123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611 |
- /* ztbsv.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int ztbsv_(char *uplo, char *trans, char *diag, integer *n,
- integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
- *incx)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
- doublecomplex z__1, z__2, z__3;
- /* Builtin functions */
- void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
- doublecomplex *, doublecomplex *);
- /* Local variables */
- integer i__, j, l, ix, jx, kx, info;
- doublecomplex temp;
- extern logical lsame_(char *, char *);
- integer kplus1;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- logical noconj, nounit;
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* ZTBSV solves one of the systems of equations */
- /* A*x = b, or A'*x = b, or conjg( A' )*x = b, */
- /* where b and x are n element vectors and A is an n by n unit, or */
- /* non-unit, upper or lower triangular band matrix, with ( k + 1 ) */
- /* diagonals. */
- /* No test for singularity or near-singularity is included in this */
- /* routine. Such tests must be performed before calling this routine. */
- /* Arguments */
- /* ========== */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the matrix is an upper or */
- /* lower triangular matrix as follows: */
- /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
- /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
- /* Unchanged on exit. */
- /* TRANS - CHARACTER*1. */
- /* On entry, TRANS specifies the equations to be solved as */
- /* follows: */
- /* TRANS = 'N' or 'n' A*x = b. */
- /* TRANS = 'T' or 't' A'*x = b. */
- /* TRANS = 'C' or 'c' conjg( A' )*x = b. */
- /* Unchanged on exit. */
- /* DIAG - CHARACTER*1. */
- /* On entry, DIAG specifies whether or not A is unit */
- /* triangular as follows: */
- /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
- /* DIAG = 'N' or 'n' A is not assumed to be unit */
- /* triangular. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the order of the matrix A. */
- /* N must be at least zero. */
- /* Unchanged on exit. */
- /* K - INTEGER. */
- /* On entry with UPLO = 'U' or 'u', K specifies the number of */
- /* super-diagonals of the matrix A. */
- /* On entry with UPLO = 'L' or 'l', K specifies the number of */
- /* sub-diagonals of the matrix A. */
- /* K must satisfy 0 .le. K. */
- /* Unchanged on exit. */
- /* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
- /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
- /* by n part of the array A must contain the upper triangular */
- /* band part of the matrix of coefficients, supplied column by */
- /* column, with the leading diagonal of the matrix in row */
- /* ( k + 1 ) of the array, the first super-diagonal starting at */
- /* position 2 in row k, and so on. The top left k by k triangle */
- /* of the array A is not referenced. */
- /* The following program segment will transfer an upper */
- /* triangular band matrix from conventional full matrix storage */
- /* to band storage: */
- /* DO 20, J = 1, N */
- /* M = K + 1 - J */
- /* DO 10, I = MAX( 1, J - K ), J */
- /* A( M + I, J ) = matrix( I, J ) */
- /* 10 CONTINUE */
- /* 20 CONTINUE */
- /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
- /* by n part of the array A must contain the lower triangular */
- /* band part of the matrix of coefficients, supplied column by */
- /* column, with the leading diagonal of the matrix in row 1 of */
- /* the array, the first sub-diagonal starting at position 1 in */
- /* row 2, and so on. The bottom right k by k triangle of the */
- /* array A is not referenced. */
- /* The following program segment will transfer a lower */
- /* triangular band matrix from conventional full matrix storage */
- /* to band storage: */
- /* DO 20, J = 1, N */
- /* M = 1 - J */
- /* DO 10, I = J, MIN( N, J + K ) */
- /* A( M + I, J ) = matrix( I, J ) */
- /* 10 CONTINUE */
- /* 20 CONTINUE */
- /* Note that when DIAG = 'U' or 'u' the elements of the array A */
- /* corresponding to the diagonal elements of the matrix are not */
- /* referenced, but are assumed to be unity. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. LDA must be at least */
- /* ( k + 1 ). */
- /* Unchanged on exit. */
- /* X - COMPLEX*16 array of dimension at least */
- /* ( 1 + ( n - 1 )*abs( INCX ) ). */
- /* Before entry, the incremented array X must contain the n */
- /* element right-hand side vector b. On exit, X is overwritten */
- /* with the solution vector x. */
- /* INCX - INTEGER. */
- /* On entry, INCX specifies the increment for the elements of */
- /* X. INCX must not be zero. */
- /* Unchanged on exit. */
- /* Level 2 Blas routine. */
- /* -- Written on 22-October-1986. */
- /* Jack Dongarra, Argonne National Lab. */
- /* Jeremy Du Croz, Nag Central Office. */
- /* Sven Hammarling, Nag Central Office. */
- /* Richard Hanson, Sandia National Labs. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
- /* Function Body */
- info = 0;
- if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
- info = 1;
- } else if (! lsame_(trans, "N") && ! lsame_(trans,
- "T") && ! lsame_(trans, "C")) {
- info = 2;
- } else if (! lsame_(diag, "U") && ! lsame_(diag,
- "N")) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*k < 0) {
- info = 5;
- } else if (*lda < *k + 1) {
- info = 7;
- } else if (*incx == 0) {
- info = 9;
- }
- if (info != 0) {
- xerbla_("ZTBSV ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*n == 0) {
- return 0;
- }
- noconj = lsame_(trans, "T");
- nounit = lsame_(diag, "N");
- /* Set up the start point in X if the increment is not unity. This */
- /* will be ( N - 1 )*INCX too small for descending loops. */
- if (*incx <= 0) {
- kx = 1 - (*n - 1) * *incx;
- } else if (*incx != 1) {
- kx = 1;
- }
- /* Start the operations. In this version the elements of A are */
- /* accessed by sequentially with one pass through A. */
- if (lsame_(trans, "N")) {
- /* Form x := inv( A )*x. */
- if (lsame_(uplo, "U")) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- l = kplus1 - j;
- if (nounit) {
- i__1 = j;
- z_div(&z__1, &x[j], &a[kplus1 + j * a_dim1]);
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
- }
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- /* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__1 = max(i__2,i__3);
- for (i__ = j - 1; i__ >= i__1; --i__) {
- i__2 = i__;
- i__3 = i__;
- i__4 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- z__2.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- z__1.r = x[i__3].r - z__2.r, z__1.i = x[i__3].i -
- z__2.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- /* L10: */
- }
- }
- /* L20: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- kx -= *incx;
- i__1 = jx;
- if (x[i__1].r != 0. || x[i__1].i != 0.) {
- ix = kx;
- l = kplus1 - j;
- if (nounit) {
- i__1 = jx;
- z_div(&z__1, &x[jx], &a[kplus1 + j * a_dim1]);
- x[i__1].r = z__1.r, x[i__1].i = z__1.i;
- }
- i__1 = jx;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- /* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__1 = max(i__2,i__3);
- for (i__ = j - 1; i__ >= i__1; --i__) {
- i__2 = ix;
- i__3 = ix;
- i__4 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
- z__2.i = temp.r * a[i__4].i + temp.i * a[
- i__4].r;
- z__1.r = x[i__3].r - z__2.r, z__1.i = x[i__3].i -
- z__2.i;
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- ix -= *incx;
- /* L30: */
- }
- }
- jx -= *incx;
- /* L40: */
- }
- }
- } else {
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- l = 1 - j;
- if (nounit) {
- i__2 = j;
- z_div(&z__1, &x[j], &a[j * a_dim1 + 1]);
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- }
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- /* Computing MIN */
- i__3 = *n, i__4 = j + *k;
- i__2 = min(i__3,i__4);
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = i__;
- i__4 = i__;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
- z__2.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- /* L50: */
- }
- }
- /* L60: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- kx += *incx;
- i__2 = jx;
- if (x[i__2].r != 0. || x[i__2].i != 0.) {
- ix = kx;
- l = 1 - j;
- if (nounit) {
- i__2 = jx;
- z_div(&z__1, &x[jx], &a[j * a_dim1 + 1]);
- x[i__2].r = z__1.r, x[i__2].i = z__1.i;
- }
- i__2 = jx;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- /* Computing MIN */
- i__3 = *n, i__4 = j + *k;
- i__2 = min(i__3,i__4);
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- i__3 = ix;
- i__4 = ix;
- i__5 = l + i__ + j * a_dim1;
- z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
- z__2.i = temp.r * a[i__5].i + temp.i * a[
- i__5].r;
- z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
- z__2.i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- ix += *incx;
- /* L70: */
- }
- }
- jx += *incx;
- /* L80: */
- }
- }
- }
- } else {
- /* Form x := inv( A' )*x or x := inv( conjg( A') )*x. */
- if (lsame_(uplo, "U")) {
- kplus1 = *k + 1;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- temp.r = x[i__2].r, temp.i = x[i__2].i;
- l = kplus1 - j;
- if (noconj) {
- /* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- i__2 = l + i__ + j * a_dim1;
- i__3 = i__;
- z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
- i__3].i, z__2.i = a[i__2].r * x[i__3].i +
- a[i__2].i * x[i__3].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L90: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[kplus1 + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- /* Computing MAX */
- i__4 = 1, i__2 = j - *k;
- i__3 = j - 1;
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__4 = i__;
- z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
- z__2.i = z__3.r * x[i__4].i + z__3.i * x[
- i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L100: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__3 = j;
- x[i__3].r = temp.r, x[i__3].i = temp.i;
- /* L110: */
- }
- } else {
- jx = kx;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__3 = jx;
- temp.r = x[i__3].r, temp.i = x[i__3].i;
- ix = kx;
- l = kplus1 - j;
- if (noconj) {
- /* Computing MAX */
- i__3 = 1, i__4 = j - *k;
- i__2 = j - 1;
- for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {
- i__3 = l + i__ + j * a_dim1;
- i__4 = ix;
- z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
- i__4].i, z__2.i = a[i__3].r * x[i__4].i +
- a[i__3].i * x[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
- /* L120: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[kplus1 + j * a_dim1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- /* Computing MAX */
- i__2 = 1, i__3 = j - *k;
- i__4 = j - 1;
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__2 = ix;
- z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
- z__2.i = z__3.r * x[i__2].i + z__3.i * x[
- i__2].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix += *incx;
- /* L130: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__4 = jx;
- x[i__4].r = temp.r, x[i__4].i = temp.i;
- jx += *incx;
- if (j > *k) {
- kx += *incx;
- }
- /* L140: */
- }
- }
- } else {
- if (*incx == 1) {
- for (j = *n; j >= 1; --j) {
- i__1 = j;
- temp.r = x[i__1].r, temp.i = x[i__1].i;
- l = 1 - j;
- if (noconj) {
- /* Computing MIN */
- i__1 = *n, i__4 = j + *k;
- i__2 = j + 1;
- for (i__ = min(i__1,i__4); i__ >= i__2; --i__) {
- i__1 = l + i__ + j * a_dim1;
- i__4 = i__;
- z__2.r = a[i__1].r * x[i__4].r - a[i__1].i * x[
- i__4].i, z__2.i = a[i__1].r * x[i__4].i +
- a[i__1].i * x[i__4].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L150: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[j * a_dim1 + 1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- /* Computing MIN */
- i__2 = *n, i__1 = j + *k;
- i__4 = j + 1;
- for (i__ = min(i__2,i__1); i__ >= i__4; --i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__2 = i__;
- z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
- z__2.i = z__3.r * x[i__2].i + z__3.i * x[
- i__2].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- /* L160: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[j * a_dim1 + 1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__4 = j;
- x[i__4].r = temp.r, x[i__4].i = temp.i;
- /* L170: */
- }
- } else {
- kx += (*n - 1) * *incx;
- jx = kx;
- for (j = *n; j >= 1; --j) {
- i__4 = jx;
- temp.r = x[i__4].r, temp.i = x[i__4].i;
- ix = kx;
- l = 1 - j;
- if (noconj) {
- /* Computing MIN */
- i__4 = *n, i__2 = j + *k;
- i__1 = j + 1;
- for (i__ = min(i__4,i__2); i__ >= i__1; --i__) {
- i__4 = l + i__ + j * a_dim1;
- i__2 = ix;
- z__2.r = a[i__4].r * x[i__2].r - a[i__4].i * x[
- i__2].i, z__2.i = a[i__4].r * x[i__2].i +
- a[i__4].i * x[i__2].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix -= *incx;
- /* L180: */
- }
- if (nounit) {
- z_div(&z__1, &temp, &a[j * a_dim1 + 1]);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- } else {
- /* Computing MIN */
- i__1 = *n, i__4 = j + *k;
- i__2 = j + 1;
- for (i__ = min(i__1,i__4); i__ >= i__2; --i__) {
- d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
- i__1 = ix;
- z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
- z__2.i = z__3.r * x[i__1].i + z__3.i * x[
- i__1].r;
- z__1.r = temp.r - z__2.r, z__1.i = temp.i -
- z__2.i;
- temp.r = z__1.r, temp.i = z__1.i;
- ix -= *incx;
- /* L190: */
- }
- if (nounit) {
- d_cnjg(&z__2, &a[j * a_dim1 + 1]);
- z_div(&z__1, &temp, &z__2);
- temp.r = z__1.r, temp.i = z__1.i;
- }
- }
- i__2 = jx;
- x[i__2].r = temp.r, x[i__2].i = temp.i;
- jx -= *incx;
- if (*n - j >= *k) {
- kx -= *incx;
- }
- /* L200: */
- }
- }
- }
- }
- return 0;
- /* End of ZTBSV . */
- } /* ztbsv_ */
|