123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- /* ssymm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int ssymm_(char *side, char *uplo, integer *m, integer *n,
- real *alpha, real *a, integer *lda, real *b, integer *ldb, real *beta,
- real *c__, integer *ldc)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3;
- /* Local variables */
- integer i__, j, k, info;
- real temp1, temp2;
- extern logical lsame_(char *, char *);
- integer nrowa;
- logical upper;
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* SSYMM performs one of the matrix-matrix operations */
- /* C := alpha*A*B + beta*C, */
- /* or */
- /* C := alpha*B*A + beta*C, */
- /* where alpha and beta are scalars, A is a symmetric matrix and B and */
- /* C are m by n matrices. */
- /* Arguments */
- /* ========== */
- /* SIDE - CHARACTER*1. */
- /* On entry, SIDE specifies whether the symmetric matrix A */
- /* appears on the left or right in the operation as follows: */
- /* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */
- /* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */
- /* Unchanged on exit. */
- /* UPLO - CHARACTER*1. */
- /* On entry, UPLO specifies whether the upper or lower */
- /* triangular part of the symmetric matrix A is to be */
- /* referenced as follows: */
- /* UPLO = 'U' or 'u' Only the upper triangular part of the */
- /* symmetric matrix is to be referenced. */
- /* UPLO = 'L' or 'l' Only the lower triangular part of the */
- /* symmetric matrix is to be referenced. */
- /* Unchanged on exit. */
- /* M - INTEGER. */
- /* On entry, M specifies the number of rows of the matrix C. */
- /* M must be at least zero. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the number of columns of the matrix C. */
- /* N must be at least zero. */
- /* Unchanged on exit. */
- /* ALPHA - REAL . */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* A - REAL array of DIMENSION ( LDA, ka ), where ka is */
- /* m when SIDE = 'L' or 'l' and is n otherwise. */
- /* Before entry with SIDE = 'L' or 'l', the m by m part of */
- /* the array A must contain the symmetric matrix, such that */
- /* when UPLO = 'U' or 'u', the leading m by m upper triangular */
- /* part of the array A must contain the upper triangular part */
- /* of the symmetric matrix and the strictly lower triangular */
- /* part of A is not referenced, and when UPLO = 'L' or 'l', */
- /* the leading m by m lower triangular part of the array A */
- /* must contain the lower triangular part of the symmetric */
- /* matrix and the strictly upper triangular part of A is not */
- /* referenced. */
- /* Before entry with SIDE = 'R' or 'r', the n by n part of */
- /* the array A must contain the symmetric matrix, such that */
- /* when UPLO = 'U' or 'u', the leading n by n upper triangular */
- /* part of the array A must contain the upper triangular part */
- /* of the symmetric matrix and the strictly lower triangular */
- /* part of A is not referenced, and when UPLO = 'L' or 'l', */
- /* the leading n by n lower triangular part of the array A */
- /* must contain the lower triangular part of the symmetric */
- /* matrix and the strictly upper triangular part of A is not */
- /* referenced. */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. When SIDE = 'L' or 'l' then */
- /* LDA must be at least max( 1, m ), otherwise LDA must be at */
- /* least max( 1, n ). */
- /* Unchanged on exit. */
- /* B - REAL array of DIMENSION ( LDB, n ). */
- /* Before entry, the leading m by n part of the array B must */
- /* contain the matrix B. */
- /* Unchanged on exit. */
- /* LDB - INTEGER. */
- /* On entry, LDB specifies the first dimension of B as declared */
- /* in the calling (sub) program. LDB must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* BETA - REAL . */
- /* On entry, BETA specifies the scalar beta. When BETA is */
- /* supplied as zero then C need not be set on input. */
- /* Unchanged on exit. */
- /* C - REAL array of DIMENSION ( LDC, n ). */
- /* Before entry, the leading m by n part of the array C must */
- /* contain the matrix C, except when beta is zero, in which */
- /* case C need not be set on entry. */
- /* On exit, the array C is overwritten by the m by n updated */
- /* matrix. */
- /* LDC - INTEGER. */
- /* On entry, LDC specifies the first dimension of C as declared */
- /* in the calling (sub) program. LDC must be at least */
- /* max( 1, m ). */
- /* Unchanged on exit. */
- /* Level 3 Blas routine. */
- /* -- Written on 8-February-1989. */
- /* Jack Dongarra, Argonne National Laboratory. */
- /* Iain Duff, AERE Harwell. */
- /* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
- /* Sven Hammarling, Numerical Algorithms Group Ltd. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Parameters .. */
- /* .. */
- /* Set NROWA as the number of rows of A. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- /* Function Body */
- if (lsame_(side, "L")) {
- nrowa = *m;
- } else {
- nrowa = *n;
- }
- upper = lsame_(uplo, "U");
- /* Test the input parameters. */
- info = 0;
- if (! lsame_(side, "L") && ! lsame_(side, "R")) {
- info = 1;
- } else if (! upper && ! lsame_(uplo, "L")) {
- info = 2;
- } else if (*m < 0) {
- info = 3;
- } else if (*n < 0) {
- info = 4;
- } else if (*lda < max(1,nrowa)) {
- info = 7;
- } else if (*ldb < max(1,*m)) {
- info = 9;
- } else if (*ldc < max(1,*m)) {
- info = 12;
- }
- if (info != 0) {
- xerbla_("SSYMM ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0 || *alpha == 0.f && *beta == 1.f) {
- return 0;
- }
- /* And when alpha.eq.zero. */
- if (*alpha == 0.f) {
- if (*beta == 0.f) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = 0.f;
- /* L10: */
- }
- /* L20: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
- /* L30: */
- }
- /* L40: */
- }
- }
- return 0;
- }
- /* Start the operations. */
- if (lsame_(side, "L")) {
- /* Form C := alpha*A*B + beta*C. */
- if (upper) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp1 = *alpha * b[i__ + j * b_dim1];
- temp2 = 0.f;
- i__3 = i__ - 1;
- for (k = 1; k <= i__3; ++k) {
- c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];
- temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];
- /* L50: */
- }
- if (*beta == 0.f) {
- c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1]
- + *alpha * temp2;
- } else {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
- + temp1 * a[i__ + i__ * a_dim1] + *alpha *
- temp2;
- }
- /* L60: */
- }
- /* L70: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- for (i__ = *m; i__ >= 1; --i__) {
- temp1 = *alpha * b[i__ + j * b_dim1];
- temp2 = 0.f;
- i__2 = *m;
- for (k = i__ + 1; k <= i__2; ++k) {
- c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];
- temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];
- /* L80: */
- }
- if (*beta == 0.f) {
- c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1]
- + *alpha * temp2;
- } else {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]
- + temp1 * a[i__ + i__ * a_dim1] + *alpha *
- temp2;
- }
- /* L90: */
- }
- /* L100: */
- }
- }
- } else {
- /* Form C := alpha*B*A + beta*C. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp1 = *alpha * a[j + j * a_dim1];
- if (*beta == 0.f) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1];
- /* L110: */
- }
- } else {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] +
- temp1 * b[i__ + j * b_dim1];
- /* L120: */
- }
- }
- i__2 = j - 1;
- for (k = 1; k <= i__2; ++k) {
- if (upper) {
- temp1 = *alpha * a[k + j * a_dim1];
- } else {
- temp1 = *alpha * a[j + k * a_dim1];
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];
- /* L130: */
- }
- /* L140: */
- }
- i__2 = *n;
- for (k = j + 1; k <= i__2; ++k) {
- if (upper) {
- temp1 = *alpha * a[j + k * a_dim1];
- } else {
- temp1 = *alpha * a[k + j * a_dim1];
- }
- i__3 = *m;
- for (i__ = 1; i__ <= i__3; ++i__) {
- c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];
- /* L150: */
- }
- /* L160: */
- }
- /* L170: */
- }
- }
- return 0;
- /* End of SSYMM . */
- } /* ssymm_ */
|