether or not A is unit triangular */
- /* as follows: */
- /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
- /* DIAG = 'N' or 'n' A is not assumed to be unit */
- /* triangular. */
- /* Unchanged on exit. */
- /* M - INTEGER. */
- /* On entry, M specifies the number of rows of B. M must be at */
- /* least zero. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the number of columns of B. N must be */
- /* at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - COMPLEX*16 . */
- /* On entry, ALPHA specifies the scalar alpha. When alpha is */
- /* zero then A is not referenced and B need not be set before */
- /* entry. */
- /* Unchanged on exit. */
- /* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m */
- /* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */
- /* Before entry with UPLO = 'U' or 'u', the leading k by k */
- /* upper triangular part of the array A must contain the upper */
- /* triangular matrix and the strictly lower triangular part of */
- /* A is not referenced. */
- /* Before entry with UPLO = 'L' or 'l', the leading k by k */
- /* lower triangular part of the array A must contain the lower */
- /* triangular matrix and the strictly upper triangular part of */
- /* A is not referenced. */
- /* Note that when DIAG = 'U' or 'u', the diagonal elements of */
- /* A are not referenced either, but are assumed to be unity. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. When SIDE = 'L' or 'l' then */
- /* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
- /* then LDA must be at least max( 1, n ). */
- /* Unchanged on exit. */
- /* B - COMPLEX*16 array of DIMENSION ( LDB, n ). */
- /* Before entry, the leading m by n part of the array B must */
- /* contain the right-hand side matrix B, and on exit is */
- /* overwritten by the solution matrix X. */
- /* LDB - INTEGER. */
- /* On entry, LDB specifies the first dimension of B as declared */
- /* in the calling (sub) program. LDB must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* Level 3 Blas routine. */
- /* -- Written on 8-February-1989. */
- /* Jack Dongarra, Argonne National Laboratory. */
- /* Iain Duff, AERE Harwell. */
- /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
- /* Sven Hammarling, Numerical Algorithms Group Ltd. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- lside = lsame_(side, "L");
- if (lside) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- noconj = lsame_(transa, "T");
- nounit = lsame_(diag, "N");
- upper = lsame_(uplo, "U");
- info = 0;
- if (! lside && ! lsame_(side, "R")) {
- info = 1;
- } else if (! upper && ! lsame_(uplo, "L")) {
- info = 2;
- } else if (! lsame_(transa, "N") && ! lsame_(transa,
- "T") && ! lsame_(transa, "C")) {
- info = 3;
- } else if (! lsame_(diag, "U") && ! lsame_(diag,
- "N")) {
- info = 4;
- } else if (*m < 0) {
- info = 5;
- } else if (*n < 0) {
- info = 6;
- } else if (*lda < max(1,nrowa)) {
- info = 9;
- } else if (*ldb < max(1,*m)) {
- info = 11;
- }
- if (info != 0) {
- xerbla_("ZTRSM ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0) {
- return 0;
- }
- /* And when alpha.eq.zero. */
- if (alpha->r == 0. && alpha->i == 0.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
- /* L10: */
- }
- /* L20: */
- }
- return 0;
- }
- /* Start the operations. */
- if (lside) {
- if (lsame_(transa, "N")) {
- /* Form B := alpha*inv( A )*B. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L30: */
- }
- }
- for (k = *m; k >= 1; --k) {
- i__2 = k + j * b_dim1;
- if (b[i__2].r != 0. || b[i__2].i != 0.) {
- if (nounit) {
- i__2 = k + j * b_dim1;
- z_div(&z__1, &b[k + j * b_dim1], &a[k + k *
- a_dim1]);
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- i__2 = k - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = k + j * b_dim1;
- i__6 = i__ + k * a_dim1;
- z__2.r = b[i__5].r * a[i__6].r - b[i__5].i *
- a[i__6].i, z__2.i = b[i__5].r * a[
- i__6].i + b[i__5].i * a[i__6].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
- .i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L40: */
- }
- }
- /* L50: */
- }
- /* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L70: */
- }
- }
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + j * b_dim1;
- if (b[i__3].r != 0. || b[i__3].i != 0.) {
- if (nounit) {
- i__3 = k + j * b_dim1;
- z_div(&z__1, &b[k + j * b_dim1], &a[k + k *
- a_dim1]);
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- }
- i__3 = *m;
- for (i__ = k + 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = k + j * b_dim1;
- i__7 = i__ + k * a_dim1;
- z__2.r = b[i__6].r * a[i__7].r - b[i__6].i *
- a[i__7].i, z__2.i = b[i__6].r * a[
- i__7].i + b[i__6].i * a[i__7].r;
- z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
- .i - z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
- /* L80: */
- }
- }
- /* L90: */
- }
- /* L100: */
- }
- }
- } else {
- /* Form B := alpha*inv( A' )*B */
- /* or B := alpha*inv( conjg( A' ) )*B. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
- z__1.i = alpha->r * b[i__3].i + alpha->i * b[
- i__3].r;
- temp.r = z__1.r, temp.i = z__1.i;
- if (noconj) {
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- i__4 = k + i__ * a_dim1;
- i__5 = k + j * b_dim1;
- z__2.r = a[i__4].r * b[i__5].r - a[i__4].i *
- b[i__5].i, z__2.i = a[i__4].r * b[
- i__5].i + a[i__4].i * b[i__5].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L110: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- d_cnjg(&z__3, &a[k + i__ * a_dim1]);
- i__4 = k + j * b_dim1;
- z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4]
- .i, z__2.i = z__3.r * b[i__4].i +
- z__3.i * b[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L120: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__3 = i__ + j * b_dim1;
- b[i__3].r = temp.r, b[i__3].i = temp.i;
- /* L130: */
- }
- /* L140: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- i__2 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i,
- z__1.i = alpha->r * b[i__2].i + alpha->i * b[
- i__2].r;
- temp.r = z__1.r, temp.i = z__1.i;
- if (noconj) {
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- i__3 = k + i__ * a_dim1;
- i__4 = k + j * b_dim1;
- z__2.r = a[i__3].r * b[i__4].r - a[i__3].i *
- b[i__4].i, z__2.i = a[i__3].r * b[
- i__4].i + a[i__3].i * b[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L150: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- d_cnjg(&z__3, &a[k + i__ * a_dim1]);
- i__3 = k + j * b_dim1;
- z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3]
- .i, z__2.i = z__3.r * b[i__3].i +
- z__3.i * b[i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L160: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[i__ + i__ * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__2 = i__ + j * b_dim1;
- b[i__2].r = temp.r, b[i__2].i = temp.i;
- /* L170: */
- }
- /* L180: */
- }
- }
- }
- } else {
- if (lsame_(transa, "N")) {
- /* Form B := alpha*B*inv( A ). */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L190: */
- }
- }
- i__2 = j - 1;
- for (k = 1; k <= i__2; ++k) {
- i__3 = k + j * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = k + j * a_dim1;
- i__7 = i__ + k * b_dim1;
- z__2.r = a[i__6].r * b[i__7].r - a[i__6].i *
- b[i__7].i, z__2.i = a[i__6].r * b[
- i__7].i + a[i__6].i * b[i__7].r;
- z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
- .i - z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
- /* L200: */
- }
- }
- /* L210: */
- }
- if (nounit) {
- z_div(&z__1, &c_b1, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
- z__1.i = temp.r * b[i__4].i + temp.i * b[
- i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L220: */
- }
- }
- /* L230: */
- }
- } else {
- for (j = *n; j >= 1; --j) {
- if (alpha->r != 1. || alpha->i != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
- .i, z__1.i = alpha->r * b[i__3].i +
- alpha->i * b[i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L240: */
- }
- }
- i__1 = *n;
- for (k = j + 1; k <= i__1; ++k) {
- i__2 = k + j * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = k + j * a_dim1;
- i__6 = i__ + k * b_dim1;
- z__2.r = a[i__5].r * b[i__6].r - a[i__5].i *
- b[i__6].i, z__2.i = a[i__5].r * b[
- i__6].i + a[i__5].i * b[i__6].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
- .i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L250: */
- }
- }
- /* L260: */
- }
- if (nounit) {
- z_div(&z__1, &c_b1, &a[j + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + j * b_dim1;
- i__3 = i__ + j * b_dim1;
- z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
- z__1.i = temp.r * b[i__3].i + temp.i * b[
- i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L270: */
- }
- }
- /* L280: */
- }
- }
- } else {
- /* Form B := alpha*B*inv( A' ) */
- /* or B := alpha*B*inv( conjg( A' ) ). */
- if (upper) {
- for (k = *n; k >= 1; --k) {
- if (nounit) {
- if (noconj) {
- z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- z_div(&z__1, &c_b1, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + k * b_dim1;
- i__3 = i__ + k * b_dim1;
- z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i,
- z__1.i = temp.r * b[i__3].i + temp.i * b[
- i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L290: */
- }
- }
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j + k * a_dim1;
- if (a[i__2].r != 0. || a[i__2].i != 0.) {
- if (noconj) {
- i__2 = j + k * a_dim1;
- temp.r = a[i__2].r, temp.i = a[i__2].i;
- } else {
- d_cnjg(&z__1, &a[j + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__5].r - temp.i * b[i__5]
- .i, z__2.i = temp.r * b[i__5].i +
- temp.i * b[i__5].r;
- z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4]
- .i - z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L300: */
- }
- }
- /* L310: */
- }
- if (alpha->r != 1. || alpha->i != 0.) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + k * b_dim1;
- i__3 = i__ + k * b_dim1;
- z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3]
- .i, z__1.i = alpha->r * b[i__3].i +
- alpha->i * b[i__3].r;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- /* L320: */
- }
- }
- /* L330: */
- }
- } else {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (nounit) {
- if (noconj) {
- z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- } else {
- d_cnjg(&z__2, &a[k + k * a_dim1]);
- z_div(&z__1, &c_b1, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + k * b_dim1;
- i__4 = i__ + k * b_dim1;
- z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i,
- z__1.i = temp.r * b[i__4].i + temp.i * b[
- i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L340: */
- }
- }
- i__2 = *n;
- for (j = k + 1; j <= i__2; ++j) {
- i__3 = j + k * a_dim1;
- if (a[i__3].r != 0. || a[i__3].i != 0.) {
- if (noconj) {
- i__3 = j + k * a_dim1;
- temp.r = a[i__3].r, temp.i = a[i__3].i;
- } else {
- d_cnjg(&z__1, &a[j + k * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- i__4 = i__ + j * b_dim1;
- i__5 = i__ + j * b_dim1;
- i__6 = i__ + k * b_dim1;
- z__2.r = temp.r * b[i__6].r - temp.i * b[i__6]
- .i, z__2.i = temp.r * b[i__6].i +
- temp.i * b[i__6].r;
- z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5]
- .i - z__2.i;
- b[i__4].r = z__1.r, b[i__4].i = z__1.i;
- /* L350: */
- }
- }
- /* L360: */
- }
- if (alpha->r != 1. || alpha->i != 0.) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + k * b_dim1;
- i__4 = i__ + k * b_dim1;
- z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4]
- .i, z__1.i = alpha->r * b[i__4].i +
- alpha->i * b[i__4].r;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L370: */
- }
- }
- /* L380: */
- }
- }
- }
- }
- return 0;
- /* End of ZTRSM . */
- } /* ztrsm_ */
|