123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- /* dgbmv.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int dgbmv_(char *trans, integer *m, integer *n, integer *kl,
- integer *ku, doublereal *alpha, doublereal *a, integer *lda,
- doublereal *x, integer *incx, doublereal *beta, doublereal *y,
- integer *incy)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
- /* Local variables */
- integer i__, j, k, ix, iy, jx, jy, kx, ky, kup1, info;
- doublereal temp;
- integer lenx, leny;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ int xerbla_(char *, integer *);
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGBMV performs one of the matrix-vector operations */
- /* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, */
- /* where alpha and beta are scalars, x and y are vectors and A is an */
- /* m by n band matrix, with kl sub-diagonals and ku super-diagonals. */
- /* Arguments */
- /* ========== */
- /* TRANS - CHARACTER*1. */
- /* On entry, TRANS specifies the operation to be performed as */
- /* follows: */
- /* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */
- /* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. */
- /* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. */
- /* Unchanged on exit. */
- /* M - INTEGER. */
- /* On entry, M specifies the number of rows of the matrix A. */
- /* M must be at least zero. */
- /* Unchanged on exit. */
- /* N - INTEGER. */
- /* On entry, N specifies the number of columns of the matrix A. */
- /* N must be at least zero. */
- /* Unchanged on exit. */
- /* KL - INTEGER. */
- /* On entry, KL specifies the number of sub-diagonals of the */
- /* matrix A. KL must satisfy 0 .le. KL. */
- /* Unchanged on exit. */
- /* KU - INTEGER. */
- /* On entry, KU specifies the number of super-diagonals of the */
- /* matrix A. KU must satisfy 0 .le. KU. */
- /* Unchanged on exit. */
- /* ALPHA - DOUBLE PRECISION. */
- /* On entry, ALPHA specifies the scalar alpha. */
- /* Unchanged on exit. */
- /* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
- /* Before entry, the leading ( kl + ku + 1 ) by n part of the */
- /* array A must contain the matrix of coefficients, supplied */
- /* column by column, with the leading diagonal of the matrix in */
- /* row ( ku + 1 ) of the array, the first super-diagonal */
- /* starting at position 2 in row ku, the first sub-diagonal */
- /* starting at position 1 in row ( ku + 2 ), and so on. */
- /* Elements in the array A that do not correspond to elements */
- /* in the band matrix (such as the top left ku by ku triangle) */
- /* are not referenced. */
- /* The following program segment will transfer a band matrix */
- /* from conventional full matrix storage to band storage: */
- /* DO 20, J = 1, N */
- /* K = KU + 1 - J */
- /* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) */
- /* A( K + I, J ) = matrix( I, J ) */
- /* 10 CONTINUE */
- /* 20 CONTINUE */
- /* Unchanged on exit. */
- /* LDA - INTEGER. */
- /* On entry, LDA specifies the first dimension of A as declared */
- /* in the calling (sub) program. LDA must be at least */
- /* ( kl + ku + 1 ). */
- /* Unchanged on exit. */
- /* X - DOUBLE PRECISION array of DIMENSION at least */
- /* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */
- /* and at least */
- /* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */
- /* Before entry, the incremented array X must contain the */
- /* vector x. */
- /* Unchanged on exit. */
- /* INCX - INTEGER. */
- /* On entry, INCX specifies the increment for the elements of */
- /* X. INCX must not be zero. */
- /* Unchanged on exit. */
- /* BETA - DOUBLE PRECISION. */
- /* On entry, BETA specifies the scalar beta. When BETA is */
- /* supplied as zero then Y need not be set on input. */
- /* Unchanged on exit. */
- /* Y - DOUBLE PRECISION array of DIMENSION at least */
- /* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */
- /* and at least */
- /* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */
- /* Before entry, the incremented array Y must contain the */
- /* vector y. On exit, Y is overwritten by the updated vector y. */
- /* INCY - INTEGER. */
- /* On entry, INCY specifies the increment for the elements of */
- /* Y. INCY must not be zero. */
- /* Unchanged on exit. */
- /* Level 2 Blas routine. */
- /* -- Written on 22-October-1986. */
- /* Jack Dongarra, Argonne National Lab. */
- /* Jeremy Du Croz, Nag Central Office. */
- /* Sven Hammarling, Nag Central Office. */
- /* Richard Hanson, Sandia National Labs. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --x;
- --y;
- /* Function Body */
- info = 0;
- if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")
- ) {
- info = 1;
- } else if (*m < 0) {
- info = 2;
- } else if (*n < 0) {
- info = 3;
- } else if (*kl < 0) {
- info = 4;
- } else if (*ku < 0) {
- info = 5;
- } else if (*lda < *kl + *ku + 1) {
- info = 8;
- } else if (*incx == 0) {
- info = 10;
- } else if (*incy == 0) {
- info = 13;
- }
- if (info != 0) {
- xerbla_("DGBMV ", &info);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {
- return 0;
- }
- /* Set LENX and LENY, the lengths of the vectors x and y, and set */
- /* up the start points in X and Y. */
- if (lsame_(trans, "N")) {
- lenx = *n;
- leny = *m;
- } else {
- lenx = *m;
- leny = *n;
- }
- if (*incx > 0) {
- kx = 1;
- } else {
- kx = 1 - (lenx - 1) * *incx;
- }
- if (*incy > 0) {
- ky = 1;
- } else {
- ky = 1 - (leny - 1) * *incy;
- }
- /* Start the operations. In this version the elements of A are */
- /* accessed sequentially with one pass through the band part of A. */
- /* First form y := beta*y. */
- if (*beta != 1.) {
- if (*incy == 1) {
- if (*beta == 0.) {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
- /* L10: */
- }
- } else {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = *beta * y[i__];
- /* L20: */
- }
- }
- } else {
- iy = ky;
- if (*beta == 0.) {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = 0.;
- iy += *incy;
- /* L30: */
- }
- } else {
- i__1 = leny;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[iy] = *beta * y[iy];
- iy += *incy;
- /* L40: */
- }
- }
- }
- }
- if (*alpha == 0.) {
- return 0;
- }
- kup1 = *ku + 1;
- if (lsame_(trans, "N")) {
- /* Form y := alpha*A*x + y. */
- jx = kx;
- if (*incy == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.) {
- temp = *alpha * x[jx];
- k = kup1 - j;
- /* Computing MAX */
- i__2 = 1, i__3 = j - *ku;
- /* Computing MIN */
- i__5 = *m, i__6 = j + *kl;
- i__4 = min(i__5,i__6);
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- y[i__] += temp * a[k + i__ + j * a_dim1];
- /* L50: */
- }
- }
- jx += *incx;
- /* L60: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (x[jx] != 0.) {
- temp = *alpha * x[jx];
- iy = ky;
- k = kup1 - j;
- /* Computing MAX */
- i__4 = 1, i__2 = j - *ku;
- /* Computing MIN */
- i__5 = *m, i__6 = j + *kl;
- i__3 = min(i__5,i__6);
- for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
- y[iy] += temp * a[k + i__ + j * a_dim1];
- iy += *incy;
- /* L70: */
- }
- }
- jx += *incx;
- if (j > *ku) {
- ky += *incy;
- }
- /* L80: */
- }
- }
- } else {
- /* Form y := alpha*A'*x + y. */
- jy = ky;
- if (*incx == 1) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = 0.;
- k = kup1 - j;
- /* Computing MAX */
- i__3 = 1, i__4 = j - *ku;
- /* Computing MIN */
- i__5 = *m, i__6 = j + *kl;
- i__2 = min(i__5,i__6);
- for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {
- temp += a[k + i__ + j * a_dim1] * x[i__];
- /* L90: */
- }
- y[jy] += *alpha * temp;
- jy += *incy;
- /* L100: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- temp = 0.;
- ix = kx;
- k = kup1 - j;
- /* Computing MAX */
- i__2 = 1, i__3 = j - *ku;
- /* Computing MIN */
- i__5 = *m, i__6 = j + *kl;
- i__4 = min(i__5,i__6);
- for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
- temp += a[k + i__ + j * a_dim1] * x[ix];
- ix += *incx;
- /* L110: */
- }
- y[jy] += *alpha * temp;
- jy += *incy;
- if (j > *ku) {
- kx += *incx;
- }
- /* L120: */
- }
- }
- }
- return 0;
- /* End of DGBMV . */
- } /* dgbmv_ */
|