123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820 |
- /****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
- /****************************************************************
- * This is dtoa.c by David M. Gay, downloaded from
- * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
- * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
- *
- * Please remember to check http://www.netlib.org/fp regularly (and especially
- * before any Python release) for bugfixes and updates.
- *
- * The major modifications from Gay's original code are as follows:
- *
- * 0. The original code has been specialized to Python's needs by removing
- * many of the #ifdef'd sections. In particular, code to support VAX and
- * IBM floating-point formats, hex NaNs, hex floats, locale-aware
- * treatment of the decimal point, and setting of the inexact flag have
- * been removed.
- *
- * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
- *
- * 2. The public functions strtod, dtoa and freedtoa all now have
- * a _Py_dg_ prefix.
- *
- * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread
- * PyMem_Malloc failures through the code. The functions
- *
- * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
- *
- * of return type *Bigint all return NULL to indicate a malloc failure.
- * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
- * failure. bigcomp now has return type int (it used to be void) and
- * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL
- * on failure. _Py_dg_strtod indicates failure due to malloc failure
- * by returning -1.0, setting errno=ENOMEM and *se to s00.
- *
- * 4. The static variable dtoa_result has been removed. Callers of
- * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
- * the memory allocated by _Py_dg_dtoa.
- *
- * 5. The code has been reformatted to better fit with Python's
- * C style guide (PEP 7).
- *
- * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory
- * that hasn't been MALLOC'ed, private_mem should only be used when k <=
- * Kmax.
- *
- * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with
- * leading whitespace.
- *
- * 8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
- * fixed. (bugs.python.org/issue40780)
- *
- ***************************************************************/
- /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
- * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
- * Please report bugs for this modified version using the Python issue tracker
- * (http://bugs.python.org). */
- /* On a machine with IEEE extended-precision registers, it is
- * necessary to specify double-precision (53-bit) rounding precision
- * before invoking strtod or dtoa. If the machine uses (the equivalent
- * of) Intel 80x87 arithmetic, the call
- * _control87(PC_53, MCW_PC);
- * does this with many compilers. Whether this or another call is
- * appropriate depends on the compiler; for this to work, it may be
- * necessary to #include "float.h" or another system-dependent header
- * file.
- */
- /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
- *
- * This strtod returns a nearest machine number to the input decimal
- * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
- * broken by the IEEE round-even rule. Otherwise ties are broken by
- * biased rounding (add half and chop).
- *
- * Inspired loosely by William D. Clinger's paper "How to Read Floating
- * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *
- * 1. We only require IEEE, IBM, or VAX double-precision
- * arithmetic (not IEEE double-extended).
- * 2. We get by with floating-point arithmetic in a case that
- * Clinger missed -- when we're computing d * 10^n
- * for a small integer d and the integer n is not too
- * much larger than 22 (the maximum integer k for which
- * we can represent 10^k exactly), we may be able to
- * compute (d*10^k) * 10^(e-k) with just one roundoff.
- * 3. Rather than a bit-at-a-time adjustment of the binary
- * result in the hard case, we use floating-point
- * arithmetic to determine the adjustment to within
- * one bit; only in really hard cases do we need to
- * compute a second residual.
- * 4. Because of 3., we don't need a large table of powers of 10
- * for ten-to-e (just some small tables, e.g. of 10^k
- * for 0 <= k <= 22).
- */
- /* Linking of Python's #defines to Gay's #defines starts here. */
- #include "Python.h"
- #include "pycore_dtoa.h" // _PY_SHORT_FLOAT_REPR
- #include "pycore_pystate.h" // _PyInterpreterState_GET()
- #include <stdlib.h> // exit()
- /* if _PY_SHORT_FLOAT_REPR == 0, then don't even try to compile
- the following code */
- #if _PY_SHORT_FLOAT_REPR == 1
- #include "float.h"
- #define MALLOC PyMem_Malloc
- #define FREE PyMem_Free
- /* This code should also work for ARM mixed-endian format on little-endian
- machines, where doubles have byte order 45670123 (in increasing address
- order, 0 being the least significant byte). */
- #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
- # define IEEE_8087
- #endif
- #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \
- defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
- # define IEEE_MC68k
- #endif
- #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
- #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
- #endif
- /* The code below assumes that the endianness of integers matches the
- endianness of the two 32-bit words of a double. Check this. */
- #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
- defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
- #error "doubles and ints have incompatible endianness"
- #endif
- #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
- #error "doubles and ints have incompatible endianness"
- #endif
- // ULong is defined in pycore_dtoa.h.
- typedef int32_t Long;
- typedef uint64_t ULLong;
- #undef DEBUG
- #ifdef Py_DEBUG
- #define DEBUG
- #endif
- /* End Python #define linking */
- #ifdef DEBUG
- #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
- #endif
- #ifdef __cplusplus
- extern "C" {
- #endif
- typedef union { double d; ULong L[2]; } U;
- #ifdef IEEE_8087
- #define word0(x) (x)->L[1]
- #define word1(x) (x)->L[0]
- #else
- #define word0(x) (x)->L[0]
- #define word1(x) (x)->L[1]
- #endif
- #define dval(x) (x)->d
- #ifndef STRTOD_DIGLIM
- #define STRTOD_DIGLIM 40
- #endif
- /* maximum permitted exponent value for strtod; exponents larger than
- MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP
- should fit into an int. */
- #ifndef MAX_ABS_EXP
- #define MAX_ABS_EXP 1100000000U
- #endif
- /* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
- this is used to bound the total number of digits ignoring leading zeros and
- the number of digits that follow the decimal point. Ideally, MAX_DIGITS
- should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
- exponent clipping in _Py_dg_strtod can't affect the value of the output. */
- #ifndef MAX_DIGITS
- #define MAX_DIGITS 1000000000U
- #endif
- /* Guard against trying to use the above values on unusual platforms with ints
- * of width less than 32 bits. */
- #if MAX_ABS_EXP > INT_MAX
- #error "MAX_ABS_EXP should fit in an int"
- #endif
- #if MAX_DIGITS > INT_MAX
- #error "MAX_DIGITS should fit in an int"
- #endif
- /* The following definition of Storeinc is appropriate for MIPS processors.
- * An alternative that might be better on some machines is
- * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
- */
- #if defined(IEEE_8087)
- #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
- ((unsigned short *)a)[0] = (unsigned short)c, a++)
- #else
- #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
- ((unsigned short *)a)[1] = (unsigned short)c, a++)
- #endif
- /* #define P DBL_MANT_DIG */
- /* Ten_pmax = floor(P*log(2)/log(5)) */
- /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
- /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
- /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
- #define Exp_shift 20
- #define Exp_shift1 20
- #define Exp_msk1 0x100000
- #define Exp_msk11 0x100000
- #define Exp_mask 0x7ff00000
- #define P 53
- #define Nbits 53
- #define Bias 1023
- #define Emax 1023
- #define Emin (-1022)
- #define Etiny (-1074) /* smallest denormal is 2**Etiny */
- #define Exp_1 0x3ff00000
- #define Exp_11 0x3ff00000
- #define Ebits 11
- #define Frac_mask 0xfffff
- #define Frac_mask1 0xfffff
- #define Ten_pmax 22
- #define Bletch 0x10
- #define Bndry_mask 0xfffff
- #define Bndry_mask1 0xfffff
- #define Sign_bit 0x80000000
- #define Log2P 1
- #define Tiny0 0
- #define Tiny1 1
- #define Quick_max 14
- #define Int_max 14
- #ifndef Flt_Rounds
- #ifdef FLT_ROUNDS
- #define Flt_Rounds FLT_ROUNDS
- #else
- #define Flt_Rounds 1
- #endif
- #endif /*Flt_Rounds*/
- #define Rounding Flt_Rounds
- #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
- #define Big1 0xffffffff
- /* Bits of the representation of positive infinity. */
- #define POSINF_WORD0 0x7ff00000
- #define POSINF_WORD1 0
- /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
- typedef struct BCinfo BCinfo;
- struct
- BCinfo {
- int e0, nd, nd0, scale;
- };
- #define FFFFFFFF 0xffffffffUL
- /* struct Bigint is used to represent arbitrary-precision integers. These
- integers are stored in sign-magnitude format, with the magnitude stored as
- an array of base 2**32 digits. Bigints are always normalized: if x is a
- Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
- The Bigint fields are as follows:
- - next is a header used by Balloc and Bfree to keep track of lists
- of freed Bigints; it's also used for the linked list of
- powers of 5 of the form 5**2**i used by pow5mult.
- - k indicates which pool this Bigint was allocated from
- - maxwds is the maximum number of words space was allocated for
- (usually maxwds == 2**k)
- - sign is 1 for negative Bigints, 0 for positive. The sign is unused
- (ignored on inputs, set to 0 on outputs) in almost all operations
- involving Bigints: a notable exception is the diff function, which
- ignores signs on inputs but sets the sign of the output correctly.
- - wds is the actual number of significant words
- - x contains the vector of words (digits) for this Bigint, from least
- significant (x[0]) to most significant (x[wds-1]).
- */
- // struct Bigint is defined in pycore_dtoa.h.
- typedef struct Bigint Bigint;
- #ifndef Py_USING_MEMORY_DEBUGGER
- /* Memory management: memory is allocated from, and returned to, Kmax+1 pools
- of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
- 1 << k. These pools are maintained as linked lists, with freelist[k]
- pointing to the head of the list for pool k.
- On allocation, if there's no free slot in the appropriate pool, MALLOC is
- called to get more memory. This memory is not returned to the system until
- Python quits. There's also a private memory pool that's allocated from
- in preference to using MALLOC.
- For Bigints with more than (1 << Kmax) digits (which implies at least 1233
- decimal digits), memory is directly allocated using MALLOC, and freed using
- FREE.
- XXX: it would be easy to bypass this memory-management system and
- translate each call to Balloc into a call to PyMem_Malloc, and each
- Bfree to PyMem_Free. Investigate whether this has any significant
- performance on impact. */
- #define freelist interp->dtoa.freelist
- #define private_mem interp->dtoa.preallocated
- #define pmem_next interp->dtoa.preallocated_next
- /* Allocate space for a Bigint with up to 1<<k digits */
- static Bigint *
- Balloc(int k)
- {
- int x;
- Bigint *rv;
- unsigned int len;
- PyInterpreterState *interp = _PyInterpreterState_GET();
- if (k <= Bigint_Kmax && (rv = freelist[k]))
- freelist[k] = rv->next;
- else {
- x = 1 << k;
- len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
- /sizeof(double);
- if (k <= Bigint_Kmax &&
- pmem_next - private_mem + len <= (Py_ssize_t)Bigint_PREALLOC_SIZE
- ) {
- rv = (Bigint*)pmem_next;
- pmem_next += len;
- }
- else {
- rv = (Bigint*)MALLOC(len*sizeof(double));
- if (rv == NULL)
- return NULL;
- }
- rv->k = k;
- rv->maxwds = x;
- }
- rv->sign = rv->wds = 0;
- return rv;
- }
- /* Free a Bigint allocated with Balloc */
- static void
- Bfree(Bigint *v)
- {
- if (v) {
- if (v->k > Bigint_Kmax)
- FREE((void*)v);
- else {
- PyInterpreterState *interp = _PyInterpreterState_GET();
- v->next = freelist[v->k];
- freelist[v->k] = v;
- }
- }
- }
- #undef pmem_next
- #undef private_mem
- #undef freelist
- #else
- /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
- PyMem_Free directly in place of the custom memory allocation scheme above.
- These are provided for the benefit of memory debugging tools like
- Valgrind. */
- /* Allocate space for a Bigint with up to 1<<k digits */
- static Bigint *
- Balloc(int k)
- {
- int x;
- Bigint *rv;
- unsigned int len;
- x = 1 << k;
- len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
- /sizeof(double);
- rv = (Bigint*)MALLOC(len*sizeof(double));
- if (rv == NULL)
- return NULL;
- rv->k = k;
- rv->maxwds = x;
- rv->sign = rv->wds = 0;
- return rv;
- }
- /* Free a Bigint allocated with Balloc */
- static void
- Bfree(Bigint *v)
- {
- if (v) {
- FREE((void*)v);
- }
- }
- #endif /* Py_USING_MEMORY_DEBUGGER */
- #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
- y->wds*sizeof(Long) + 2*sizeof(int))
- /* Multiply a Bigint b by m and add a. Either modifies b in place and returns
- a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
- On failure, return NULL. In this case, b will have been already freed. */
- static Bigint *
- multadd(Bigint *b, int m, int a) /* multiply by m and add a */
- {
- int i, wds;
- ULong *x;
- ULLong carry, y;
- Bigint *b1;
- wds = b->wds;
- x = b->x;
- i = 0;
- carry = a;
- do {
- y = *x * (ULLong)m + carry;
- carry = y >> 32;
- *x++ = (ULong)(y & FFFFFFFF);
- }
- while(++i < wds);
- if (carry) {
- if (wds >= b->maxwds) {
- b1 = Balloc(b->k+1);
- if (b1 == NULL){
- Bfree(b);
- return NULL;
- }
- Bcopy(b1, b);
- Bfree(b);
- b = b1;
- }
- b->x[wds++] = (ULong)carry;
- b->wds = wds;
- }
- return b;
- }
- /* convert a string s containing nd decimal digits (possibly containing a
- decimal separator at position nd0, which is ignored) to a Bigint. This
- function carries on where the parsing code in _Py_dg_strtod leaves off: on
- entry, y9 contains the result of converting the first 9 digits. Returns
- NULL on failure. */
- static Bigint *
- s2b(const char *s, int nd0, int nd, ULong y9)
- {
- Bigint *b;
- int i, k;
- Long x, y;
- x = (nd + 8) / 9;
- for(k = 0, y = 1; x > y; y <<= 1, k++) ;
- b = Balloc(k);
- if (b == NULL)
- return NULL;
- b->x[0] = y9;
- b->wds = 1;
- if (nd <= 9)
- return b;
- s += 9;
- for (i = 9; i < nd0; i++) {
- b = multadd(b, 10, *s++ - '0');
- if (b == NULL)
- return NULL;
- }
- s++;
- for(; i < nd; i++) {
- b = multadd(b, 10, *s++ - '0');
- if (b == NULL)
- return NULL;
- }
- return b;
- }
- /* count leading 0 bits in the 32-bit integer x. */
- static int
- hi0bits(ULong x)
- {
- int k = 0;
- if (!(x & 0xffff0000)) {
- k = 16;
- x <<= 16;
- }
- if (!(x & 0xff000000)) {
- k += 8;
- x <<= 8;
- }
- if (!(x & 0xf0000000)) {
- k += 4;
- x <<= 4;
- }
- if (!(x & 0xc0000000)) {
- k += 2;
- x <<= 2;
- }
- if (!(x & 0x80000000)) {
- k++;
- if (!(x & 0x40000000))
- return 32;
- }
- return k;
- }
- /* count trailing 0 bits in the 32-bit integer y, and shift y right by that
- number of bits. */
- static int
- lo0bits(ULong *y)
- {
- int k;
- ULong x = *y;
- if (x & 7) {
- if (x & 1)
- return 0;
- if (x & 2) {
- *y = x >> 1;
- return 1;
- }
- *y = x >> 2;
- return 2;
- }
- k = 0;
- if (!(x & 0xffff)) {
- k = 16;
- x >>= 16;
- }
- if (!(x & 0xff)) {
- k += 8;
- x >>= 8;
- }
- if (!(x & 0xf)) {
- k += 4;
- x >>= 4;
- }
- if (!(x & 0x3)) {
- k += 2;
- x >>= 2;
- }
- if (!(x & 1)) {
- k++;
- x >>= 1;
- if (!x)
- return 32;
- }
- *y = x;
- return k;
- }
- /* convert a small nonnegative integer to a Bigint */
- static Bigint *
- i2b(int i)
- {
- Bigint *b;
- b = Balloc(1);
- if (b == NULL)
- return NULL;
- b->x[0] = i;
- b->wds = 1;
- return b;
- }
- /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores
- the signs of a and b. */
- static Bigint *
- mult(Bigint *a, Bigint *b)
- {
- Bigint *c;
- int k, wa, wb, wc;
- ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
- ULong y;
- ULLong carry, z;
- if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
- c = Balloc(0);
- if (c == NULL)
- return NULL;
- c->wds = 1;
- c->x[0] = 0;
- return c;
- }
- if (a->wds < b->wds) {
- c = a;
- a = b;
- b = c;
- }
- k = a->k;
- wa = a->wds;
- wb = b->wds;
- wc = wa + wb;
- if (wc > a->maxwds)
- k++;
- c = Balloc(k);
- if (c == NULL)
- return NULL;
- for(x = c->x, xa = x + wc; x < xa; x++)
- *x = 0;
- xa = a->x;
- xae = xa + wa;
- xb = b->x;
- xbe = xb + wb;
- xc0 = c->x;
- for(; xb < xbe; xc0++) {
- if ((y = *xb++)) {
- x = xa;
- xc = xc0;
- carry = 0;
- do {
- z = *x++ * (ULLong)y + *xc + carry;
- carry = z >> 32;
- *xc++ = (ULong)(z & FFFFFFFF);
- }
- while(x < xae);
- *xc = (ULong)carry;
- }
- }
- for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
- c->wds = wc;
- return c;
- }
- #ifndef Py_USING_MEMORY_DEBUGGER
- /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on
- failure; if the returned pointer is distinct from b then the original
- Bigint b will have been Bfree'd. Ignores the sign of b. */
- static Bigint *
- pow5mult(Bigint *b, int k)
- {
- Bigint *b1, *p5, *p51;
- int i;
- static const int p05[3] = { 5, 25, 125 };
- if ((i = k & 3)) {
- b = multadd(b, p05[i-1], 0);
- if (b == NULL)
- return NULL;
- }
- if (!(k >>= 2))
- return b;
- PyInterpreterState *interp = _PyInterpreterState_GET();
- p5 = interp->dtoa.p5s;
- if (!p5) {
- /* first time */
- p5 = i2b(625);
- if (p5 == NULL) {
- Bfree(b);
- return NULL;
- }
- interp->dtoa.p5s = p5;
- p5->next = 0;
- }
- for(;;) {
- if (k & 1) {
- b1 = mult(b, p5);
- Bfree(b);
- b = b1;
- if (b == NULL)
- return NULL;
- }
- if (!(k >>= 1))
- break;
- p51 = p5->next;
- if (!p51) {
- p51 = mult(p5,p5);
- if (p51 == NULL) {
- Bfree(b);
- return NULL;
- }
- p51->next = 0;
- p5->next = p51;
- }
- p5 = p51;
- }
- return b;
- }
- #else
- /* Version of pow5mult that doesn't cache powers of 5. Provided for
- the benefit of memory debugging tools like Valgrind. */
- static Bigint *
- pow5mult(Bigint *b, int k)
- {
- Bigint *b1, *p5, *p51;
- int i;
- static const int p05[3] = { 5, 25, 125 };
- if ((i = k & 3)) {
- b = multadd(b, p05[i-1], 0);
- if (b == NULL)
- return NULL;
- }
- if (!(k >>= 2))
- return b;
- p5 = i2b(625);
- if (p5 == NULL) {
- Bfree(b);
- return NULL;
- }
- for(;;) {
- if (k & 1) {
- b1 = mult(b, p5);
- Bfree(b);
- b = b1;
- if (b == NULL) {
- Bfree(p5);
- return NULL;
- }
- }
- if (!(k >>= 1))
- break;
- p51 = mult(p5, p5);
- Bfree(p5);
- p5 = p51;
- if (p5 == NULL) {
- Bfree(b);
- return NULL;
- }
- }
- Bfree(p5);
- return b;
- }
- #endif /* Py_USING_MEMORY_DEBUGGER */
- /* shift a Bigint b left by k bits. Return a pointer to the shifted result,
- or NULL on failure. If the returned pointer is distinct from b then the
- original b will have been Bfree'd. Ignores the sign of b. */
- static Bigint *
- lshift(Bigint *b, int k)
- {
- int i, k1, n, n1;
- Bigint *b1;
- ULong *x, *x1, *xe, z;
- if (!k || (!b->x[0] && b->wds == 1))
- return b;
- n = k >> 5;
- k1 = b->k;
- n1 = n + b->wds + 1;
- for(i = b->maxwds; n1 > i; i <<= 1)
- k1++;
- b1 = Balloc(k1);
- if (b1 == NULL) {
- Bfree(b);
- return NULL;
- }
- x1 = b1->x;
- for(i = 0; i < n; i++)
- *x1++ = 0;
- x = b->x;
- xe = x + b->wds;
- if (k &= 0x1f) {
- k1 = 32 - k;
- z = 0;
- do {
- *x1++ = *x << k | z;
- z = *x++ >> k1;
- }
- while(x < xe);
- if ((*x1 = z))
- ++n1;
- }
- else do
- *x1++ = *x++;
- while(x < xe);
- b1->wds = n1 - 1;
- Bfree(b);
- return b1;
- }
- /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
- 1 if a > b. Ignores signs of a and b. */
- static int
- cmp(Bigint *a, Bigint *b)
- {
- ULong *xa, *xa0, *xb, *xb0;
- int i, j;
- i = a->wds;
- j = b->wds;
- #ifdef DEBUG
- if (i > 1 && !a->x[i-1])
- Bug("cmp called with a->x[a->wds-1] == 0");
- if (j > 1 && !b->x[j-1])
- Bug("cmp called with b->x[b->wds-1] == 0");
- #endif
- if (i -= j)
- return i;
- xa0 = a->x;
- xa = xa0 + j;
- xb0 = b->x;
- xb = xb0 + j;
- for(;;) {
- if (*--xa != *--xb)
- return *xa < *xb ? -1 : 1;
- if (xa <= xa0)
- break;
- }
- return 0;
- }
- /* Take the difference of Bigints a and b, returning a new Bigint. Returns
- NULL on failure. The signs of a and b are ignored, but the sign of the
- result is set appropriately. */
- static Bigint *
- diff(Bigint *a, Bigint *b)
- {
- Bigint *c;
- int i, wa, wb;
- ULong *xa, *xae, *xb, *xbe, *xc;
- ULLong borrow, y;
- i = cmp(a,b);
- if (!i) {
- c = Balloc(0);
- if (c == NULL)
- return NULL;
- c->wds = 1;
- c->x[0] = 0;
- return c;
- }
- if (i < 0) {
- c = a;
- a = b;
- b = c;
- i = 1;
- }
- else
- i = 0;
- c = Balloc(a->k);
- if (c == NULL)
- return NULL;
- c->sign = i;
- wa = a->wds;
- xa = a->x;
- xae = xa + wa;
- wb = b->wds;
- xb = b->x;
- xbe = xb + wb;
- xc = c->x;
- borrow = 0;
- do {
- y = (ULLong)*xa++ - *xb++ - borrow;
- borrow = y >> 32 & (ULong)1;
- *xc++ = (ULong)(y & FFFFFFFF);
- }
- while(xb < xbe);
- while(xa < xae) {
- y = *xa++ - borrow;
- borrow = y >> 32 & (ULong)1;
- *xc++ = (ULong)(y & FFFFFFFF);
- }
- while(!*--xc)
- wa--;
- c->wds = wa;
- return c;
- }
- /* Given a positive normal double x, return the difference between x and the
- next double up. Doesn't give correct results for subnormals. */
- static double
- ulp(U *x)
- {
- Long L;
- U u;
- L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
- word0(&u) = L;
- word1(&u) = 0;
- return dval(&u);
- }
- /* Convert a Bigint to a double plus an exponent */
- static double
- b2d(Bigint *a, int *e)
- {
- ULong *xa, *xa0, w, y, z;
- int k;
- U d;
- xa0 = a->x;
- xa = xa0 + a->wds;
- y = *--xa;
- #ifdef DEBUG
- if (!y) Bug("zero y in b2d");
- #endif
- k = hi0bits(y);
- *e = 32 - k;
- if (k < Ebits) {
- word0(&d) = Exp_1 | y >> (Ebits - k);
- w = xa > xa0 ? *--xa : 0;
- word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
- goto ret_d;
- }
- z = xa > xa0 ? *--xa : 0;
- if (k -= Ebits) {
- word0(&d) = Exp_1 | y << k | z >> (32 - k);
- y = xa > xa0 ? *--xa : 0;
- word1(&d) = z << k | y >> (32 - k);
- }
- else {
- word0(&d) = Exp_1 | y;
- word1(&d) = z;
- }
- ret_d:
- return dval(&d);
- }
- /* Convert a scaled double to a Bigint plus an exponent. Similar to d2b,
- except that it accepts the scale parameter used in _Py_dg_strtod (which
- should be either 0 or 2*P), and the normalization for the return value is
- different (see below). On input, d should be finite and nonnegative, and d
- / 2**scale should be exactly representable as an IEEE 754 double.
- Returns a Bigint b and an integer e such that
- dval(d) / 2**scale = b * 2**e.
- Unlike d2b, b is not necessarily odd: b and e are normalized so
- that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
- and e == Etiny. This applies equally to an input of 0.0: in that
- case the return values are b = 0 and e = Etiny.
- The above normalization ensures that for all possible inputs d,
- 2**e gives ulp(d/2**scale).
- Returns NULL on failure.
- */
- static Bigint *
- sd2b(U *d, int scale, int *e)
- {
- Bigint *b;
- b = Balloc(1);
- if (b == NULL)
- return NULL;
- /* First construct b and e assuming that scale == 0. */
- b->wds = 2;
- b->x[0] = word1(d);
- b->x[1] = word0(d) & Frac_mask;
- *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
- if (*e < Etiny)
- *e = Etiny;
- else
- b->x[1] |= Exp_msk1;
- /* Now adjust for scale, provided that b != 0. */
- if (scale && (b->x[0] || b->x[1])) {
- *e -= scale;
- if (*e < Etiny) {
- scale = Etiny - *e;
- *e = Etiny;
- /* We can't shift more than P-1 bits without shifting out a 1. */
- assert(0 < scale && scale <= P - 1);
- if (scale >= 32) {
- /* The bits shifted out should all be zero. */
- assert(b->x[0] == 0);
- b->x[0] = b->x[1];
- b->x[1] = 0;
- scale -= 32;
- }
- if (scale) {
- /* The bits shifted out should all be zero. */
- assert(b->x[0] << (32 - scale) == 0);
- b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
- b->x[1] >>= scale;
- }
- }
- }
- /* Ensure b is normalized. */
- if (!b->x[1])
- b->wds = 1;
- return b;
- }
- /* Convert a double to a Bigint plus an exponent. Return NULL on failure.
- Given a finite nonzero double d, return an odd Bigint b and exponent *e
- such that fabs(d) = b * 2**e. On return, *bbits gives the number of
- significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
- If d is zero, then b == 0, *e == -1010, *bbits = 0.
- */
- static Bigint *
- d2b(U *d, int *e, int *bits)
- {
- Bigint *b;
- int de, k;
- ULong *x, y, z;
- int i;
- b = Balloc(1);
- if (b == NULL)
- return NULL;
- x = b->x;
- z = word0(d) & Frac_mask;
- word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */
- if ((de = (int)(word0(d) >> Exp_shift)))
- z |= Exp_msk1;
- if ((y = word1(d))) {
- if ((k = lo0bits(&y))) {
- x[0] = y | z << (32 - k);
- z >>= k;
- }
- else
- x[0] = y;
- i =
- b->wds = (x[1] = z) ? 2 : 1;
- }
- else {
- k = lo0bits(&z);
- x[0] = z;
- i =
- b->wds = 1;
- k += 32;
- }
- if (de) {
- *e = de - Bias - (P-1) + k;
- *bits = P - k;
- }
- else {
- *e = de - Bias - (P-1) + 1 + k;
- *bits = 32*i - hi0bits(x[i-1]);
- }
- return b;
- }
- /* Compute the ratio of two Bigints, as a double. The result may have an
- error of up to 2.5 ulps. */
- static double
- ratio(Bigint *a, Bigint *b)
- {
- U da, db;
- int k, ka, kb;
- dval(&da) = b2d(a, &ka);
- dval(&db) = b2d(b, &kb);
- k = ka - kb + 32*(a->wds - b->wds);
- if (k > 0)
- word0(&da) += k*Exp_msk1;
- else {
- k = -k;
- word0(&db) += k*Exp_msk1;
- }
- return dval(&da) / dval(&db);
- }
- static const double
- tens[] = {
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22
- };
- static const double
- bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
- static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
- 9007199254740992.*9007199254740992.e-256
- /* = 2^106 * 1e-256 */
- };
- /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
- /* flag unnecessarily. It leads to a song and dance at the end of strtod. */
- #define Scale_Bit 0x10
- #define n_bigtens 5
- #define ULbits 32
- #define kshift 5
- #define kmask 31
- static int
- dshift(Bigint *b, int p2)
- {
- int rv = hi0bits(b->x[b->wds-1]) - 4;
- if (p2 > 0)
- rv -= p2;
- return rv & kmask;
- }
- /* special case of Bigint division. The quotient is always in the range 0 <=
- quotient < 10, and on entry the divisor S is normalized so that its top 4
- bits (28--31) are zero and bit 27 is set. */
- static int
- quorem(Bigint *b, Bigint *S)
- {
- int n;
- ULong *bx, *bxe, q, *sx, *sxe;
- ULLong borrow, carry, y, ys;
- n = S->wds;
- #ifdef DEBUG
- /*debug*/ if (b->wds > n)
- /*debug*/ Bug("oversize b in quorem");
- #endif
- if (b->wds < n)
- return 0;
- sx = S->x;
- sxe = sx + --n;
- bx = b->x;
- bxe = bx + n;
- q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
- #ifdef DEBUG
- /*debug*/ if (q > 9)
- /*debug*/ Bug("oversized quotient in quorem");
- #endif
- if (q) {
- borrow = 0;
- carry = 0;
- do {
- ys = *sx++ * (ULLong)q + carry;
- carry = ys >> 32;
- y = *bx - (ys & FFFFFFFF) - borrow;
- borrow = y >> 32 & (ULong)1;
- *bx++ = (ULong)(y & FFFFFFFF);
- }
- while(sx <= sxe);
- if (!*bxe) {
- bx = b->x;
- while(--bxe > bx && !*bxe)
- --n;
- b->wds = n;
- }
- }
- if (cmp(b, S) >= 0) {
- q++;
- borrow = 0;
- carry = 0;
- bx = b->x;
- sx = S->x;
- do {
- ys = *sx++ + carry;
- carry = ys >> 32;
- y = *bx - (ys & FFFFFFFF) - borrow;
- borrow = y >> 32 & (ULong)1;
- *bx++ = (ULong)(y & FFFFFFFF);
- }
- while(sx <= sxe);
- bx = b->x;
- bxe = bx + n;
- if (!*bxe) {
- while(--bxe > bx && !*bxe)
- --n;
- b->wds = n;
- }
- }
- return q;
- }
- /* sulp(x) is a version of ulp(x) that takes bc.scale into account.
- Assuming that x is finite and nonnegative (positive zero is fine
- here) and x / 2^bc.scale is exactly representable as a double,
- sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
- static double
- sulp(U *x, BCinfo *bc)
- {
- U u;
- if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
- /* rv/2^bc->scale is subnormal */
- word0(&u) = (P+2)*Exp_msk1;
- word1(&u) = 0;
- return u.d;
- }
- else {
- assert(word0(x) || word1(x)); /* x != 0.0 */
- return ulp(x);
- }
- }
- /* The bigcomp function handles some hard cases for strtod, for inputs
- with more than STRTOD_DIGLIM digits. It's called once an initial
- estimate for the double corresponding to the input string has
- already been obtained by the code in _Py_dg_strtod.
- The bigcomp function is only called after _Py_dg_strtod has found a
- double value rv such that either rv or rv + 1ulp represents the
- correctly rounded value corresponding to the original string. It
- determines which of these two values is the correct one by
- computing the decimal digits of rv + 0.5ulp and comparing them with
- the corresponding digits of s0.
- In the following, write dv for the absolute value of the number represented
- by the input string.
- Inputs:
- s0 points to the first significant digit of the input string.
- rv is a (possibly scaled) estimate for the closest double value to the
- value represented by the original input to _Py_dg_strtod. If
- bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
- the input value.
- bc is a struct containing information gathered during the parsing and
- estimation steps of _Py_dg_strtod. Description of fields follows:
- bc->e0 gives the exponent of the input value, such that dv = (integer
- given by the bd->nd digits of s0) * 10**e0
- bc->nd gives the total number of significant digits of s0. It will
- be at least 1.
- bc->nd0 gives the number of significant digits of s0 before the
- decimal separator. If there's no decimal separator, bc->nd0 ==
- bc->nd.
- bc->scale is the value used to scale rv to avoid doing arithmetic with
- subnormal values. It's either 0 or 2*P (=106).
- Outputs:
- On successful exit, rv/2^(bc->scale) is the closest double to dv.
- Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
- static int
- bigcomp(U *rv, const char *s0, BCinfo *bc)
- {
- Bigint *b, *d;
- int b2, d2, dd, i, nd, nd0, odd, p2, p5;
- nd = bc->nd;
- nd0 = bc->nd0;
- p5 = nd + bc->e0;
- b = sd2b(rv, bc->scale, &p2);
- if (b == NULL)
- return -1;
- /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
- case, this is used for round to even. */
- odd = b->x[0] & 1;
- /* left shift b by 1 bit and or a 1 into the least significant bit;
- this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
- b = lshift(b, 1);
- if (b == NULL)
- return -1;
- b->x[0] |= 1;
- p2--;
- p2 -= p5;
- d = i2b(1);
- if (d == NULL) {
- Bfree(b);
- return -1;
- }
- /* Arrange for convenient computation of quotients:
- * shift left if necessary so divisor has 4 leading 0 bits.
- */
- if (p5 > 0) {
- d = pow5mult(d, p5);
- if (d == NULL) {
- Bfree(b);
- return -1;
- }
- }
- else if (p5 < 0) {
- b = pow5mult(b, -p5);
- if (b == NULL) {
- Bfree(d);
- return -1;
- }
- }
- if (p2 > 0) {
- b2 = p2;
- d2 = 0;
- }
- else {
- b2 = 0;
- d2 = -p2;
- }
- i = dshift(d, d2);
- if ((b2 += i) > 0) {
- b = lshift(b, b2);
- if (b == NULL) {
- Bfree(d);
- return -1;
- }
- }
- if ((d2 += i) > 0) {
- d = lshift(d, d2);
- if (d == NULL) {
- Bfree(b);
- return -1;
- }
- }
- /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
- * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing
- * a number in the range [0.1, 1). */
- if (cmp(b, d) >= 0)
- /* b/d >= 1 */
- dd = -1;
- else {
- i = 0;
- for(;;) {
- b = multadd(b, 10, 0);
- if (b == NULL) {
- Bfree(d);
- return -1;
- }
- dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
- i++;
- if (dd)
- break;
- if (!b->x[0] && b->wds == 1) {
- /* b/d == 0 */
- dd = i < nd;
- break;
- }
- if (!(i < nd)) {
- /* b/d != 0, but digits of s0 exhausted */
- dd = -1;
- break;
- }
- }
- }
- Bfree(b);
- Bfree(d);
- if (dd > 0 || (dd == 0 && odd))
- dval(rv) += sulp(rv, bc);
- return 0;
- }
- double
- _Py_dg_strtod(const char *s00, char **se)
- {
- int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
- int esign, i, j, k, lz, nd, nd0, odd, sign;
- const char *s, *s0, *s1;
- double aadj, aadj1;
- U aadj2, adj, rv, rv0;
- ULong y, z, abs_exp;
- Long L;
- BCinfo bc;
- Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
- size_t ndigits, fraclen;
- double result;
- dval(&rv) = 0.;
- /* Start parsing. */
- c = *(s = s00);
- /* Parse optional sign, if present. */
- sign = 0;
- switch (c) {
- case '-':
- sign = 1;
- /* fall through */
- case '+':
- c = *++s;
- }
- /* Skip leading zeros: lz is true iff there were leading zeros. */
- s1 = s;
- while (c == '0')
- c = *++s;
- lz = s != s1;
- /* Point s0 at the first nonzero digit (if any). fraclen will be the
- number of digits between the decimal point and the end of the
- digit string. ndigits will be the total number of digits ignoring
- leading zeros. */
- s0 = s1 = s;
- while ('0' <= c && c <= '9')
- c = *++s;
- ndigits = s - s1;
- fraclen = 0;
- /* Parse decimal point and following digits. */
- if (c == '.') {
- c = *++s;
- if (!ndigits) {
- s1 = s;
- while (c == '0')
- c = *++s;
- lz = lz || s != s1;
- fraclen += (s - s1);
- s0 = s;
- }
- s1 = s;
- while ('0' <= c && c <= '9')
- c = *++s;
- ndigits += s - s1;
- fraclen += s - s1;
- }
- /* Now lz is true if and only if there were leading zero digits, and
- ndigits gives the total number of digits ignoring leading zeros. A
- valid input must have at least one digit. */
- if (!ndigits && !lz) {
- if (se)
- *se = (char *)s00;
- goto parse_error;
- }
- /* Range check ndigits and fraclen to make sure that they, and values
- computed with them, can safely fit in an int. */
- if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
- if (se)
- *se = (char *)s00;
- goto parse_error;
- }
- nd = (int)ndigits;
- nd0 = (int)ndigits - (int)fraclen;
- /* Parse exponent. */
- e = 0;
- if (c == 'e' || c == 'E') {
- s00 = s;
- c = *++s;
- /* Exponent sign. */
- esign = 0;
- switch (c) {
- case '-':
- esign = 1;
- /* fall through */
- case '+':
- c = *++s;
- }
- /* Skip zeros. lz is true iff there are leading zeros. */
- s1 = s;
- while (c == '0')
- c = *++s;
- lz = s != s1;
- /* Get absolute value of the exponent. */
- s1 = s;
- abs_exp = 0;
- while ('0' <= c && c <= '9') {
- abs_exp = 10*abs_exp + (c - '0');
- c = *++s;
- }
- /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if
- there are at most 9 significant exponent digits then overflow is
- impossible. */
- if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
- e = (int)MAX_ABS_EXP;
- else
- e = (int)abs_exp;
- if (esign)
- e = -e;
- /* A valid exponent must have at least one digit. */
- if (s == s1 && !lz)
- s = s00;
- }
- /* Adjust exponent to take into account position of the point. */
- e -= nd - nd0;
- if (nd0 <= 0)
- nd0 = nd;
- /* Finished parsing. Set se to indicate how far we parsed */
- if (se)
- *se = (char *)s;
- /* If all digits were zero, exit with return value +-0.0. Otherwise,
- strip trailing zeros: scan back until we hit a nonzero digit. */
- if (!nd)
- goto ret;
- for (i = nd; i > 0; ) {
- --i;
- if (s0[i < nd0 ? i : i+1] != '0') {
- ++i;
- break;
- }
- }
- e += nd - i;
- nd = i;
- if (nd0 > nd)
- nd0 = nd;
- /* Summary of parsing results. After parsing, and dealing with zero
- * inputs, we have values s0, nd0, nd, e, sign, where:
- *
- * - s0 points to the first significant digit of the input string
- *
- * - nd is the total number of significant digits (here, and
- * below, 'significant digits' means the set of digits of the
- * significand of the input that remain after ignoring leading
- * and trailing zeros).
- *
- * - nd0 indicates the position of the decimal point, if present; it
- * satisfies 1 <= nd0 <= nd. The nd significant digits are in
- * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
- * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if
- * nd0 == nd, then s0[nd0] could be any non-digit character.)
- *
- * - e is the adjusted exponent: the absolute value of the number
- * represented by the original input string is n * 10**e, where
- * n is the integer represented by the concatenation of
- * s0[0:nd0] and s0[nd0+1:nd+1]
- *
- * - sign gives the sign of the input: 1 for negative, 0 for positive
- *
- * - the first and last significant digits are nonzero
- */
- /* put first DBL_DIG+1 digits into integer y and z.
- *
- * - y contains the value represented by the first min(9, nd)
- * significant digits
- *
- * - if nd > 9, z contains the value represented by significant digits
- * with indices in [9, min(16, nd)). So y * 10**(min(16, nd) - 9) + z
- * gives the value represented by the first min(16, nd) sig. digits.
- */
- bc.e0 = e1 = e;
- y = z = 0;
- for (i = 0; i < nd; i++) {
- if (i < 9)
- y = 10*y + s0[i < nd0 ? i : i+1] - '0';
- else if (i < DBL_DIG+1)
- z = 10*z + s0[i < nd0 ? i : i+1] - '0';
- else
- break;
- }
- k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
- dval(&rv) = y;
- if (k > 9) {
- dval(&rv) = tens[k - 9] * dval(&rv) + z;
- }
- if (nd <= DBL_DIG
- && Flt_Rounds == 1
- ) {
- if (!e)
- goto ret;
- if (e > 0) {
- if (e <= Ten_pmax) {
- dval(&rv) *= tens[e];
- goto ret;
- }
- i = DBL_DIG - nd;
- if (e <= Ten_pmax + i) {
- /* A fancier test would sometimes let us do
- * this for larger i values.
- */
- e -= i;
- dval(&rv) *= tens[i];
- dval(&rv) *= tens[e];
- goto ret;
- }
- }
- else if (e >= -Ten_pmax) {
- dval(&rv) /= tens[-e];
- goto ret;
- }
- }
- e1 += nd - k;
- bc.scale = 0;
- /* Get starting approximation = rv * 10**e1 */
- if (e1 > 0) {
- if ((i = e1 & 15))
- dval(&rv) *= tens[i];
- if (e1 &= ~15) {
- if (e1 > DBL_MAX_10_EXP)
- goto ovfl;
- e1 >>= 4;
- for(j = 0; e1 > 1; j++, e1 >>= 1)
- if (e1 & 1)
- dval(&rv) *= bigtens[j];
- /* The last multiplication could overflow. */
- word0(&rv) -= P*Exp_msk1;
- dval(&rv) *= bigtens[j];
- if ((z = word0(&rv) & Exp_mask)
- > Exp_msk1*(DBL_MAX_EXP+Bias-P))
- goto ovfl;
- if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
- /* set to largest number */
- /* (Can't trust DBL_MAX) */
- word0(&rv) = Big0;
- word1(&rv) = Big1;
- }
- else
- word0(&rv) += P*Exp_msk1;
- }
- }
- else if (e1 < 0) {
- /* The input decimal value lies in [10**e1, 10**(e1+16)).
- If e1 <= -512, underflow immediately.
- If e1 <= -256, set bc.scale to 2*P.
- So for input value < 1e-256, bc.scale is always set;
- for input value >= 1e-240, bc.scale is never set.
- For input values in [1e-256, 1e-240), bc.scale may or may
- not be set. */
- e1 = -e1;
- if ((i = e1 & 15))
- dval(&rv) /= tens[i];
- if (e1 >>= 4) {
- if (e1 >= 1 << n_bigtens)
- goto undfl;
- if (e1 & Scale_Bit)
- bc.scale = 2*P;
- for(j = 0; e1 > 0; j++, e1 >>= 1)
- if (e1 & 1)
- dval(&rv) *= tinytens[j];
- if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
- >> Exp_shift)) > 0) {
- /* scaled rv is denormal; clear j low bits */
- if (j >= 32) {
- word1(&rv) = 0;
- if (j >= 53)
- word0(&rv) = (P+2)*Exp_msk1;
- else
- word0(&rv) &= 0xffffffff << (j-32);
- }
- else
- word1(&rv) &= 0xffffffff << j;
- }
- if (!dval(&rv))
- goto undfl;
- }
- }
- /* Now the hard part -- adjusting rv to the correct value.*/
- /* Put digits into bd: true value = bd * 10^e */
- bc.nd = nd;
- bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */
- /* to silence an erroneous warning about bc.nd0 */
- /* possibly not being initialized. */
- if (nd > STRTOD_DIGLIM) {
- /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
- /* minimum number of decimal digits to distinguish double values */
- /* in IEEE arithmetic. */
- /* Truncate input to 18 significant digits, then discard any trailing
- zeros on the result by updating nd, nd0, e and y suitably. (There's
- no need to update z; it's not reused beyond this point.) */
- for (i = 18; i > 0; ) {
- /* scan back until we hit a nonzero digit. significant digit 'i'
- is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
- --i;
- if (s0[i < nd0 ? i : i+1] != '0') {
- ++i;
- break;
- }
- }
- e += nd - i;
- nd = i;
- if (nd0 > nd)
- nd0 = nd;
- if (nd < 9) { /* must recompute y */
- y = 0;
- for(i = 0; i < nd0; ++i)
- y = 10*y + s0[i] - '0';
- for(; i < nd; ++i)
- y = 10*y + s0[i+1] - '0';
- }
- }
- bd0 = s2b(s0, nd0, nd, y);
- if (bd0 == NULL)
- goto failed_malloc;
- /* Notation for the comments below. Write:
- - dv for the absolute value of the number represented by the original
- decimal input string.
- - if we've truncated dv, write tdv for the truncated value.
- Otherwise, set tdv == dv.
- - srv for the quantity rv/2^bc.scale; so srv is the current binary
- approximation to tdv (and dv). It should be exactly representable
- in an IEEE 754 double.
- */
- for(;;) {
- /* This is the main correction loop for _Py_dg_strtod.
- We've got a decimal value tdv, and a floating-point approximation
- srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is
- close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
- approximation if not.
- To determine whether srv is close enough to tdv, compute integers
- bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
- respectively, and then use integer arithmetic to determine whether
- |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
- */
- bd = Balloc(bd0->k);
- if (bd == NULL) {
- goto failed_malloc;
- }
- Bcopy(bd, bd0);
- bb = sd2b(&rv, bc.scale, &bbe); /* srv = bb * 2^bbe */
- if (bb == NULL) {
- goto failed_malloc;
- }
- /* Record whether lsb of bb is odd, in case we need this
- for the round-to-even step later. */
- odd = bb->x[0] & 1;
- /* tdv = bd * 10**e; srv = bb * 2**bbe */
- bs = i2b(1);
- if (bs == NULL) {
- goto failed_malloc;
- }
- if (e >= 0) {
- bb2 = bb5 = 0;
- bd2 = bd5 = e;
- }
- else {
- bb2 = bb5 = -e;
- bd2 = bd5 = 0;
- }
- if (bbe >= 0)
- bb2 += bbe;
- else
- bd2 -= bbe;
- bs2 = bb2;
- bb2++;
- bd2++;
- /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
- and bs == 1, so:
- tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
- srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
- 0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
- It follows that:
- M * tdv = bd * 2**bd2 * 5**bd5
- M * srv = bb * 2**bb2 * 5**bb5
- M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
- for some constant M. (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
- this fact is not needed below.)
- */
- /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
- i = bb2 < bd2 ? bb2 : bd2;
- if (i > bs2)
- i = bs2;
- if (i > 0) {
- bb2 -= i;
- bd2 -= i;
- bs2 -= i;
- }
- /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
- if (bb5 > 0) {
- bs = pow5mult(bs, bb5);
- if (bs == NULL) {
- goto failed_malloc;
- }
- Bigint *bb1 = mult(bs, bb);
- Bfree(bb);
- bb = bb1;
- if (bb == NULL) {
- goto failed_malloc;
- }
- }
- if (bb2 > 0) {
- bb = lshift(bb, bb2);
- if (bb == NULL) {
- goto failed_malloc;
- }
- }
- if (bd5 > 0) {
- bd = pow5mult(bd, bd5);
- if (bd == NULL) {
- goto failed_malloc;
- }
- }
- if (bd2 > 0) {
- bd = lshift(bd, bd2);
- if (bd == NULL) {
- goto failed_malloc;
- }
- }
- if (bs2 > 0) {
- bs = lshift(bs, bs2);
- if (bs == NULL) {
- goto failed_malloc;
- }
- }
- /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
- respectively. Compute the difference |tdv - srv|, and compare
- with 0.5 ulp(srv). */
- delta = diff(bb, bd);
- if (delta == NULL) {
- goto failed_malloc;
- }
- dsign = delta->sign;
- delta->sign = 0;
- i = cmp(delta, bs);
- if (bc.nd > nd && i <= 0) {
- if (dsign)
- break; /* Must use bigcomp(). */
- /* Here rv overestimates the truncated decimal value by at most
- 0.5 ulp(rv). Hence rv either overestimates the true decimal
- value by <= 0.5 ulp(rv), or underestimates it by some small
- amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
- the true decimal value, so it's possible to exit.
- Exception: if scaled rv is a normal exact power of 2, but not
- DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
- next double, so the correctly rounded result is either rv - 0.5
- ulp(rv) or rv; in this case, use bigcomp to distinguish. */
- if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
- /* rv can't be 0, since it's an overestimate for some
- nonzero value. So rv is a normal power of 2. */
- j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
- /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
- rv / 2^bc.scale >= 2^-1021. */
- if (j - bc.scale >= 2) {
- dval(&rv) -= 0.5 * sulp(&rv, &bc);
- break; /* Use bigcomp. */
- }
- }
- {
- bc.nd = nd;
- i = -1; /* Discarded digits make delta smaller. */
- }
- }
- if (i < 0) {
- /* Error is less than half an ulp -- check for
- * special case of mantissa a power of two.
- */
- if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
- || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
- ) {
- break;
- }
- if (!delta->x[0] && delta->wds <= 1) {
- /* exact result */
- break;
- }
- delta = lshift(delta,Log2P);
- if (delta == NULL) {
- goto failed_malloc;
- }
- if (cmp(delta, bs) > 0)
- goto drop_down;
- break;
- }
- if (i == 0) {
- /* exactly half-way between */
- if (dsign) {
- if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
- && word1(&rv) == (
- (bc.scale &&
- (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
- (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
- 0xffffffff)) {
- /*boundary case -- increment exponent*/
- word0(&rv) = (word0(&rv) & Exp_mask)
- + Exp_msk1
- ;
- word1(&rv) = 0;
- /* dsign = 0; */
- break;
- }
- }
- else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
- drop_down:
- /* boundary case -- decrement exponent */
- if (bc.scale) {
- L = word0(&rv) & Exp_mask;
- if (L <= (2*P+1)*Exp_msk1) {
- if (L > (P+2)*Exp_msk1)
- /* round even ==> */
- /* accept rv */
- break;
- /* rv = smallest denormal */
- if (bc.nd > nd)
- break;
- goto undfl;
- }
- }
- L = (word0(&rv) & Exp_mask) - Exp_msk1;
- word0(&rv) = L | Bndry_mask1;
- word1(&rv) = 0xffffffff;
- break;
- }
- if (!odd)
- break;
- if (dsign)
- dval(&rv) += sulp(&rv, &bc);
- else {
- dval(&rv) -= sulp(&rv, &bc);
- if (!dval(&rv)) {
- if (bc.nd >nd)
- break;
- goto undfl;
- }
- }
- /* dsign = 1 - dsign; */
- break;
- }
- if ((aadj = ratio(delta, bs)) <= 2.) {
- if (dsign)
- aadj = aadj1 = 1.;
- else if (word1(&rv) || word0(&rv) & Bndry_mask) {
- if (word1(&rv) == Tiny1 && !word0(&rv)) {
- if (bc.nd >nd)
- break;
- goto undfl;
- }
- aadj = 1.;
- aadj1 = -1.;
- }
- else {
- /* special case -- power of FLT_RADIX to be */
- /* rounded down... */
- if (aadj < 2./FLT_RADIX)
- aadj = 1./FLT_RADIX;
- else
- aadj *= 0.5;
- aadj1 = -aadj;
- }
- }
- else {
- aadj *= 0.5;
- aadj1 = dsign ? aadj : -aadj;
- if (Flt_Rounds == 0)
- aadj1 += 0.5;
- }
- y = word0(&rv) & Exp_mask;
- /* Check for overflow */
- if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
- dval(&rv0) = dval(&rv);
- word0(&rv) -= P*Exp_msk1;
- adj.d = aadj1 * ulp(&rv);
- dval(&rv) += adj.d;
- if ((word0(&rv) & Exp_mask) >=
- Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
- if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
- goto ovfl;
- }
- word0(&rv) = Big0;
- word1(&rv) = Big1;
- goto cont;
- }
- else
- word0(&rv) += P*Exp_msk1;
- }
- else {
- if (bc.scale && y <= 2*P*Exp_msk1) {
- if (aadj <= 0x7fffffff) {
- if ((z = (ULong)aadj) <= 0)
- z = 1;
- aadj = z;
- aadj1 = dsign ? aadj : -aadj;
- }
- dval(&aadj2) = aadj1;
- word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
- aadj1 = dval(&aadj2);
- }
- adj.d = aadj1 * ulp(&rv);
- dval(&rv) += adj.d;
- }
- z = word0(&rv) & Exp_mask;
- if (bc.nd == nd) {
- if (!bc.scale)
- if (y == z) {
- /* Can we stop now? */
- L = (Long)aadj;
- aadj -= L;
- /* The tolerances below are conservative. */
- if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
- if (aadj < .4999999 || aadj > .5000001)
- break;
- }
- else if (aadj < .4999999/FLT_RADIX)
- break;
- }
- }
- cont:
- Bfree(bb); bb = NULL;
- Bfree(bd); bd = NULL;
- Bfree(bs); bs = NULL;
- Bfree(delta); delta = NULL;
- }
- if (bc.nd > nd) {
- error = bigcomp(&rv, s0, &bc);
- if (error)
- goto failed_malloc;
- }
- if (bc.scale) {
- word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
- word1(&rv0) = 0;
- dval(&rv) *= dval(&rv0);
- }
- ret:
- result = sign ? -dval(&rv) : dval(&rv);
- goto done;
- parse_error:
- result = 0.0;
- goto done;
- failed_malloc:
- errno = ENOMEM;
- result = -1.0;
- goto done;
- undfl:
- result = sign ? -0.0 : 0.0;
- goto done;
- ovfl:
- errno = ERANGE;
- /* Can't trust HUGE_VAL */
- word0(&rv) = Exp_mask;
- word1(&rv) = 0;
- result = sign ? -dval(&rv) : dval(&rv);
- goto done;
- done:
- Bfree(bb);
- Bfree(bd);
- Bfree(bs);
- Bfree(bd0);
- Bfree(delta);
- return result;
- }
- static char *
- rv_alloc(int i)
- {
- int j, k, *r;
- j = sizeof(ULong);
- for(k = 0;
- sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
- j <<= 1)
- k++;
- r = (int*)Balloc(k);
- if (r == NULL)
- return NULL;
- *r = k;
- return (char *)(r+1);
- }
- static char *
- nrv_alloc(const char *s, char **rve, int n)
- {
- char *rv, *t;
- rv = rv_alloc(n);
- if (rv == NULL)
- return NULL;
- t = rv;
- while((*t = *s++)) t++;
- if (rve)
- *rve = t;
- return rv;
- }
- /* freedtoa(s) must be used to free values s returned by dtoa
- * when MULTIPLE_THREADS is #defined. It should be used in all cases,
- * but for consistency with earlier versions of dtoa, it is optional
- * when MULTIPLE_THREADS is not defined.
- */
- void
- _Py_dg_freedtoa(char *s)
- {
- Bigint *b = (Bigint *)((int *)s - 1);
- b->maxwds = 1 << (b->k = *(int*)b);
- Bfree(b);
- }
- /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
- *
- * Modifications:
- * 1. Rather than iterating, we use a simple numeric overestimate
- * to determine k = floor(log10(d)). We scale relevant
- * quantities using O(log2(k)) rather than O(k) multiplications.
- * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- * try to generate digits strictly left to right. Instead, we
- * compute with fewer bits and propagate the carry if necessary
- * when rounding the final digit up. This is often faster.
- * 3. Under the assumption that input will be rounded nearest,
- * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- * That is, we allow equality in stopping tests when the
- * round-nearest rule will give the same floating-point value
- * as would satisfaction of the stopping test with strict
- * inequality.
- * 4. We remove common factors of powers of 2 from relevant
- * quantities.
- * 5. When converting floating-point integers less than 1e16,
- * we use floating-point arithmetic rather than resorting
- * to multiple-precision integers.
- * 6. When asked to produce fewer than 15 digits, we first try
- * to get by with floating-point arithmetic; we resort to
- * multiple-precision integer arithmetic only if we cannot
- * guarantee that the floating-point calculation has given
- * the correctly rounded result. For k requested digits and
- * "uniformly" distributed input, the probability is
- * something like 10^(k-15) that we must resort to the Long
- * calculation.
- */
- /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory
- leakage, a successful call to _Py_dg_dtoa should always be matched by a
- call to _Py_dg_freedtoa. */
- char *
- _Py_dg_dtoa(double dd, int mode, int ndigits,
- int *decpt, int *sign, char **rve)
- {
- /* Arguments ndigits, decpt, sign are similar to those
- of ecvt and fcvt; trailing zeros are suppressed from
- the returned string. If not null, *rve is set to point
- to the end of the return value. If d is +-Infinity or NaN,
- then *decpt is set to 9999.
- mode:
- 0 ==> shortest string that yields d when read in
- and rounded to nearest.
- 1 ==> like 0, but with Steele & White stopping rule;
- e.g. with IEEE P754 arithmetic , mode 0 gives
- 1e23 whereas mode 1 gives 9.999999999999999e22.
- 2 ==> max(1,ndigits) significant digits. This gives a
- return value similar to that of ecvt, except
- that trailing zeros are suppressed.
- 3 ==> through ndigits past the decimal point. This
- gives a return value similar to that from fcvt,
- except that trailing zeros are suppressed, and
- ndigits can be negative.
- 4,5 ==> similar to 2 and 3, respectively, but (in
- round-nearest mode) with the tests of mode 0 to
- possibly return a shorter string that rounds to d.
- With IEEE arithmetic and compilation with
- -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
- as modes 2 and 3 when FLT_ROUNDS != 1.
- 6-9 ==> Debugging modes similar to mode - 4: don't try
- fast floating-point estimate (if applicable).
- Values of mode other than 0-9 are treated as mode 0.
- Sufficient space is allocated to the return value
- to hold the suppressed trailing zeros.
- */
- int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
- j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
- spec_case, try_quick;
- Long L;
- int denorm;
- ULong x;
- Bigint *b, *b1, *delta, *mlo, *mhi, *S;
- U d2, eps, u;
- double ds;
- char *s, *s0;
- /* set pointers to NULL, to silence gcc compiler warnings and make
- cleanup easier on error */
- mlo = mhi = S = 0;
- s0 = 0;
- u.d = dd;
- if (word0(&u) & Sign_bit) {
- /* set sign for everything, including 0's and NaNs */
- *sign = 1;
- word0(&u) &= ~Sign_bit; /* clear sign bit */
- }
- else
- *sign = 0;
- /* quick return for Infinities, NaNs and zeros */
- if ((word0(&u) & Exp_mask) == Exp_mask)
- {
- /* Infinity or NaN */
- *decpt = 9999;
- if (!word1(&u) && !(word0(&u) & 0xfffff))
- return nrv_alloc("Infinity", rve, 8);
- return nrv_alloc("NaN", rve, 3);
- }
- if (!dval(&u)) {
- *decpt = 1;
- return nrv_alloc("0", rve, 1);
- }
- /* compute k = floor(log10(d)). The computation may leave k
- one too large, but should never leave k too small. */
- b = d2b(&u, &be, &bbits);
- if (b == NULL)
- goto failed_malloc;
- if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
- dval(&d2) = dval(&u);
- word0(&d2) &= Frac_mask1;
- word0(&d2) |= Exp_11;
- /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
- * log10(x) = log(x) / log(10)
- * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
- * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
- *
- * This suggests computing an approximation k to log10(d) by
- *
- * k = (i - Bias)*0.301029995663981
- * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
- *
- * We want k to be too large rather than too small.
- * The error in the first-order Taylor series approximation
- * is in our favor, so we just round up the constant enough
- * to compensate for any error in the multiplication of
- * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
- * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
- * adding 1e-13 to the constant term more than suffices.
- * Hence we adjust the constant term to 0.1760912590558.
- * (We could get a more accurate k by invoking log10,
- * but this is probably not worthwhile.)
- */
- i -= Bias;
- denorm = 0;
- }
- else {
- /* d is denormalized */
- i = bbits + be + (Bias + (P-1) - 1);
- x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
- : word1(&u) << (32 - i);
- dval(&d2) = x;
- word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
- i -= (Bias + (P-1) - 1) + 1;
- denorm = 1;
- }
- ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
- i*0.301029995663981;
- k = (int)ds;
- if (ds < 0. && ds != k)
- k--; /* want k = floor(ds) */
- k_check = 1;
- if (k >= 0 && k <= Ten_pmax) {
- if (dval(&u) < tens[k])
- k--;
- k_check = 0;
- }
- j = bbits - i - 1;
- if (j >= 0) {
- b2 = 0;
- s2 = j;
- }
- else {
- b2 = -j;
- s2 = 0;
- }
- if (k >= 0) {
- b5 = 0;
- s5 = k;
- s2 += k;
- }
- else {
- b2 -= k;
- b5 = -k;
- s5 = 0;
- }
- if (mode < 0 || mode > 9)
- mode = 0;
- try_quick = 1;
- if (mode > 5) {
- mode -= 4;
- try_quick = 0;
- }
- leftright = 1;
- ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
- /* silence erroneous "gcc -Wall" warning. */
- switch(mode) {
- case 0:
- case 1:
- i = 18;
- ndigits = 0;
- break;
- case 2:
- leftright = 0;
- /* fall through */
- case 4:
- if (ndigits <= 0)
- ndigits = 1;
- ilim = ilim1 = i = ndigits;
- break;
- case 3:
- leftright = 0;
- /* fall through */
- case 5:
- i = ndigits + k + 1;
- ilim = i;
- ilim1 = i - 1;
- if (i <= 0)
- i = 1;
- }
- s0 = rv_alloc(i);
- if (s0 == NULL)
- goto failed_malloc;
- s = s0;
- if (ilim >= 0 && ilim <= Quick_max && try_quick) {
- /* Try to get by with floating-point arithmetic. */
- i = 0;
- dval(&d2) = dval(&u);
- k0 = k;
- ilim0 = ilim;
- ieps = 2; /* conservative */
- if (k > 0) {
- ds = tens[k&0xf];
- j = k >> 4;
- if (j & Bletch) {
- /* prevent overflows */
- j &= Bletch - 1;
- dval(&u) /= bigtens[n_bigtens-1];
- ieps++;
- }
- for(; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- ds *= bigtens[i];
- }
- dval(&u) /= ds;
- }
- else if ((j1 = -k)) {
- dval(&u) *= tens[j1 & 0xf];
- for(j = j1 >> 4; j; j >>= 1, i++)
- if (j & 1) {
- ieps++;
- dval(&u) *= bigtens[i];
- }
- }
- if (k_check && dval(&u) < 1. && ilim > 0) {
- if (ilim1 <= 0)
- goto fast_failed;
- ilim = ilim1;
- k--;
- dval(&u) *= 10.;
- ieps++;
- }
- dval(&eps) = ieps*dval(&u) + 7.;
- word0(&eps) -= (P-1)*Exp_msk1;
- if (ilim == 0) {
- S = mhi = 0;
- dval(&u) -= 5.;
- if (dval(&u) > dval(&eps))
- goto one_digit;
- if (dval(&u) < -dval(&eps))
- goto no_digits;
- goto fast_failed;
- }
- if (leftright) {
- /* Use Steele & White method of only
- * generating digits needed.
- */
- dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
- for(i = 0;;) {
- L = (Long)dval(&u);
- dval(&u) -= L;
- *s++ = '0' + (int)L;
- if (dval(&u) < dval(&eps))
- goto ret1;
- if (1. - dval(&u) < dval(&eps))
- goto bump_up;
- if (++i >= ilim)
- break;
- dval(&eps) *= 10.;
- dval(&u) *= 10.;
- }
- }
- else {
- /* Generate ilim digits, then fix them up. */
- dval(&eps) *= tens[ilim-1];
- for(i = 1;; i++, dval(&u) *= 10.) {
- L = (Long)(dval(&u));
- if (!(dval(&u) -= L))
- ilim = i;
- *s++ = '0' + (int)L;
- if (i == ilim) {
- if (dval(&u) > 0.5 + dval(&eps))
- goto bump_up;
- else if (dval(&u) < 0.5 - dval(&eps)) {
- while(*--s == '0');
- s++;
- goto ret1;
- }
- break;
- }
- }
- }
- fast_failed:
- s = s0;
- dval(&u) = dval(&d2);
- k = k0;
- ilim = ilim0;
- }
- /* Do we have a "small" integer? */
- if (be >= 0 && k <= Int_max) {
- /* Yes. */
- ds = tens[k];
- if (ndigits < 0 && ilim <= 0) {
- S = mhi = 0;
- if (ilim < 0 || dval(&u) <= 5*ds)
- goto no_digits;
- goto one_digit;
- }
- for(i = 1;; i++, dval(&u) *= 10.) {
- L = (Long)(dval(&u) / ds);
- dval(&u) -= L*ds;
- *s++ = '0' + (int)L;
- if (!dval(&u)) {
- break;
- }
- if (i == ilim) {
- dval(&u) += dval(&u);
- if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
- bump_up:
- while(*--s == '9')
- if (s == s0) {
- k++;
- *s = '0';
- break;
- }
- ++*s++;
- }
- else {
- /* Strip trailing zeros. This branch was missing from the
- original dtoa.c, leading to surplus trailing zeros in
- some cases. See bugs.python.org/issue40780. */
- while (s > s0 && s[-1] == '0') {
- --s;
- }
- }
- break;
- }
- }
- goto ret1;
- }
- m2 = b2;
- m5 = b5;
- if (leftright) {
- i =
- denorm ? be + (Bias + (P-1) - 1 + 1) :
- 1 + P - bbits;
- b2 += i;
- s2 += i;
- mhi = i2b(1);
- if (mhi == NULL)
- goto failed_malloc;
- }
- if (m2 > 0 && s2 > 0) {
- i = m2 < s2 ? m2 : s2;
- b2 -= i;
- m2 -= i;
- s2 -= i;
- }
- if (b5 > 0) {
- if (leftright) {
- if (m5 > 0) {
- mhi = pow5mult(mhi, m5);
- if (mhi == NULL)
- goto failed_malloc;
- b1 = mult(mhi, b);
- Bfree(b);
- b = b1;
- if (b == NULL)
- goto failed_malloc;
- }
- if ((j = b5 - m5)) {
- b = pow5mult(b, j);
- if (b == NULL)
- goto failed_malloc;
- }
- }
- else {
- b = pow5mult(b, b5);
- if (b == NULL)
- goto failed_malloc;
- }
- }
- S = i2b(1);
- if (S == NULL)
- goto failed_malloc;
- if (s5 > 0) {
- S = pow5mult(S, s5);
- if (S == NULL)
- goto failed_malloc;
- }
- /* Check for special case that d is a normalized power of 2. */
- spec_case = 0;
- if ((mode < 2 || leftright)
- ) {
- if (!word1(&u) && !(word0(&u) & Bndry_mask)
- && word0(&u) & (Exp_mask & ~Exp_msk1)
- ) {
- /* The special case */
- b2 += Log2P;
- s2 += Log2P;
- spec_case = 1;
- }
- }
- /* Arrange for convenient computation of quotients:
- * shift left if necessary so divisor has 4 leading 0 bits.
- *
- * Perhaps we should just compute leading 28 bits of S once
- * and for all and pass them and a shift to quorem, so it
- * can do shifts and ors to compute the numerator for q.
- */
- #define iInc 28
- i = dshift(S, s2);
- b2 += i;
- m2 += i;
- s2 += i;
- if (b2 > 0) {
- b = lshift(b, b2);
- if (b == NULL)
- goto failed_malloc;
- }
- if (s2 > 0) {
- S = lshift(S, s2);
- if (S == NULL)
- goto failed_malloc;
- }
- if (k_check) {
- if (cmp(b,S) < 0) {
- k--;
- b = multadd(b, 10, 0); /* we botched the k estimate */
- if (b == NULL)
- goto failed_malloc;
- if (leftright) {
- mhi = multadd(mhi, 10, 0);
- if (mhi == NULL)
- goto failed_malloc;
- }
- ilim = ilim1;
- }
- }
- if (ilim <= 0 && (mode == 3 || mode == 5)) {
- if (ilim < 0) {
- /* no digits, fcvt style */
- no_digits:
- k = -1 - ndigits;
- goto ret;
- }
- else {
- S = multadd(S, 5, 0);
- if (S == NULL)
- goto failed_malloc;
- if (cmp(b, S) <= 0)
- goto no_digits;
- }
- one_digit:
- *s++ = '1';
- k++;
- goto ret;
- }
- if (leftright) {
- if (m2 > 0) {
- mhi = lshift(mhi, m2);
- if (mhi == NULL)
- goto failed_malloc;
- }
- /* Compute mlo -- check for special case
- * that d is a normalized power of 2.
- */
- mlo = mhi;
- if (spec_case) {
- mhi = Balloc(mhi->k);
- if (mhi == NULL)
- goto failed_malloc;
- Bcopy(mhi, mlo);
- mhi = lshift(mhi, Log2P);
- if (mhi == NULL)
- goto failed_malloc;
- }
- for(i = 1;;i++) {
- dig = quorem(b,S) + '0';
- /* Do we yet have the shortest decimal string
- * that will round to d?
- */
- j = cmp(b, mlo);
- delta = diff(S, mhi);
- if (delta == NULL)
- goto failed_malloc;
- j1 = delta->sign ? 1 : cmp(b, delta);
- Bfree(delta);
- if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
- ) {
- if (dig == '9')
- goto round_9_up;
- if (j > 0)
- dig++;
- *s++ = dig;
- goto ret;
- }
- if (j < 0 || (j == 0 && mode != 1
- && !(word1(&u) & 1)
- )) {
- if (!b->x[0] && b->wds <= 1) {
- goto accept_dig;
- }
- if (j1 > 0) {
- b = lshift(b, 1);
- if (b == NULL)
- goto failed_malloc;
- j1 = cmp(b, S);
- if ((j1 > 0 || (j1 == 0 && dig & 1))
- && dig++ == '9')
- goto round_9_up;
- }
- accept_dig:
- *s++ = dig;
- goto ret;
- }
- if (j1 > 0) {
- if (dig == '9') { /* possible if i == 1 */
- round_9_up:
- *s++ = '9';
- goto roundoff;
- }
- *s++ = dig + 1;
- goto ret;
- }
- *s++ = dig;
- if (i == ilim)
- break;
- b = multadd(b, 10, 0);
- if (b == NULL)
- goto failed_malloc;
- if (mlo == mhi) {
- mlo = mhi = multadd(mhi, 10, 0);
- if (mlo == NULL)
- goto failed_malloc;
- }
- else {
- mlo = multadd(mlo, 10, 0);
- if (mlo == NULL)
- goto failed_malloc;
- mhi = multadd(mhi, 10, 0);
- if (mhi == NULL)
- goto failed_malloc;
- }
- }
- }
- else
- for(i = 1;; i++) {
- *s++ = dig = quorem(b,S) + '0';
- if (!b->x[0] && b->wds <= 1) {
- goto ret;
- }
- if (i >= ilim)
- break;
- b = multadd(b, 10, 0);
- if (b == NULL)
- goto failed_malloc;
- }
- /* Round off last digit */
- b = lshift(b, 1);
- if (b == NULL)
- goto failed_malloc;
- j = cmp(b, S);
- if (j > 0 || (j == 0 && dig & 1)) {
- roundoff:
- while(*--s == '9')
- if (s == s0) {
- k++;
- *s++ = '1';
- goto ret;
- }
- ++*s++;
- }
- else {
- while(*--s == '0');
- s++;
- }
- ret:
- Bfree(S);
- if (mhi) {
- if (mlo && mlo != mhi)
- Bfree(mlo);
- Bfree(mhi);
- }
- ret1:
- Bfree(b);
- *s = 0;
- *decpt = k + 1;
- if (rve)
- *rve = s;
- return s0;
- failed_malloc:
- if (S)
- Bfree(S);
- if (mlo && mlo != mhi)
- Bfree(mlo);
- if (mhi)
- Bfree(mhi);
- if (b)
- Bfree(b);
- if (s0)
- _Py_dg_freedtoa(s0);
- return NULL;
- }
- #ifdef __cplusplus
- }
- #endif
- #endif // _PY_SHORT_FLOAT_REPR == 1
|