123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357 |
- ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CodeMetrics.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/LoopAnalysisManager.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/GenericDomTree.h"
- #include "llvm/Support/InstructionCost.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar/LoopPassManager.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- #include <numeric>
- #include <optional>
- #include <utility>
- #define DEBUG_TYPE "simple-loop-unswitch"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- STATISTIC(NumBranches, "Number of branches unswitched");
- STATISTIC(NumSwitches, "Number of switches unswitched");
- STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
- STATISTIC(NumTrivial, "Number of unswitches that are trivial");
- STATISTIC(
- NumCostMultiplierSkipped,
- "Number of unswitch candidates that had their cost multiplier skipped");
- static cl::opt<bool> EnableNonTrivialUnswitch(
- "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
- cl::desc("Forcibly enables non-trivial loop unswitching rather than "
- "following the configuration passed into the pass."));
- static cl::opt<int>
- UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
- cl::desc("The cost threshold for unswitching a loop."));
- static cl::opt<bool> EnableUnswitchCostMultiplier(
- "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
- cl::desc("Enable unswitch cost multiplier that prohibits exponential "
- "explosion in nontrivial unswitch."));
- static cl::opt<int> UnswitchSiblingsToplevelDiv(
- "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
- cl::desc("Toplevel siblings divisor for cost multiplier."));
- static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
- "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
- cl::desc("Number of unswitch candidates that are ignored when calculating "
- "cost multiplier."));
- static cl::opt<bool> UnswitchGuards(
- "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
- cl::desc("If enabled, simple loop unswitching will also consider "
- "llvm.experimental.guard intrinsics as unswitch candidates."));
- static cl::opt<bool> DropNonTrivialImplicitNullChecks(
- "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
- cl::init(false), cl::Hidden,
- cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
- "null checks to save time analyzing if we can keep it."));
- static cl::opt<unsigned>
- MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
- cl::desc("Max number of memory uses to explore during "
- "partial unswitching analysis"),
- cl::init(100), cl::Hidden);
- static cl::opt<bool> FreezeLoopUnswitchCond(
- "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
- cl::desc("If enabled, the freeze instruction will be added to condition "
- "of loop unswitch to prevent miscompilation."));
- namespace {
- struct NonTrivialUnswitchCandidate {
- Instruction *TI = nullptr;
- TinyPtrVector<Value *> Invariants;
- std::optional<InstructionCost> Cost;
- NonTrivialUnswitchCandidate(
- Instruction *TI, ArrayRef<Value *> Invariants,
- std::optional<InstructionCost> Cost = std::nullopt)
- : TI(TI), Invariants(Invariants), Cost(Cost){};
- };
- } // end anonymous namespace.
- // Helper to skip (select x, true, false), which matches both a logical AND and
- // OR and can confuse code that tries to determine if \p Cond is either a
- // logical AND or OR but not both.
- static Value *skipTrivialSelect(Value *Cond) {
- Value *CondNext;
- while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
- Cond = CondNext;
- return Cond;
- }
- /// Collect all of the loop invariant input values transitively used by the
- /// homogeneous instruction graph from a given root.
- ///
- /// This essentially walks from a root recursively through loop variant operands
- /// which have perform the same logical operation (AND or OR) and finds all
- /// inputs which are loop invariant. For some operations these can be
- /// re-associated and unswitched out of the loop entirely.
- static TinyPtrVector<Value *>
- collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
- const LoopInfo &LI) {
- assert(!L.isLoopInvariant(&Root) &&
- "Only need to walk the graph if root itself is not invariant.");
- TinyPtrVector<Value *> Invariants;
- bool IsRootAnd = match(&Root, m_LogicalAnd());
- bool IsRootOr = match(&Root, m_LogicalOr());
- // Build a worklist and recurse through operators collecting invariants.
- SmallVector<Instruction *, 4> Worklist;
- SmallPtrSet<Instruction *, 8> Visited;
- Worklist.push_back(&Root);
- Visited.insert(&Root);
- do {
- Instruction &I = *Worklist.pop_back_val();
- for (Value *OpV : I.operand_values()) {
- // Skip constants as unswitching isn't interesting for them.
- if (isa<Constant>(OpV))
- continue;
- // Add it to our result if loop invariant.
- if (L.isLoopInvariant(OpV)) {
- Invariants.push_back(OpV);
- continue;
- }
- // If not an instruction with the same opcode, nothing we can do.
- Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
- if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
- (IsRootOr && match(OpI, m_LogicalOr())))) {
- // Visit this operand.
- if (Visited.insert(OpI).second)
- Worklist.push_back(OpI);
- }
- }
- } while (!Worklist.empty());
- return Invariants;
- }
- static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
- Constant &Replacement) {
- assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
- // Replace uses of LIC in the loop with the given constant.
- // We use make_early_inc_range as set invalidates the iterator.
- for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
- Instruction *UserI = dyn_cast<Instruction>(U.getUser());
- // Replace this use within the loop body.
- if (UserI && L.contains(UserI))
- U.set(&Replacement);
- }
- }
- /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
- /// incoming values along this edge.
- static bool areLoopExitPHIsLoopInvariant(const Loop &L,
- const BasicBlock &ExitingBB,
- const BasicBlock &ExitBB) {
- for (const Instruction &I : ExitBB) {
- auto *PN = dyn_cast<PHINode>(&I);
- if (!PN)
- // No more PHIs to check.
- return true;
- // If the incoming value for this edge isn't loop invariant the unswitch
- // won't be trivial.
- if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
- return false;
- }
- llvm_unreachable("Basic blocks should never be empty!");
- }
- /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
- /// end of \p BB and conditionally branch on the copied condition. We only
- /// branch on a single value.
- static void buildPartialUnswitchConditionalBranch(
- BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
- BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
- const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
- IRBuilder<> IRB(&BB);
- SmallVector<Value *> FrozenInvariants;
- for (Value *Inv : Invariants) {
- if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
- Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
- FrozenInvariants.push_back(Inv);
- }
- Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
- : IRB.CreateAnd(FrozenInvariants);
- IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
- Direction ? &NormalSucc : &UnswitchedSucc);
- }
- /// Copy a set of loop invariant values, and conditionally branch on them.
- static void buildPartialInvariantUnswitchConditionalBranch(
- BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
- BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
- MemorySSAUpdater *MSSAU) {
- ValueToValueMapTy VMap;
- for (auto *Val : reverse(ToDuplicate)) {
- Instruction *Inst = cast<Instruction>(Val);
- Instruction *NewInst = Inst->clone();
- NewInst->insertInto(&BB, BB.end());
- RemapInstruction(NewInst, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- VMap[Val] = NewInst;
- if (!MSSAU)
- continue;
- MemorySSA *MSSA = MSSAU->getMemorySSA();
- if (auto *MemUse =
- dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
- auto *DefiningAccess = MemUse->getDefiningAccess();
- // Get the first defining access before the loop.
- while (L.contains(DefiningAccess->getBlock())) {
- // If the defining access is a MemoryPhi, get the incoming
- // value for the pre-header as defining access.
- if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
- DefiningAccess =
- MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
- else
- DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
- }
- MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
- NewInst->getParent(),
- MemorySSA::BeforeTerminator);
- }
- }
- IRBuilder<> IRB(&BB);
- Value *Cond = VMap[ToDuplicate[0]];
- IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
- Direction ? &NormalSucc : &UnswitchedSucc);
- }
- /// Rewrite the PHI nodes in an unswitched loop exit basic block.
- ///
- /// Requires that the loop exit and unswitched basic block are the same, and
- /// that the exiting block was a unique predecessor of that block. Rewrites the
- /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
- /// PHI nodes from the old preheader that now contains the unswitched
- /// terminator.
- static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
- BasicBlock &OldExitingBB,
- BasicBlock &OldPH) {
- for (PHINode &PN : UnswitchedBB.phis()) {
- // When the loop exit is directly unswitched we just need to update the
- // incoming basic block. We loop to handle weird cases with repeated
- // incoming blocks, but expect to typically only have one operand here.
- for (auto i : seq<int>(0, PN.getNumOperands())) {
- assert(PN.getIncomingBlock(i) == &OldExitingBB &&
- "Found incoming block different from unique predecessor!");
- PN.setIncomingBlock(i, &OldPH);
- }
- }
- }
- /// Rewrite the PHI nodes in the loop exit basic block and the split off
- /// unswitched block.
- ///
- /// Because the exit block remains an exit from the loop, this rewrites the
- /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
- /// nodes into the unswitched basic block to select between the value in the
- /// old preheader and the loop exit.
- static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
- BasicBlock &UnswitchedBB,
- BasicBlock &OldExitingBB,
- BasicBlock &OldPH,
- bool FullUnswitch) {
- assert(&ExitBB != &UnswitchedBB &&
- "Must have different loop exit and unswitched blocks!");
- Instruction *InsertPt = &*UnswitchedBB.begin();
- for (PHINode &PN : ExitBB.phis()) {
- auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
- PN.getName() + ".split", InsertPt);
- // Walk backwards over the old PHI node's inputs to minimize the cost of
- // removing each one. We have to do this weird loop manually so that we
- // create the same number of new incoming edges in the new PHI as we expect
- // each case-based edge to be included in the unswitched switch in some
- // cases.
- // FIXME: This is really, really gross. It would be much cleaner if LLVM
- // allowed us to create a single entry for a predecessor block without
- // having separate entries for each "edge" even though these edges are
- // required to produce identical results.
- for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
- if (PN.getIncomingBlock(i) != &OldExitingBB)
- continue;
- Value *Incoming = PN.getIncomingValue(i);
- if (FullUnswitch)
- // No more edge from the old exiting block to the exit block.
- PN.removeIncomingValue(i);
- NewPN->addIncoming(Incoming, &OldPH);
- }
- // Now replace the old PHI with the new one and wire the old one in as an
- // input to the new one.
- PN.replaceAllUsesWith(NewPN);
- NewPN->addIncoming(&PN, &ExitBB);
- }
- }
- /// Hoist the current loop up to the innermost loop containing a remaining exit.
- ///
- /// Because we've removed an exit from the loop, we may have changed the set of
- /// loops reachable and need to move the current loop up the loop nest or even
- /// to an entirely separate nest.
- static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
- DominatorTree &DT, LoopInfo &LI,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
- // If the loop is already at the top level, we can't hoist it anywhere.
- Loop *OldParentL = L.getParentLoop();
- if (!OldParentL)
- return;
- SmallVector<BasicBlock *, 4> Exits;
- L.getExitBlocks(Exits);
- Loop *NewParentL = nullptr;
- for (auto *ExitBB : Exits)
- if (Loop *ExitL = LI.getLoopFor(ExitBB))
- if (!NewParentL || NewParentL->contains(ExitL))
- NewParentL = ExitL;
- if (NewParentL == OldParentL)
- return;
- // The new parent loop (if different) should always contain the old one.
- if (NewParentL)
- assert(NewParentL->contains(OldParentL) &&
- "Can only hoist this loop up the nest!");
- // The preheader will need to move with the body of this loop. However,
- // because it isn't in this loop we also need to update the primary loop map.
- assert(OldParentL == LI.getLoopFor(&Preheader) &&
- "Parent loop of this loop should contain this loop's preheader!");
- LI.changeLoopFor(&Preheader, NewParentL);
- // Remove this loop from its old parent.
- OldParentL->removeChildLoop(&L);
- // Add the loop either to the new parent or as a top-level loop.
- if (NewParentL)
- NewParentL->addChildLoop(&L);
- else
- LI.addTopLevelLoop(&L);
- // Remove this loops blocks from the old parent and every other loop up the
- // nest until reaching the new parent. Also update all of these
- // no-longer-containing loops to reflect the nesting change.
- for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
- OldContainingL = OldContainingL->getParentLoop()) {
- llvm::erase_if(OldContainingL->getBlocksVector(),
- [&](const BasicBlock *BB) {
- return BB == &Preheader || L.contains(BB);
- });
- OldContainingL->getBlocksSet().erase(&Preheader);
- for (BasicBlock *BB : L.blocks())
- OldContainingL->getBlocksSet().erase(BB);
- // Because we just hoisted a loop out of this one, we have essentially
- // created new exit paths from it. That means we need to form LCSSA PHI
- // nodes for values used in the no-longer-nested loop.
- formLCSSA(*OldContainingL, DT, &LI, SE);
- // We shouldn't need to form dedicated exits because the exit introduced
- // here is the (just split by unswitching) preheader. However, after trivial
- // unswitching it is possible to get new non-dedicated exits out of parent
- // loop so let's conservatively form dedicated exit blocks and figure out
- // if we can optimize later.
- formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
- /*PreserveLCSSA*/ true);
- }
- }
- // Return the top-most loop containing ExitBB and having ExitBB as exiting block
- // or the loop containing ExitBB, if there is no parent loop containing ExitBB
- // as exiting block.
- static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
- const LoopInfo &LI) {
- const Loop *TopMost = LI.getLoopFor(ExitBB);
- const Loop *Current = TopMost;
- while (Current) {
- if (Current->isLoopExiting(ExitBB))
- TopMost = Current;
- Current = Current->getParentLoop();
- }
- return TopMost;
- }
- /// Unswitch a trivial branch if the condition is loop invariant.
- ///
- /// This routine should only be called when loop code leading to the branch has
- /// been validated as trivial (no side effects). This routine checks if the
- /// condition is invariant and one of the successors is a loop exit. This
- /// allows us to unswitch without duplicating the loop, making it trivial.
- ///
- /// If this routine fails to unswitch the branch it returns false.
- ///
- /// If the branch can be unswitched, this routine splits the preheader and
- /// hoists the branch above that split. Preserves loop simplified form
- /// (splitting the exit block as necessary). It simplifies the branch within
- /// the loop to an unconditional branch but doesn't remove it entirely. Further
- /// cleanup can be done with some simplifycfg like pass.
- ///
- /// If `SE` is not null, it will be updated based on the potential loop SCEVs
- /// invalidated by this.
- static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
- LoopInfo &LI, ScalarEvolution *SE,
- MemorySSAUpdater *MSSAU) {
- assert(BI.isConditional() && "Can only unswitch a conditional branch!");
- LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
- // The loop invariant values that we want to unswitch.
- TinyPtrVector<Value *> Invariants;
- // When true, we're fully unswitching the branch rather than just unswitching
- // some input conditions to the branch.
- bool FullUnswitch = false;
- Value *Cond = skipTrivialSelect(BI.getCondition());
- if (L.isLoopInvariant(Cond)) {
- Invariants.push_back(Cond);
- FullUnswitch = true;
- } else {
- if (auto *CondInst = dyn_cast<Instruction>(Cond))
- Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
- if (Invariants.empty()) {
- LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
- return false;
- }
- }
- // Check that one of the branch's successors exits, and which one.
- bool ExitDirection = true;
- int LoopExitSuccIdx = 0;
- auto *LoopExitBB = BI.getSuccessor(0);
- if (L.contains(LoopExitBB)) {
- ExitDirection = false;
- LoopExitSuccIdx = 1;
- LoopExitBB = BI.getSuccessor(1);
- if (L.contains(LoopExitBB)) {
- LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
- return false;
- }
- }
- auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
- auto *ParentBB = BI.getParent();
- if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
- LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
- return false;
- }
- // When unswitching only part of the branch's condition, we need the exit
- // block to be reached directly from the partially unswitched input. This can
- // be done when the exit block is along the true edge and the branch condition
- // is a graph of `or` operations, or the exit block is along the false edge
- // and the condition is a graph of `and` operations.
- if (!FullUnswitch) {
- if (ExitDirection ? !match(Cond, m_LogicalOr())
- : !match(Cond, m_LogicalAnd())) {
- LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
- "non-full unswitch!\n");
- return false;
- }
- }
- LLVM_DEBUG({
- dbgs() << " unswitching trivial invariant conditions for: " << BI
- << "\n";
- for (Value *Invariant : Invariants) {
- dbgs() << " " << *Invariant << " == true";
- if (Invariant != Invariants.back())
- dbgs() << " ||";
- dbgs() << "\n";
- }
- });
- // If we have scalar evolutions, we need to invalidate them including this
- // loop, the loop containing the exit block and the topmost parent loop
- // exiting via LoopExitBB.
- if (SE) {
- if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
- SE->forgetLoop(ExitL);
- else
- // Forget the entire nest as this exits the entire nest.
- SE->forgetTopmostLoop(&L);
- SE->forgetBlockAndLoopDispositions();
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Split the preheader, so that we know that there is a safe place to insert
- // the conditional branch. We will change the preheader to have a conditional
- // branch on LoopCond.
- BasicBlock *OldPH = L.getLoopPreheader();
- BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
- // Now that we have a place to insert the conditional branch, create a place
- // to branch to: this is the exit block out of the loop that we are
- // unswitching. We need to split this if there are other loop predecessors.
- // Because the loop is in simplified form, *any* other predecessor is enough.
- BasicBlock *UnswitchedBB;
- if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
- assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
- "A branch's parent isn't a predecessor!");
- UnswitchedBB = LoopExitBB;
- } else {
- UnswitchedBB =
- SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Actually move the invariant uses into the unswitched position. If possible,
- // we do this by moving the instructions, but when doing partial unswitching
- // we do it by building a new merge of the values in the unswitched position.
- OldPH->getTerminator()->eraseFromParent();
- if (FullUnswitch) {
- // If fully unswitching, we can use the existing branch instruction.
- // Splice it into the old PH to gate reaching the new preheader and re-point
- // its successors.
- OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator());
- BI.setCondition(Cond);
- if (MSSAU) {
- // Temporarily clone the terminator, to make MSSA update cheaper by
- // separating "insert edge" updates from "remove edge" ones.
- BI.clone()->insertInto(ParentBB, ParentBB->end());
- } else {
- // Create a new unconditional branch that will continue the loop as a new
- // terminator.
- BranchInst::Create(ContinueBB, ParentBB);
- }
- BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
- BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
- } else {
- // Only unswitching a subset of inputs to the condition, so we will need to
- // build a new branch that merges the invariant inputs.
- if (ExitDirection)
- assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
- "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
- "condition!");
- else
- assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
- "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
- " condition!");
- buildPartialUnswitchConditionalBranch(
- *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
- FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
- }
- // Update the dominator tree with the added edge.
- DT.insertEdge(OldPH, UnswitchedBB);
- // After the dominator tree was updated with the added edge, update MemorySSA
- // if available.
- if (MSSAU) {
- SmallVector<CFGUpdate, 1> Updates;
- Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
- MSSAU->applyInsertUpdates(Updates, DT);
- }
- // Finish updating dominator tree and memory ssa for full unswitch.
- if (FullUnswitch) {
- if (MSSAU) {
- // Remove the cloned branch instruction.
- ParentBB->getTerminator()->eraseFromParent();
- // Create unconditional branch now.
- BranchInst::Create(ContinueBB, ParentBB);
- MSSAU->removeEdge(ParentBB, LoopExitBB);
- }
- DT.deleteEdge(ParentBB, LoopExitBB);
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Rewrite the relevant PHI nodes.
- if (UnswitchedBB == LoopExitBB)
- rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
- else
- rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
- *ParentBB, *OldPH, FullUnswitch);
- // The constant we can replace all of our invariants with inside the loop
- // body. If any of the invariants have a value other than this the loop won't
- // be entered.
- ConstantInt *Replacement = ExitDirection
- ? ConstantInt::getFalse(BI.getContext())
- : ConstantInt::getTrue(BI.getContext());
- // Since this is an i1 condition we can also trivially replace uses of it
- // within the loop with a constant.
- for (Value *Invariant : Invariants)
- replaceLoopInvariantUses(L, Invariant, *Replacement);
- // If this was full unswitching, we may have changed the nesting relationship
- // for this loop so hoist it to its correct parent if needed.
- if (FullUnswitch)
- hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
- ++NumTrivial;
- ++NumBranches;
- return true;
- }
- /// Unswitch a trivial switch if the condition is loop invariant.
- ///
- /// This routine should only be called when loop code leading to the switch has
- /// been validated as trivial (no side effects). This routine checks if the
- /// condition is invariant and that at least one of the successors is a loop
- /// exit. This allows us to unswitch without duplicating the loop, making it
- /// trivial.
- ///
- /// If this routine fails to unswitch the switch it returns false.
- ///
- /// If the switch can be unswitched, this routine splits the preheader and
- /// copies the switch above that split. If the default case is one of the
- /// exiting cases, it copies the non-exiting cases and points them at the new
- /// preheader. If the default case is not exiting, it copies the exiting cases
- /// and points the default at the preheader. It preserves loop simplified form
- /// (splitting the exit blocks as necessary). It simplifies the switch within
- /// the loop by removing now-dead cases. If the default case is one of those
- /// unswitched, it replaces its destination with a new basic block containing
- /// only unreachable. Such basic blocks, while technically loop exits, are not
- /// considered for unswitching so this is a stable transform and the same
- /// switch will not be revisited. If after unswitching there is only a single
- /// in-loop successor, the switch is further simplified to an unconditional
- /// branch. Still more cleanup can be done with some simplifycfg like pass.
- ///
- /// If `SE` is not null, it will be updated based on the potential loop SCEVs
- /// invalidated by this.
- static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
- LoopInfo &LI, ScalarEvolution *SE,
- MemorySSAUpdater *MSSAU) {
- LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
- Value *LoopCond = SI.getCondition();
- // If this isn't switching on an invariant condition, we can't unswitch it.
- if (!L.isLoopInvariant(LoopCond))
- return false;
- auto *ParentBB = SI.getParent();
- // The same check must be used both for the default and the exit cases. We
- // should never leave edges from the switch instruction to a basic block that
- // we are unswitching, hence the condition used to determine the default case
- // needs to also be used to populate ExitCaseIndices, which is then used to
- // remove cases from the switch.
- auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
- // BBToCheck is not an exit block if it is inside loop L.
- if (L.contains(&BBToCheck))
- return false;
- // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
- if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
- return false;
- // We do not unswitch a block that only has an unreachable statement, as
- // it's possible this is a previously unswitched block. Only unswitch if
- // either the terminator is not unreachable, or, if it is, it's not the only
- // instruction in the block.
- auto *TI = BBToCheck.getTerminator();
- bool isUnreachable = isa<UnreachableInst>(TI);
- return !isUnreachable ||
- (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
- };
- SmallVector<int, 4> ExitCaseIndices;
- for (auto Case : SI.cases())
- if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
- ExitCaseIndices.push_back(Case.getCaseIndex());
- BasicBlock *DefaultExitBB = nullptr;
- SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
- SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
- if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
- DefaultExitBB = SI.getDefaultDest();
- } else if (ExitCaseIndices.empty())
- return false;
- LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // We may need to invalidate SCEVs for the outermost loop reached by any of
- // the exits.
- Loop *OuterL = &L;
- if (DefaultExitBB) {
- // Clear out the default destination temporarily to allow accurate
- // predecessor lists to be examined below.
- SI.setDefaultDest(nullptr);
- // Check the loop containing this exit.
- Loop *ExitL = LI.getLoopFor(DefaultExitBB);
- if (!ExitL || ExitL->contains(OuterL))
- OuterL = ExitL;
- }
- // Store the exit cases into a separate data structure and remove them from
- // the switch.
- SmallVector<std::tuple<ConstantInt *, BasicBlock *,
- SwitchInstProfUpdateWrapper::CaseWeightOpt>,
- 4> ExitCases;
- ExitCases.reserve(ExitCaseIndices.size());
- SwitchInstProfUpdateWrapper SIW(SI);
- // We walk the case indices backwards so that we remove the last case first
- // and don't disrupt the earlier indices.
- for (unsigned Index : reverse(ExitCaseIndices)) {
- auto CaseI = SI.case_begin() + Index;
- // Compute the outer loop from this exit.
- Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
- if (!ExitL || ExitL->contains(OuterL))
- OuterL = ExitL;
- // Save the value of this case.
- auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
- ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
- // Delete the unswitched cases.
- SIW.removeCase(CaseI);
- }
- if (SE) {
- if (OuterL)
- SE->forgetLoop(OuterL);
- else
- SE->forgetTopmostLoop(&L);
- }
- // Check if after this all of the remaining cases point at the same
- // successor.
- BasicBlock *CommonSuccBB = nullptr;
- if (SI.getNumCases() > 0 &&
- all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
- return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
- }))
- CommonSuccBB = SI.case_begin()->getCaseSuccessor();
- if (!DefaultExitBB) {
- // If we're not unswitching the default, we need it to match any cases to
- // have a common successor or if we have no cases it is the common
- // successor.
- if (SI.getNumCases() == 0)
- CommonSuccBB = SI.getDefaultDest();
- else if (SI.getDefaultDest() != CommonSuccBB)
- CommonSuccBB = nullptr;
- }
- // Split the preheader, so that we know that there is a safe place to insert
- // the switch.
- BasicBlock *OldPH = L.getLoopPreheader();
- BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
- OldPH->getTerminator()->eraseFromParent();
- // Now add the unswitched switch.
- auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
- SwitchInstProfUpdateWrapper NewSIW(*NewSI);
- // Rewrite the IR for the unswitched basic blocks. This requires two steps.
- // First, we split any exit blocks with remaining in-loop predecessors. Then
- // we update the PHIs in one of two ways depending on if there was a split.
- // We walk in reverse so that we split in the same order as the cases
- // appeared. This is purely for convenience of reading the resulting IR, but
- // it doesn't cost anything really.
- SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
- SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
- // Handle the default exit if necessary.
- // FIXME: It'd be great if we could merge this with the loop below but LLVM's
- // ranges aren't quite powerful enough yet.
- if (DefaultExitBB) {
- if (pred_empty(DefaultExitBB)) {
- UnswitchedExitBBs.insert(DefaultExitBB);
- rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
- } else {
- auto *SplitBB =
- SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
- rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
- *ParentBB, *OldPH,
- /*FullUnswitch*/ true);
- DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
- }
- }
- // Note that we must use a reference in the for loop so that we update the
- // container.
- for (auto &ExitCase : reverse(ExitCases)) {
- // Grab a reference to the exit block in the pair so that we can update it.
- BasicBlock *ExitBB = std::get<1>(ExitCase);
- // If this case is the last edge into the exit block, we can simply reuse it
- // as it will no longer be a loop exit. No mapping necessary.
- if (pred_empty(ExitBB)) {
- // Only rewrite once.
- if (UnswitchedExitBBs.insert(ExitBB).second)
- rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
- continue;
- }
- // Otherwise we need to split the exit block so that we retain an exit
- // block from the loop and a target for the unswitched condition.
- BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
- if (!SplitExitBB) {
- // If this is the first time we see this, do the split and remember it.
- SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
- rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
- *ParentBB, *OldPH,
- /*FullUnswitch*/ true);
- }
- // Update the case pair to point to the split block.
- std::get<1>(ExitCase) = SplitExitBB;
- }
- // Now add the unswitched cases. We do this in reverse order as we built them
- // in reverse order.
- for (auto &ExitCase : reverse(ExitCases)) {
- ConstantInt *CaseVal = std::get<0>(ExitCase);
- BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
- NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
- }
- // If the default was unswitched, re-point it and add explicit cases for
- // entering the loop.
- if (DefaultExitBB) {
- NewSIW->setDefaultDest(DefaultExitBB);
- NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
- // We removed all the exit cases, so we just copy the cases to the
- // unswitched switch.
- for (const auto &Case : SI.cases())
- NewSIW.addCase(Case.getCaseValue(), NewPH,
- SIW.getSuccessorWeight(Case.getSuccessorIndex()));
- } else if (DefaultCaseWeight) {
- // We have to set branch weight of the default case.
- uint64_t SW = *DefaultCaseWeight;
- for (const auto &Case : SI.cases()) {
- auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
- assert(W &&
- "case weight must be defined as default case weight is defined");
- SW += *W;
- }
- NewSIW.setSuccessorWeight(0, SW);
- }
- // If we ended up with a common successor for every path through the switch
- // after unswitching, rewrite it to an unconditional branch to make it easy
- // to recognize. Otherwise we potentially have to recognize the default case
- // pointing at unreachable and other complexity.
- if (CommonSuccBB) {
- BasicBlock *BB = SI.getParent();
- // We may have had multiple edges to this common successor block, so remove
- // them as predecessors. We skip the first one, either the default or the
- // actual first case.
- bool SkippedFirst = DefaultExitBB == nullptr;
- for (auto Case : SI.cases()) {
- assert(Case.getCaseSuccessor() == CommonSuccBB &&
- "Non-common successor!");
- (void)Case;
- if (!SkippedFirst) {
- SkippedFirst = true;
- continue;
- }
- CommonSuccBB->removePredecessor(BB,
- /*KeepOneInputPHIs*/ true);
- }
- // Now nuke the switch and replace it with a direct branch.
- SIW.eraseFromParent();
- BranchInst::Create(CommonSuccBB, BB);
- } else if (DefaultExitBB) {
- assert(SI.getNumCases() > 0 &&
- "If we had no cases we'd have a common successor!");
- // Move the last case to the default successor. This is valid as if the
- // default got unswitched it cannot be reached. This has the advantage of
- // being simple and keeping the number of edges from this switch to
- // successors the same, and avoiding any PHI update complexity.
- auto LastCaseI = std::prev(SI.case_end());
- SI.setDefaultDest(LastCaseI->getCaseSuccessor());
- SIW.setSuccessorWeight(
- 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
- SIW.removeCase(LastCaseI);
- }
- // Walk the unswitched exit blocks and the unswitched split blocks and update
- // the dominator tree based on the CFG edits. While we are walking unordered
- // containers here, the API for applyUpdates takes an unordered list of
- // updates and requires them to not contain duplicates.
- SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
- for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
- DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
- DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
- }
- for (auto SplitUnswitchedPair : SplitExitBBMap) {
- DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
- DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
- }
- if (MSSAU) {
- MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- } else {
- DT.applyUpdates(DTUpdates);
- }
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- // We may have changed the nesting relationship for this loop so hoist it to
- // its correct parent if needed.
- hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- ++NumTrivial;
- ++NumSwitches;
- LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
- return true;
- }
- /// This routine scans the loop to find a branch or switch which occurs before
- /// any side effects occur. These can potentially be unswitched without
- /// duplicating the loop. If a branch or switch is successfully unswitched the
- /// scanning continues to see if subsequent branches or switches have become
- /// trivial. Once all trivial candidates have been unswitched, this routine
- /// returns.
- ///
- /// The return value indicates whether anything was unswitched (and therefore
- /// changed).
- ///
- /// If `SE` is not null, it will be updated based on the potential loop SCEVs
- /// invalidated by this.
- static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
- LoopInfo &LI, ScalarEvolution *SE,
- MemorySSAUpdater *MSSAU) {
- bool Changed = false;
- // If loop header has only one reachable successor we should keep looking for
- // trivial condition candidates in the successor as well. An alternative is
- // to constant fold conditions and merge successors into loop header (then we
- // only need to check header's terminator). The reason for not doing this in
- // LoopUnswitch pass is that it could potentially break LoopPassManager's
- // invariants. Folding dead branches could either eliminate the current loop
- // or make other loops unreachable. LCSSA form might also not be preserved
- // after deleting branches. The following code keeps traversing loop header's
- // successors until it finds the trivial condition candidate (condition that
- // is not a constant). Since unswitching generates branches with constant
- // conditions, this scenario could be very common in practice.
- BasicBlock *CurrentBB = L.getHeader();
- SmallPtrSet<BasicBlock *, 8> Visited;
- Visited.insert(CurrentBB);
- do {
- // Check if there are any side-effecting instructions (e.g. stores, calls,
- // volatile loads) in the part of the loop that the code *would* execute
- // without unswitching.
- if (MSSAU) // Possible early exit with MSSA
- if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
- if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
- return Changed;
- if (llvm::any_of(*CurrentBB,
- [](Instruction &I) { return I.mayHaveSideEffects(); }))
- return Changed;
- Instruction *CurrentTerm = CurrentBB->getTerminator();
- if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
- // Don't bother trying to unswitch past a switch with a constant
- // condition. This should be removed prior to running this pass by
- // simplifycfg.
- if (isa<Constant>(SI->getCondition()))
- return Changed;
- if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
- // Couldn't unswitch this one so we're done.
- return Changed;
- // Mark that we managed to unswitch something.
- Changed = true;
- // If unswitching turned the terminator into an unconditional branch then
- // we can continue. The unswitching logic specifically works to fold any
- // cases it can into an unconditional branch to make it easier to
- // recognize here.
- auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
- if (!BI || BI->isConditional())
- return Changed;
- CurrentBB = BI->getSuccessor(0);
- continue;
- }
- auto *BI = dyn_cast<BranchInst>(CurrentTerm);
- if (!BI)
- // We do not understand other terminator instructions.
- return Changed;
- // Don't bother trying to unswitch past an unconditional branch or a branch
- // with a constant value. These should be removed by simplifycfg prior to
- // running this pass.
- if (!BI->isConditional() ||
- isa<Constant>(skipTrivialSelect(BI->getCondition())))
- return Changed;
- // Found a trivial condition candidate: non-foldable conditional branch. If
- // we fail to unswitch this, we can't do anything else that is trivial.
- if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
- return Changed;
- // Mark that we managed to unswitch something.
- Changed = true;
- // If we only unswitched some of the conditions feeding the branch, we won't
- // have collapsed it to a single successor.
- BI = cast<BranchInst>(CurrentBB->getTerminator());
- if (BI->isConditional())
- return Changed;
- // Follow the newly unconditional branch into its successor.
- CurrentBB = BI->getSuccessor(0);
- // When continuing, if we exit the loop or reach a previous visited block,
- // then we can not reach any trivial condition candidates (unfoldable
- // branch instructions or switch instructions) and no unswitch can happen.
- } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
- return Changed;
- }
- /// Build the cloned blocks for an unswitched copy of the given loop.
- ///
- /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
- /// after the split block (`SplitBB`) that will be used to select between the
- /// cloned and original loop.
- ///
- /// This routine handles cloning all of the necessary loop blocks and exit
- /// blocks including rewriting their instructions and the relevant PHI nodes.
- /// Any loop blocks or exit blocks which are dominated by a different successor
- /// than the one for this clone of the loop blocks can be trivially skipped. We
- /// use the `DominatingSucc` map to determine whether a block satisfies that
- /// property with a simple map lookup.
- ///
- /// It also correctly creates the unconditional branch in the cloned
- /// unswitched parent block to only point at the unswitched successor.
- ///
- /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
- /// block splitting is correctly reflected in `LoopInfo`, essentially all of
- /// the cloned blocks (and their loops) are left without full `LoopInfo`
- /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
- /// blocks to them but doesn't create the cloned `DominatorTree` structure and
- /// instead the caller must recompute an accurate DT. It *does* correctly
- /// update the `AssumptionCache` provided in `AC`.
- static BasicBlock *buildClonedLoopBlocks(
- Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
- ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
- BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
- const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
- ValueToValueMapTy &VMap,
- SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
- DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
- ScalarEvolution *SE) {
- SmallVector<BasicBlock *, 4> NewBlocks;
- NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
- // We will need to clone a bunch of blocks, wrap up the clone operation in
- // a helper.
- auto CloneBlock = [&](BasicBlock *OldBB) {
- // Clone the basic block and insert it before the new preheader.
- BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
- NewBB->moveBefore(LoopPH);
- // Record this block and the mapping.
- NewBlocks.push_back(NewBB);
- VMap[OldBB] = NewBB;
- return NewBB;
- };
- // We skip cloning blocks when they have a dominating succ that is not the
- // succ we are cloning for.
- auto SkipBlock = [&](BasicBlock *BB) {
- auto It = DominatingSucc.find(BB);
- return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
- };
- // First, clone the preheader.
- auto *ClonedPH = CloneBlock(LoopPH);
- // Then clone all the loop blocks, skipping the ones that aren't necessary.
- for (auto *LoopBB : L.blocks())
- if (!SkipBlock(LoopBB))
- CloneBlock(LoopBB);
- // Split all the loop exit edges so that when we clone the exit blocks, if
- // any of the exit blocks are *also* a preheader for some other loop, we
- // don't create multiple predecessors entering the loop header.
- for (auto *ExitBB : ExitBlocks) {
- if (SkipBlock(ExitBB))
- continue;
- // When we are going to clone an exit, we don't need to clone all the
- // instructions in the exit block and we want to ensure we have an easy
- // place to merge the CFG, so split the exit first. This is always safe to
- // do because there cannot be any non-loop predecessors of a loop exit in
- // loop simplified form.
- auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
- // Rearrange the names to make it easier to write test cases by having the
- // exit block carry the suffix rather than the merge block carrying the
- // suffix.
- MergeBB->takeName(ExitBB);
- ExitBB->setName(Twine(MergeBB->getName()) + ".split");
- // Now clone the original exit block.
- auto *ClonedExitBB = CloneBlock(ExitBB);
- assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
- "Exit block should have been split to have one successor!");
- assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
- "Cloned exit block has the wrong successor!");
- // Remap any cloned instructions and create a merge phi node for them.
- for (auto ZippedInsts : llvm::zip_first(
- llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
- llvm::make_range(ClonedExitBB->begin(),
- std::prev(ClonedExitBB->end())))) {
- Instruction &I = std::get<0>(ZippedInsts);
- Instruction &ClonedI = std::get<1>(ZippedInsts);
- // The only instructions in the exit block should be PHI nodes and
- // potentially a landing pad.
- assert(
- (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
- "Bad instruction in exit block!");
- // We should have a value map between the instruction and its clone.
- assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
- // Forget SCEVs based on exit phis in case SCEV looked through the phi.
- if (SE && isa<PHINode>(I))
- SE->forgetValue(&I);
- auto *MergePN =
- PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
- &*MergeBB->getFirstInsertionPt());
- I.replaceAllUsesWith(MergePN);
- MergePN->addIncoming(&I, ExitBB);
- MergePN->addIncoming(&ClonedI, ClonedExitBB);
- }
- }
- // Rewrite the instructions in the cloned blocks to refer to the instructions
- // in the cloned blocks. We have to do this as a second pass so that we have
- // everything available. Also, we have inserted new instructions which may
- // include assume intrinsics, so we update the assumption cache while
- // processing this.
- for (auto *ClonedBB : NewBlocks)
- for (Instruction &I : *ClonedBB) {
- RemapInstruction(&I, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- if (auto *II = dyn_cast<AssumeInst>(&I))
- AC.registerAssumption(II);
- }
- // Update any PHI nodes in the cloned successors of the skipped blocks to not
- // have spurious incoming values.
- for (auto *LoopBB : L.blocks())
- if (SkipBlock(LoopBB))
- for (auto *SuccBB : successors(LoopBB))
- if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
- for (PHINode &PN : ClonedSuccBB->phis())
- PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
- // Remove the cloned parent as a predecessor of any successor we ended up
- // cloning other than the unswitched one.
- auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
- for (auto *SuccBB : successors(ParentBB)) {
- if (SuccBB == UnswitchedSuccBB)
- continue;
- auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
- if (!ClonedSuccBB)
- continue;
- ClonedSuccBB->removePredecessor(ClonedParentBB,
- /*KeepOneInputPHIs*/ true);
- }
- // Replace the cloned branch with an unconditional branch to the cloned
- // unswitched successor.
- auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
- Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
- // Trivial Simplification. If Terminator is a conditional branch and
- // condition becomes dead - erase it.
- Value *ClonedConditionToErase = nullptr;
- if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
- ClonedConditionToErase = BI->getCondition();
- else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
- ClonedConditionToErase = SI->getCondition();
- ClonedTerminator->eraseFromParent();
- BranchInst::Create(ClonedSuccBB, ClonedParentBB);
- if (ClonedConditionToErase)
- RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
- MSSAU);
- // If there are duplicate entries in the PHI nodes because of multiple edges
- // to the unswitched successor, we need to nuke all but one as we replaced it
- // with a direct branch.
- for (PHINode &PN : ClonedSuccBB->phis()) {
- bool Found = false;
- // Loop over the incoming operands backwards so we can easily delete as we
- // go without invalidating the index.
- for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
- if (PN.getIncomingBlock(i) != ClonedParentBB)
- continue;
- if (!Found) {
- Found = true;
- continue;
- }
- PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
- }
- }
- // Record the domtree updates for the new blocks.
- SmallPtrSet<BasicBlock *, 4> SuccSet;
- for (auto *ClonedBB : NewBlocks) {
- for (auto *SuccBB : successors(ClonedBB))
- if (SuccSet.insert(SuccBB).second)
- DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
- SuccSet.clear();
- }
- return ClonedPH;
- }
- /// Recursively clone the specified loop and all of its children.
- ///
- /// The target parent loop for the clone should be provided, or can be null if
- /// the clone is a top-level loop. While cloning, all the blocks are mapped
- /// with the provided value map. The entire original loop must be present in
- /// the value map. The cloned loop is returned.
- static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
- const ValueToValueMapTy &VMap, LoopInfo &LI) {
- auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
- assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
- ClonedL.reserveBlocks(OrigL.getNumBlocks());
- for (auto *BB : OrigL.blocks()) {
- auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
- ClonedL.addBlockEntry(ClonedBB);
- if (LI.getLoopFor(BB) == &OrigL)
- LI.changeLoopFor(ClonedBB, &ClonedL);
- }
- };
- // We specially handle the first loop because it may get cloned into
- // a different parent and because we most commonly are cloning leaf loops.
- Loop *ClonedRootL = LI.AllocateLoop();
- if (RootParentL)
- RootParentL->addChildLoop(ClonedRootL);
- else
- LI.addTopLevelLoop(ClonedRootL);
- AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
- if (OrigRootL.isInnermost())
- return ClonedRootL;
- // If we have a nest, we can quickly clone the entire loop nest using an
- // iterative approach because it is a tree. We keep the cloned parent in the
- // data structure to avoid repeatedly querying through a map to find it.
- SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
- // Build up the loops to clone in reverse order as we'll clone them from the
- // back.
- for (Loop *ChildL : llvm::reverse(OrigRootL))
- LoopsToClone.push_back({ClonedRootL, ChildL});
- do {
- Loop *ClonedParentL, *L;
- std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
- Loop *ClonedL = LI.AllocateLoop();
- ClonedParentL->addChildLoop(ClonedL);
- AddClonedBlocksToLoop(*L, *ClonedL);
- for (Loop *ChildL : llvm::reverse(*L))
- LoopsToClone.push_back({ClonedL, ChildL});
- } while (!LoopsToClone.empty());
- return ClonedRootL;
- }
- /// Build the cloned loops of an original loop from unswitching.
- ///
- /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
- /// operation. We need to re-verify that there even is a loop (as the backedge
- /// may not have been cloned), and even if there are remaining backedges the
- /// backedge set may be different. However, we know that each child loop is
- /// undisturbed, we only need to find where to place each child loop within
- /// either any parent loop or within a cloned version of the original loop.
- ///
- /// Because child loops may end up cloned outside of any cloned version of the
- /// original loop, multiple cloned sibling loops may be created. All of them
- /// are returned so that the newly introduced loop nest roots can be
- /// identified.
- static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
- const ValueToValueMapTy &VMap, LoopInfo &LI,
- SmallVectorImpl<Loop *> &NonChildClonedLoops) {
- Loop *ClonedL = nullptr;
- auto *OrigPH = OrigL.getLoopPreheader();
- auto *OrigHeader = OrigL.getHeader();
- auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
- auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
- // We need to know the loops of the cloned exit blocks to even compute the
- // accurate parent loop. If we only clone exits to some parent of the
- // original parent, we want to clone into that outer loop. We also keep track
- // of the loops that our cloned exit blocks participate in.
- Loop *ParentL = nullptr;
- SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
- SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
- ClonedExitsInLoops.reserve(ExitBlocks.size());
- for (auto *ExitBB : ExitBlocks)
- if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
- if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
- ExitLoopMap[ClonedExitBB] = ExitL;
- ClonedExitsInLoops.push_back(ClonedExitBB);
- if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
- ParentL = ExitL;
- }
- assert((!ParentL || ParentL == OrigL.getParentLoop() ||
- ParentL->contains(OrigL.getParentLoop())) &&
- "The computed parent loop should always contain (or be) the parent of "
- "the original loop.");
- // We build the set of blocks dominated by the cloned header from the set of
- // cloned blocks out of the original loop. While not all of these will
- // necessarily be in the cloned loop, it is enough to establish that they
- // aren't in unreachable cycles, etc.
- SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
- for (auto *BB : OrigL.blocks())
- if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
- ClonedLoopBlocks.insert(ClonedBB);
- // Rebuild the set of blocks that will end up in the cloned loop. We may have
- // skipped cloning some region of this loop which can in turn skip some of
- // the backedges so we have to rebuild the blocks in the loop based on the
- // backedges that remain after cloning.
- SmallVector<BasicBlock *, 16> Worklist;
- SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
- for (auto *Pred : predecessors(ClonedHeader)) {
- // The only possible non-loop header predecessor is the preheader because
- // we know we cloned the loop in simplified form.
- if (Pred == ClonedPH)
- continue;
- // Because the loop was in simplified form, the only non-loop predecessor
- // should be the preheader.
- assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
- "header other than the preheader "
- "that is not part of the loop!");
- // Insert this block into the loop set and on the first visit (and if it
- // isn't the header we're currently walking) put it into the worklist to
- // recurse through.
- if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
- Worklist.push_back(Pred);
- }
- // If we had any backedges then there *is* a cloned loop. Put the header into
- // the loop set and then walk the worklist backwards to find all the blocks
- // that remain within the loop after cloning.
- if (!BlocksInClonedLoop.empty()) {
- BlocksInClonedLoop.insert(ClonedHeader);
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- assert(BlocksInClonedLoop.count(BB) &&
- "Didn't put block into the loop set!");
- // Insert any predecessors that are in the possible set into the cloned
- // set, and if the insert is successful, add them to the worklist. Note
- // that we filter on the blocks that are definitely reachable via the
- // backedge to the loop header so we may prune out dead code within the
- // cloned loop.
- for (auto *Pred : predecessors(BB))
- if (ClonedLoopBlocks.count(Pred) &&
- BlocksInClonedLoop.insert(Pred).second)
- Worklist.push_back(Pred);
- }
- ClonedL = LI.AllocateLoop();
- if (ParentL) {
- ParentL->addBasicBlockToLoop(ClonedPH, LI);
- ParentL->addChildLoop(ClonedL);
- } else {
- LI.addTopLevelLoop(ClonedL);
- }
- NonChildClonedLoops.push_back(ClonedL);
- ClonedL->reserveBlocks(BlocksInClonedLoop.size());
- // We don't want to just add the cloned loop blocks based on how we
- // discovered them. The original order of blocks was carefully built in
- // a way that doesn't rely on predecessor ordering. Rather than re-invent
- // that logic, we just re-walk the original blocks (and those of the child
- // loops) and filter them as we add them into the cloned loop.
- for (auto *BB : OrigL.blocks()) {
- auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
- if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
- continue;
- // Directly add the blocks that are only in this loop.
- if (LI.getLoopFor(BB) == &OrigL) {
- ClonedL->addBasicBlockToLoop(ClonedBB, LI);
- continue;
- }
- // We want to manually add it to this loop and parents.
- // Registering it with LoopInfo will happen when we clone the top
- // loop for this block.
- for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
- PL->addBlockEntry(ClonedBB);
- }
- // Now add each child loop whose header remains within the cloned loop. All
- // of the blocks within the loop must satisfy the same constraints as the
- // header so once we pass the header checks we can just clone the entire
- // child loop nest.
- for (Loop *ChildL : OrigL) {
- auto *ClonedChildHeader =
- cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
- if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
- continue;
- #ifndef NDEBUG
- // We should never have a cloned child loop header but fail to have
- // all of the blocks for that child loop.
- for (auto *ChildLoopBB : ChildL->blocks())
- assert(BlocksInClonedLoop.count(
- cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
- "Child cloned loop has a header within the cloned outer "
- "loop but not all of its blocks!");
- #endif
- cloneLoopNest(*ChildL, ClonedL, VMap, LI);
- }
- }
- // Now that we've handled all the components of the original loop that were
- // cloned into a new loop, we still need to handle anything from the original
- // loop that wasn't in a cloned loop.
- // Figure out what blocks are left to place within any loop nest containing
- // the unswitched loop. If we never formed a loop, the cloned PH is one of
- // them.
- SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
- if (BlocksInClonedLoop.empty())
- UnloopedBlockSet.insert(ClonedPH);
- for (auto *ClonedBB : ClonedLoopBlocks)
- if (!BlocksInClonedLoop.count(ClonedBB))
- UnloopedBlockSet.insert(ClonedBB);
- // Copy the cloned exits and sort them in ascending loop depth, we'll work
- // backwards across these to process them inside out. The order shouldn't
- // matter as we're just trying to build up the map from inside-out; we use
- // the map in a more stably ordered way below.
- auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
- llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
- return ExitLoopMap.lookup(LHS)->getLoopDepth() <
- ExitLoopMap.lookup(RHS)->getLoopDepth();
- });
- // Populate the existing ExitLoopMap with everything reachable from each
- // exit, starting from the inner most exit.
- while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
- assert(Worklist.empty() && "Didn't clear worklist!");
- BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
- Loop *ExitL = ExitLoopMap.lookup(ExitBB);
- // Walk the CFG back until we hit the cloned PH adding everything reachable
- // and in the unlooped set to this exit block's loop.
- Worklist.push_back(ExitBB);
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- // We can stop recursing at the cloned preheader (if we get there).
- if (BB == ClonedPH)
- continue;
- for (BasicBlock *PredBB : predecessors(BB)) {
- // If this pred has already been moved to our set or is part of some
- // (inner) loop, no update needed.
- if (!UnloopedBlockSet.erase(PredBB)) {
- assert(
- (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
- "Predecessor not mapped to a loop!");
- continue;
- }
- // We just insert into the loop set here. We'll add these blocks to the
- // exit loop after we build up the set in an order that doesn't rely on
- // predecessor order (which in turn relies on use list order).
- bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
- (void)Inserted;
- assert(Inserted && "Should only visit an unlooped block once!");
- // And recurse through to its predecessors.
- Worklist.push_back(PredBB);
- }
- } while (!Worklist.empty());
- }
- // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
- // blocks to their outer loops, walk the cloned blocks and the cloned exits
- // in their original order adding them to the correct loop.
- // We need a stable insertion order. We use the order of the original loop
- // order and map into the correct parent loop.
- for (auto *BB : llvm::concat<BasicBlock *const>(
- ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
- if (Loop *OuterL = ExitLoopMap.lookup(BB))
- OuterL->addBasicBlockToLoop(BB, LI);
- #ifndef NDEBUG
- for (auto &BBAndL : ExitLoopMap) {
- auto *BB = BBAndL.first;
- auto *OuterL = BBAndL.second;
- assert(LI.getLoopFor(BB) == OuterL &&
- "Failed to put all blocks into outer loops!");
- }
- #endif
- // Now that all the blocks are placed into the correct containing loop in the
- // absence of child loops, find all the potentially cloned child loops and
- // clone them into whatever outer loop we placed their header into.
- for (Loop *ChildL : OrigL) {
- auto *ClonedChildHeader =
- cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
- if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
- continue;
- #ifndef NDEBUG
- for (auto *ChildLoopBB : ChildL->blocks())
- assert(VMap.count(ChildLoopBB) &&
- "Cloned a child loop header but not all of that loops blocks!");
- #endif
- NonChildClonedLoops.push_back(cloneLoopNest(
- *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
- }
- }
- static void
- deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
- ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
- DominatorTree &DT, MemorySSAUpdater *MSSAU) {
- // Find all the dead clones, and remove them from their successors.
- SmallVector<BasicBlock *, 16> DeadBlocks;
- for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
- for (const auto &VMap : VMaps)
- if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
- if (!DT.isReachableFromEntry(ClonedBB)) {
- for (BasicBlock *SuccBB : successors(ClonedBB))
- SuccBB->removePredecessor(ClonedBB);
- DeadBlocks.push_back(ClonedBB);
- }
- // Remove all MemorySSA in the dead blocks
- if (MSSAU) {
- SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
- DeadBlocks.end());
- MSSAU->removeBlocks(DeadBlockSet);
- }
- // Drop any remaining references to break cycles.
- for (BasicBlock *BB : DeadBlocks)
- BB->dropAllReferences();
- // Erase them from the IR.
- for (BasicBlock *BB : DeadBlocks)
- BB->eraseFromParent();
- }
- static void
- deleteDeadBlocksFromLoop(Loop &L,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- DominatorTree &DT, LoopInfo &LI,
- MemorySSAUpdater *MSSAU,
- ScalarEvolution *SE,
- function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
- // Find all the dead blocks tied to this loop, and remove them from their
- // successors.
- SmallSetVector<BasicBlock *, 8> DeadBlockSet;
- // Start with loop/exit blocks and get a transitive closure of reachable dead
- // blocks.
- SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
- ExitBlocks.end());
- DeathCandidates.append(L.blocks().begin(), L.blocks().end());
- while (!DeathCandidates.empty()) {
- auto *BB = DeathCandidates.pop_back_val();
- if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
- for (BasicBlock *SuccBB : successors(BB)) {
- SuccBB->removePredecessor(BB);
- DeathCandidates.push_back(SuccBB);
- }
- DeadBlockSet.insert(BB);
- }
- }
- // Remove all MemorySSA in the dead blocks
- if (MSSAU)
- MSSAU->removeBlocks(DeadBlockSet);
- // Filter out the dead blocks from the exit blocks list so that it can be
- // used in the caller.
- llvm::erase_if(ExitBlocks,
- [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
- // Walk from this loop up through its parents removing all of the dead blocks.
- for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
- for (auto *BB : DeadBlockSet)
- ParentL->getBlocksSet().erase(BB);
- llvm::erase_if(ParentL->getBlocksVector(),
- [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
- }
- // Now delete the dead child loops. This raw delete will clear them
- // recursively.
- llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
- if (!DeadBlockSet.count(ChildL->getHeader()))
- return false;
- assert(llvm::all_of(ChildL->blocks(),
- [&](BasicBlock *ChildBB) {
- return DeadBlockSet.count(ChildBB);
- }) &&
- "If the child loop header is dead all blocks in the child loop must "
- "be dead as well!");
- DestroyLoopCB(*ChildL, ChildL->getName());
- if (SE)
- SE->forgetBlockAndLoopDispositions();
- LI.destroy(ChildL);
- return true;
- });
- // Remove the loop mappings for the dead blocks and drop all the references
- // from these blocks to others to handle cyclic references as we start
- // deleting the blocks themselves.
- for (auto *BB : DeadBlockSet) {
- // Check that the dominator tree has already been updated.
- assert(!DT.getNode(BB) && "Should already have cleared domtree!");
- LI.changeLoopFor(BB, nullptr);
- // Drop all uses of the instructions to make sure we won't have dangling
- // uses in other blocks.
- for (auto &I : *BB)
- if (!I.use_empty())
- I.replaceAllUsesWith(PoisonValue::get(I.getType()));
- BB->dropAllReferences();
- }
- // Actually delete the blocks now that they've been fully unhooked from the
- // IR.
- for (auto *BB : DeadBlockSet)
- BB->eraseFromParent();
- }
- /// Recompute the set of blocks in a loop after unswitching.
- ///
- /// This walks from the original headers predecessors to rebuild the loop. We
- /// take advantage of the fact that new blocks can't have been added, and so we
- /// filter by the original loop's blocks. This also handles potentially
- /// unreachable code that we don't want to explore but might be found examining
- /// the predecessors of the header.
- ///
- /// If the original loop is no longer a loop, this will return an empty set. If
- /// it remains a loop, all the blocks within it will be added to the set
- /// (including those blocks in inner loops).
- static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
- LoopInfo &LI) {
- SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
- auto *PH = L.getLoopPreheader();
- auto *Header = L.getHeader();
- // A worklist to use while walking backwards from the header.
- SmallVector<BasicBlock *, 16> Worklist;
- // First walk the predecessors of the header to find the backedges. This will
- // form the basis of our walk.
- for (auto *Pred : predecessors(Header)) {
- // Skip the preheader.
- if (Pred == PH)
- continue;
- // Because the loop was in simplified form, the only non-loop predecessor
- // is the preheader.
- assert(L.contains(Pred) && "Found a predecessor of the loop header other "
- "than the preheader that is not part of the "
- "loop!");
- // Insert this block into the loop set and on the first visit and, if it
- // isn't the header we're currently walking, put it into the worklist to
- // recurse through.
- if (LoopBlockSet.insert(Pred).second && Pred != Header)
- Worklist.push_back(Pred);
- }
- // If no backedges were found, we're done.
- if (LoopBlockSet.empty())
- return LoopBlockSet;
- // We found backedges, recurse through them to identify the loop blocks.
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.pop_back_val();
- assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
- // No need to walk past the header.
- if (BB == Header)
- continue;
- // Because we know the inner loop structure remains valid we can use the
- // loop structure to jump immediately across the entire nested loop.
- // Further, because it is in loop simplified form, we can directly jump
- // to its preheader afterward.
- if (Loop *InnerL = LI.getLoopFor(BB))
- if (InnerL != &L) {
- assert(L.contains(InnerL) &&
- "Should not reach a loop *outside* this loop!");
- // The preheader is the only possible predecessor of the loop so
- // insert it into the set and check whether it was already handled.
- auto *InnerPH = InnerL->getLoopPreheader();
- assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
- "but not contain the inner loop "
- "preheader!");
- if (!LoopBlockSet.insert(InnerPH).second)
- // The only way to reach the preheader is through the loop body
- // itself so if it has been visited the loop is already handled.
- continue;
- // Insert all of the blocks (other than those already present) into
- // the loop set. We expect at least the block that led us to find the
- // inner loop to be in the block set, but we may also have other loop
- // blocks if they were already enqueued as predecessors of some other
- // outer loop block.
- for (auto *InnerBB : InnerL->blocks()) {
- if (InnerBB == BB) {
- assert(LoopBlockSet.count(InnerBB) &&
- "Block should already be in the set!");
- continue;
- }
- LoopBlockSet.insert(InnerBB);
- }
- // Add the preheader to the worklist so we will continue past the
- // loop body.
- Worklist.push_back(InnerPH);
- continue;
- }
- // Insert any predecessors that were in the original loop into the new
- // set, and if the insert is successful, add them to the worklist.
- for (auto *Pred : predecessors(BB))
- if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
- Worklist.push_back(Pred);
- }
- assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
- // We've found all the blocks participating in the loop, return our completed
- // set.
- return LoopBlockSet;
- }
- /// Rebuild a loop after unswitching removes some subset of blocks and edges.
- ///
- /// The removal may have removed some child loops entirely but cannot have
- /// disturbed any remaining child loops. However, they may need to be hoisted
- /// to the parent loop (or to be top-level loops). The original loop may be
- /// completely removed.
- ///
- /// The sibling loops resulting from this update are returned. If the original
- /// loop remains a valid loop, it will be the first entry in this list with all
- /// of the newly sibling loops following it.
- ///
- /// Returns true if the loop remains a loop after unswitching, and false if it
- /// is no longer a loop after unswitching (and should not continue to be
- /// referenced).
- static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
- LoopInfo &LI,
- SmallVectorImpl<Loop *> &HoistedLoops,
- ScalarEvolution *SE) {
- auto *PH = L.getLoopPreheader();
- // Compute the actual parent loop from the exit blocks. Because we may have
- // pruned some exits the loop may be different from the original parent.
- Loop *ParentL = nullptr;
- SmallVector<Loop *, 4> ExitLoops;
- SmallVector<BasicBlock *, 4> ExitsInLoops;
- ExitsInLoops.reserve(ExitBlocks.size());
- for (auto *ExitBB : ExitBlocks)
- if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
- ExitLoops.push_back(ExitL);
- ExitsInLoops.push_back(ExitBB);
- if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
- ParentL = ExitL;
- }
- // Recompute the blocks participating in this loop. This may be empty if it
- // is no longer a loop.
- auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
- // If we still have a loop, we need to re-set the loop's parent as the exit
- // block set changing may have moved it within the loop nest. Note that this
- // can only happen when this loop has a parent as it can only hoist the loop
- // *up* the nest.
- if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
- // Remove this loop's (original) blocks from all of the intervening loops.
- for (Loop *IL = L.getParentLoop(); IL != ParentL;
- IL = IL->getParentLoop()) {
- IL->getBlocksSet().erase(PH);
- for (auto *BB : L.blocks())
- IL->getBlocksSet().erase(BB);
- llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
- return BB == PH || L.contains(BB);
- });
- }
- LI.changeLoopFor(PH, ParentL);
- L.getParentLoop()->removeChildLoop(&L);
- if (ParentL)
- ParentL->addChildLoop(&L);
- else
- LI.addTopLevelLoop(&L);
- }
- // Now we update all the blocks which are no longer within the loop.
- auto &Blocks = L.getBlocksVector();
- auto BlocksSplitI =
- LoopBlockSet.empty()
- ? Blocks.begin()
- : std::stable_partition(
- Blocks.begin(), Blocks.end(),
- [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
- // Before we erase the list of unlooped blocks, build a set of them.
- SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
- if (LoopBlockSet.empty())
- UnloopedBlocks.insert(PH);
- // Now erase these blocks from the loop.
- for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
- L.getBlocksSet().erase(BB);
- Blocks.erase(BlocksSplitI, Blocks.end());
- // Sort the exits in ascending loop depth, we'll work backwards across these
- // to process them inside out.
- llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
- return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
- });
- // We'll build up a set for each exit loop.
- SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
- Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
- auto RemoveUnloopedBlocksFromLoop =
- [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
- for (auto *BB : UnloopedBlocks)
- L.getBlocksSet().erase(BB);
- llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
- return UnloopedBlocks.count(BB);
- });
- };
- SmallVector<BasicBlock *, 16> Worklist;
- while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
- assert(Worklist.empty() && "Didn't clear worklist!");
- assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
- // Grab the next exit block, in decreasing loop depth order.
- BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
- Loop &ExitL = *LI.getLoopFor(ExitBB);
- assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
- // Erase all of the unlooped blocks from the loops between the previous
- // exit loop and this exit loop. This works because the ExitInLoops list is
- // sorted in increasing order of loop depth and thus we visit loops in
- // decreasing order of loop depth.
- for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
- RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
- // Walk the CFG back until we hit the cloned PH adding everything reachable
- // and in the unlooped set to this exit block's loop.
- Worklist.push_back(ExitBB);
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- // We can stop recursing at the cloned preheader (if we get there).
- if (BB == PH)
- continue;
- for (BasicBlock *PredBB : predecessors(BB)) {
- // If this pred has already been moved to our set or is part of some
- // (inner) loop, no update needed.
- if (!UnloopedBlocks.erase(PredBB)) {
- assert((NewExitLoopBlocks.count(PredBB) ||
- ExitL.contains(LI.getLoopFor(PredBB))) &&
- "Predecessor not in a nested loop (or already visited)!");
- continue;
- }
- // We just insert into the loop set here. We'll add these blocks to the
- // exit loop after we build up the set in a deterministic order rather
- // than the predecessor-influenced visit order.
- bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
- (void)Inserted;
- assert(Inserted && "Should only visit an unlooped block once!");
- // And recurse through to its predecessors.
- Worklist.push_back(PredBB);
- }
- } while (!Worklist.empty());
- // If blocks in this exit loop were directly part of the original loop (as
- // opposed to a child loop) update the map to point to this exit loop. This
- // just updates a map and so the fact that the order is unstable is fine.
- for (auto *BB : NewExitLoopBlocks)
- if (Loop *BBL = LI.getLoopFor(BB))
- if (BBL == &L || !L.contains(BBL))
- LI.changeLoopFor(BB, &ExitL);
- // We will remove the remaining unlooped blocks from this loop in the next
- // iteration or below.
- NewExitLoopBlocks.clear();
- }
- // Any remaining unlooped blocks are no longer part of any loop unless they
- // are part of some child loop.
- for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
- RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
- for (auto *BB : UnloopedBlocks)
- if (Loop *BBL = LI.getLoopFor(BB))
- if (BBL == &L || !L.contains(BBL))
- LI.changeLoopFor(BB, nullptr);
- // Sink all the child loops whose headers are no longer in the loop set to
- // the parent (or to be top level loops). We reach into the loop and directly
- // update its subloop vector to make this batch update efficient.
- auto &SubLoops = L.getSubLoopsVector();
- auto SubLoopsSplitI =
- LoopBlockSet.empty()
- ? SubLoops.begin()
- : std::stable_partition(
- SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
- return LoopBlockSet.count(SubL->getHeader());
- });
- for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
- HoistedLoops.push_back(HoistedL);
- HoistedL->setParentLoop(nullptr);
- // To compute the new parent of this hoisted loop we look at where we
- // placed the preheader above. We can't lookup the header itself because we
- // retained the mapping from the header to the hoisted loop. But the
- // preheader and header should have the exact same new parent computed
- // based on the set of exit blocks from the original loop as the preheader
- // is a predecessor of the header and so reached in the reverse walk. And
- // because the loops were all in simplified form the preheader of the
- // hoisted loop can't be part of some *other* loop.
- if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
- NewParentL->addChildLoop(HoistedL);
- else
- LI.addTopLevelLoop(HoistedL);
- }
- SubLoops.erase(SubLoopsSplitI, SubLoops.end());
- // Actually delete the loop if nothing remained within it.
- if (Blocks.empty()) {
- assert(SubLoops.empty() &&
- "Failed to remove all subloops from the original loop!");
- if (Loop *ParentL = L.getParentLoop())
- ParentL->removeChildLoop(llvm::find(*ParentL, &L));
- else
- LI.removeLoop(llvm::find(LI, &L));
- // markLoopAsDeleted for L should be triggered by the caller (it is typically
- // done by using the UnswitchCB callback).
- if (SE)
- SE->forgetBlockAndLoopDispositions();
- LI.destroy(&L);
- return false;
- }
- return true;
- }
- /// Helper to visit a dominator subtree, invoking a callable on each node.
- ///
- /// Returning false at any point will stop walking past that node of the tree.
- template <typename CallableT>
- void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
- SmallVector<DomTreeNode *, 4> DomWorklist;
- DomWorklist.push_back(DT[BB]);
- #ifndef NDEBUG
- SmallPtrSet<DomTreeNode *, 4> Visited;
- Visited.insert(DT[BB]);
- #endif
- do {
- DomTreeNode *N = DomWorklist.pop_back_val();
- // Visit this node.
- if (!Callable(N->getBlock()))
- continue;
- // Accumulate the child nodes.
- for (DomTreeNode *ChildN : *N) {
- assert(Visited.insert(ChildN).second &&
- "Cannot visit a node twice when walking a tree!");
- DomWorklist.push_back(ChildN);
- }
- } while (!DomWorklist.empty());
- }
- static void unswitchNontrivialInvariants(
- Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
- IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
- AssumptionCache &AC,
- function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
- ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
- function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
- auto *ParentBB = TI.getParent();
- BranchInst *BI = dyn_cast<BranchInst>(&TI);
- SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
- // We can only unswitch switches, conditional branches with an invariant
- // condition, or combining invariant conditions with an instruction or
- // partially invariant instructions.
- assert((SI || (BI && BI->isConditional())) &&
- "Can only unswitch switches and conditional branch!");
- bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
- bool FullUnswitch =
- SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
- !PartiallyInvariant);
- if (FullUnswitch)
- assert(Invariants.size() == 1 &&
- "Cannot have other invariants with full unswitching!");
- else
- assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
- "Partial unswitching requires an instruction as the condition!");
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Constant and BBs tracking the cloned and continuing successor. When we are
- // unswitching the entire condition, this can just be trivially chosen to
- // unswitch towards `true`. However, when we are unswitching a set of
- // invariants combined with `and` or `or` or partially invariant instructions,
- // the combining operation determines the best direction to unswitch: we want
- // to unswitch the direction that will collapse the branch.
- bool Direction = true;
- int ClonedSucc = 0;
- if (!FullUnswitch) {
- Value *Cond = skipTrivialSelect(BI->getCondition());
- (void)Cond;
- assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
- PartiallyInvariant) &&
- "Only `or`, `and`, an `select`, partially invariant instructions "
- "can combine invariants being unswitched.");
- if (!match(Cond, m_LogicalOr())) {
- if (match(Cond, m_LogicalAnd()) ||
- (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
- Direction = false;
- ClonedSucc = 1;
- }
- }
- }
- BasicBlock *RetainedSuccBB =
- BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
- SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
- if (BI)
- UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
- else
- for (auto Case : SI->cases())
- if (Case.getCaseSuccessor() != RetainedSuccBB)
- UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
- assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
- "Should not unswitch the same successor we are retaining!");
- // The branch should be in this exact loop. Any inner loop's invariant branch
- // should be handled by unswitching that inner loop. The caller of this
- // routine should filter out any candidates that remain (but were skipped for
- // whatever reason).
- assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
- // Compute the parent loop now before we start hacking on things.
- Loop *ParentL = L.getParentLoop();
- // Get blocks in RPO order for MSSA update, before changing the CFG.
- LoopBlocksRPO LBRPO(&L);
- if (MSSAU)
- LBRPO.perform(&LI);
- // Compute the outer-most loop containing one of our exit blocks. This is the
- // furthest up our loopnest which can be mutated, which we will use below to
- // update things.
- Loop *OuterExitL = &L;
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L.getUniqueExitBlocks(ExitBlocks);
- for (auto *ExitBB : ExitBlocks) {
- Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
- if (!NewOuterExitL) {
- // We exited the entire nest with this block, so we're done.
- OuterExitL = nullptr;
- break;
- }
- if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
- OuterExitL = NewOuterExitL;
- }
- // At this point, we're definitely going to unswitch something so invalidate
- // any cached information in ScalarEvolution for the outer most loop
- // containing an exit block and all nested loops.
- if (SE) {
- if (OuterExitL)
- SE->forgetLoop(OuterExitL);
- else
- SE->forgetTopmostLoop(&L);
- SE->forgetBlockAndLoopDispositions();
- }
- bool InsertFreeze = false;
- if (FreezeLoopUnswitchCond) {
- ICFLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(&L);
- InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
- }
- // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform,
- // otherwise the branch instruction will have been moved outside the loop
- // already, and may imply that a poison condition is always UB.
- Value *FullUnswitchCond = nullptr;
- if (FullUnswitch) {
- FullUnswitchCond =
- BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition();
- if (InsertFreeze)
- InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
- FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT);
- }
- // If the edge from this terminator to a successor dominates that successor,
- // store a map from each block in its dominator subtree to it. This lets us
- // tell when cloning for a particular successor if a block is dominated by
- // some *other* successor with a single data structure. We use this to
- // significantly reduce cloning.
- SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
- for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB),
- UnswitchedSuccBBs))
- if (SuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
- return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
- }))
- visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
- DominatingSucc[BB] = SuccBB;
- return true;
- });
- // Split the preheader, so that we know that there is a safe place to insert
- // the conditional branch. We will change the preheader to have a conditional
- // branch on LoopCond. The original preheader will become the split point
- // between the unswitched versions, and we will have a new preheader for the
- // original loop.
- BasicBlock *SplitBB = L.getLoopPreheader();
- BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
- // Keep track of the dominator tree updates needed.
- SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
- // Clone the loop for each unswitched successor.
- SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
- VMaps.reserve(UnswitchedSuccBBs.size());
- SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
- for (auto *SuccBB : UnswitchedSuccBBs) {
- VMaps.emplace_back(new ValueToValueMapTy());
- ClonedPHs[SuccBB] = buildClonedLoopBlocks(
- L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
- DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
- }
- // Drop metadata if we may break its semantics by moving this instr into the
- // split block.
- if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
- if (DropNonTrivialImplicitNullChecks)
- // Do not spend time trying to understand if we can keep it, just drop it
- // to save compile time.
- TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
- else {
- // It is only legal to preserve make.implicit metadata if we are
- // guaranteed no reach implicit null check after following this branch.
- ICFLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(&L);
- if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
- TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
- }
- }
- // The stitching of the branched code back together depends on whether we're
- // doing full unswitching or not with the exception that we always want to
- // nuke the initial terminator placed in the split block.
- SplitBB->getTerminator()->eraseFromParent();
- if (FullUnswitch) {
- // Splice the terminator from the original loop and rewrite its
- // successors.
- SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator());
- // Keep a clone of the terminator for MSSA updates.
- Instruction *NewTI = TI.clone();
- NewTI->insertInto(ParentBB, ParentBB->end());
- // First wire up the moved terminator to the preheaders.
- if (BI) {
- BasicBlock *ClonedPH = ClonedPHs.begin()->second;
- BI->setSuccessor(ClonedSucc, ClonedPH);
- BI->setSuccessor(1 - ClonedSucc, LoopPH);
- if (InsertFreeze)
- FullUnswitchCond = new FreezeInst(
- FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI);
- BI->setCondition(FullUnswitchCond);
- DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
- } else {
- assert(SI && "Must either be a branch or switch!");
- // Walk the cases and directly update their successors.
- assert(SI->getDefaultDest() == RetainedSuccBB &&
- "Not retaining default successor!");
- SI->setDefaultDest(LoopPH);
- for (const auto &Case : SI->cases())
- if (Case.getCaseSuccessor() == RetainedSuccBB)
- Case.setSuccessor(LoopPH);
- else
- Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
- if (InsertFreeze)
- SI->setCondition(new FreezeInst(
- FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI));
- // We need to use the set to populate domtree updates as even when there
- // are multiple cases pointing at the same successor we only want to
- // remove and insert one edge in the domtree.
- for (BasicBlock *SuccBB : UnswitchedSuccBBs)
- DTUpdates.push_back(
- {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
- }
- if (MSSAU) {
- DT.applyUpdates(DTUpdates);
- DTUpdates.clear();
- // Remove all but one edge to the retained block and all unswitched
- // blocks. This is to avoid having duplicate entries in the cloned Phis,
- // when we know we only keep a single edge for each case.
- MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
- for (BasicBlock *SuccBB : UnswitchedSuccBBs)
- MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
- for (auto &VMap : VMaps)
- MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
- /*IgnoreIncomingWithNoClones=*/true);
- MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
- // Remove all edges to unswitched blocks.
- for (BasicBlock *SuccBB : UnswitchedSuccBBs)
- MSSAU->removeEdge(ParentBB, SuccBB);
- }
- // Now unhook the successor relationship as we'll be replacing
- // the terminator with a direct branch. This is much simpler for branches
- // than switches so we handle those first.
- if (BI) {
- // Remove the parent as a predecessor of the unswitched successor.
- assert(UnswitchedSuccBBs.size() == 1 &&
- "Only one possible unswitched block for a branch!");
- BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
- UnswitchedSuccBB->removePredecessor(ParentBB,
- /*KeepOneInputPHIs*/ true);
- DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
- } else {
- // Note that we actually want to remove the parent block as a predecessor
- // of *every* case successor. The case successor is either unswitched,
- // completely eliminating an edge from the parent to that successor, or it
- // is a duplicate edge to the retained successor as the retained successor
- // is always the default successor and as we'll replace this with a direct
- // branch we no longer need the duplicate entries in the PHI nodes.
- SwitchInst *NewSI = cast<SwitchInst>(NewTI);
- assert(NewSI->getDefaultDest() == RetainedSuccBB &&
- "Not retaining default successor!");
- for (const auto &Case : NewSI->cases())
- Case.getCaseSuccessor()->removePredecessor(
- ParentBB,
- /*KeepOneInputPHIs*/ true);
- // We need to use the set to populate domtree updates as even when there
- // are multiple cases pointing at the same successor we only want to
- // remove and insert one edge in the domtree.
- for (BasicBlock *SuccBB : UnswitchedSuccBBs)
- DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
- }
- // After MSSAU update, remove the cloned terminator instruction NewTI.
- ParentBB->getTerminator()->eraseFromParent();
- // Create a new unconditional branch to the continuing block (as opposed to
- // the one cloned).
- BranchInst::Create(RetainedSuccBB, ParentBB);
- } else {
- assert(BI && "Only branches have partial unswitching.");
- assert(UnswitchedSuccBBs.size() == 1 &&
- "Only one possible unswitched block for a branch!");
- BasicBlock *ClonedPH = ClonedPHs.begin()->second;
- // When doing a partial unswitch, we have to do a bit more work to build up
- // the branch in the split block.
- if (PartiallyInvariant)
- buildPartialInvariantUnswitchConditionalBranch(
- *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
- else {
- buildPartialUnswitchConditionalBranch(
- *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
- FreezeLoopUnswitchCond, BI, &AC, DT);
- }
- DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
- if (MSSAU) {
- DT.applyUpdates(DTUpdates);
- DTUpdates.clear();
- // Perform MSSA cloning updates.
- for (auto &VMap : VMaps)
- MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
- /*IgnoreIncomingWithNoClones=*/true);
- MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
- }
- }
- // Apply the updates accumulated above to get an up-to-date dominator tree.
- DT.applyUpdates(DTUpdates);
- // Now that we have an accurate dominator tree, first delete the dead cloned
- // blocks so that we can accurately build any cloned loops. It is important to
- // not delete the blocks from the original loop yet because we still want to
- // reference the original loop to understand the cloned loop's structure.
- deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
- // Build the cloned loop structure itself. This may be substantially
- // different from the original structure due to the simplified CFG. This also
- // handles inserting all the cloned blocks into the correct loops.
- SmallVector<Loop *, 4> NonChildClonedLoops;
- for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
- buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
- // Now that our cloned loops have been built, we can update the original loop.
- // First we delete the dead blocks from it and then we rebuild the loop
- // structure taking these deletions into account.
- deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- SmallVector<Loop *, 4> HoistedLoops;
- bool IsStillLoop =
- rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // This transformation has a high risk of corrupting the dominator tree, and
- // the below steps to rebuild loop structures will result in hard to debug
- // errors in that case so verify that the dominator tree is sane first.
- // FIXME: Remove this when the bugs stop showing up and rely on existing
- // verification steps.
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- if (BI && !PartiallyInvariant) {
- // If we unswitched a branch which collapses the condition to a known
- // constant we want to replace all the uses of the invariants within both
- // the original and cloned blocks. We do this here so that we can use the
- // now updated dominator tree to identify which side the users are on.
- assert(UnswitchedSuccBBs.size() == 1 &&
- "Only one possible unswitched block for a branch!");
- BasicBlock *ClonedPH = ClonedPHs.begin()->second;
- // When considering multiple partially-unswitched invariants
- // we cant just go replace them with constants in both branches.
- //
- // For 'AND' we infer that true branch ("continue") means true
- // for each invariant operand.
- // For 'OR' we can infer that false branch ("continue") means false
- // for each invariant operand.
- // So it happens that for multiple-partial case we dont replace
- // in the unswitched branch.
- bool ReplaceUnswitched =
- FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
- ConstantInt *UnswitchedReplacement =
- Direction ? ConstantInt::getTrue(BI->getContext())
- : ConstantInt::getFalse(BI->getContext());
- ConstantInt *ContinueReplacement =
- Direction ? ConstantInt::getFalse(BI->getContext())
- : ConstantInt::getTrue(BI->getContext());
- for (Value *Invariant : Invariants) {
- assert(!isa<Constant>(Invariant) &&
- "Should not be replacing constant values!");
- // Use make_early_inc_range here as set invalidates the iterator.
- for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
- Instruction *UserI = dyn_cast<Instruction>(U.getUser());
- if (!UserI)
- continue;
- // Replace it with the 'continue' side if in the main loop body, and the
- // unswitched if in the cloned blocks.
- if (DT.dominates(LoopPH, UserI->getParent()))
- U.set(ContinueReplacement);
- else if (ReplaceUnswitched &&
- DT.dominates(ClonedPH, UserI->getParent()))
- U.set(UnswitchedReplacement);
- }
- }
- }
- // We can change which blocks are exit blocks of all the cloned sibling
- // loops, the current loop, and any parent loops which shared exit blocks
- // with the current loop. As a consequence, we need to re-form LCSSA for
- // them. But we shouldn't need to re-form LCSSA for any child loops.
- // FIXME: This could be made more efficient by tracking which exit blocks are
- // new, and focusing on them, but that isn't likely to be necessary.
- //
- // In order to reasonably rebuild LCSSA we need to walk inside-out across the
- // loop nest and update every loop that could have had its exits changed. We
- // also need to cover any intervening loops. We add all of these loops to
- // a list and sort them by loop depth to achieve this without updating
- // unnecessary loops.
- auto UpdateLoop = [&](Loop &UpdateL) {
- #ifndef NDEBUG
- UpdateL.verifyLoop();
- for (Loop *ChildL : UpdateL) {
- ChildL->verifyLoop();
- assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
- "Perturbed a child loop's LCSSA form!");
- }
- #endif
- // First build LCSSA for this loop so that we can preserve it when
- // forming dedicated exits. We don't want to perturb some other loop's
- // LCSSA while doing that CFG edit.
- formLCSSA(UpdateL, DT, &LI, SE);
- // For loops reached by this loop's original exit blocks we may
- // introduced new, non-dedicated exits. At least try to re-form dedicated
- // exits for these loops. This may fail if they couldn't have dedicated
- // exits to start with.
- formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
- };
- // For non-child cloned loops and hoisted loops, we just need to update LCSSA
- // and we can do it in any order as they don't nest relative to each other.
- //
- // Also check if any of the loops we have updated have become top-level loops
- // as that will necessitate widening the outer loop scope.
- for (Loop *UpdatedL :
- llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
- UpdateLoop(*UpdatedL);
- if (UpdatedL->isOutermost())
- OuterExitL = nullptr;
- }
- if (IsStillLoop) {
- UpdateLoop(L);
- if (L.isOutermost())
- OuterExitL = nullptr;
- }
- // If the original loop had exit blocks, walk up through the outer most loop
- // of those exit blocks to update LCSSA and form updated dedicated exits.
- if (OuterExitL != &L)
- for (Loop *OuterL = ParentL; OuterL != OuterExitL;
- OuterL = OuterL->getParentLoop())
- UpdateLoop(*OuterL);
- #ifndef NDEBUG
- // Verify the entire loop structure to catch any incorrect updates before we
- // progress in the pass pipeline.
- LI.verify(DT);
- #endif
- // Now that we've unswitched something, make callbacks to report the changes.
- // For that we need to merge together the updated loops and the cloned loops
- // and check whether the original loop survived.
- SmallVector<Loop *, 4> SibLoops;
- for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
- if (UpdatedL->getParentLoop() == ParentL)
- SibLoops.push_back(UpdatedL);
- UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- if (BI)
- ++NumBranches;
- else
- ++NumSwitches;
- }
- /// Recursively compute the cost of a dominator subtree based on the per-block
- /// cost map provided.
- ///
- /// The recursive computation is memozied into the provided DT-indexed cost map
- /// to allow querying it for most nodes in the domtree without it becoming
- /// quadratic.
- static InstructionCost computeDomSubtreeCost(
- DomTreeNode &N,
- const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
- SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
- // Don't accumulate cost (or recurse through) blocks not in our block cost
- // map and thus not part of the duplication cost being considered.
- auto BBCostIt = BBCostMap.find(N.getBlock());
- if (BBCostIt == BBCostMap.end())
- return 0;
- // Lookup this node to see if we already computed its cost.
- auto DTCostIt = DTCostMap.find(&N);
- if (DTCostIt != DTCostMap.end())
- return DTCostIt->second;
- // If not, we have to compute it. We can't use insert above and update
- // because computing the cost may insert more things into the map.
- InstructionCost Cost = std::accumulate(
- N.begin(), N.end(), BBCostIt->second,
- [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
- return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
- });
- bool Inserted = DTCostMap.insert({&N, Cost}).second;
- (void)Inserted;
- assert(Inserted && "Should not insert a node while visiting children!");
- return Cost;
- }
- /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
- /// making the following replacement:
- ///
- /// --code before guard--
- /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
- /// --code after guard--
- ///
- /// into
- ///
- /// --code before guard--
- /// br i1 %cond, label %guarded, label %deopt
- ///
- /// guarded:
- /// --code after guard--
- ///
- /// deopt:
- /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
- /// unreachable
- ///
- /// It also makes all relevant DT and LI updates, so that all structures are in
- /// valid state after this transform.
- static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
- DominatorTree &DT, LoopInfo &LI,
- MemorySSAUpdater *MSSAU) {
- SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
- LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
- BasicBlock *CheckBB = GI->getParent();
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Remove all CheckBB's successors from DomTree. A block can be seen among
- // successors more than once, but for DomTree it should be added only once.
- SmallPtrSet<BasicBlock *, 4> Successors;
- for (auto *Succ : successors(CheckBB))
- if (Successors.insert(Succ).second)
- DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
- Instruction *DeoptBlockTerm =
- SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
- BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
- // SplitBlockAndInsertIfThen inserts control flow that branches to
- // DeoptBlockTerm if the condition is true. We want the opposite.
- CheckBI->swapSuccessors();
- BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
- GuardedBlock->setName("guarded");
- CheckBI->getSuccessor(1)->setName("deopt");
- BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
- if (MSSAU)
- MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
- GI->moveBefore(DeoptBlockTerm);
- GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
- // Add new successors of CheckBB into DomTree.
- for (auto *Succ : successors(CheckBB))
- DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
- // Now the blocks that used to be CheckBB's successors are GuardedBlock's
- // successors.
- for (auto *Succ : Successors)
- DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
- // Make proper changes to DT.
- DT.applyUpdates(DTUpdates);
- // Inform LI of a new loop block.
- L.addBasicBlockToLoop(GuardedBlock, LI);
- if (MSSAU) {
- MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
- MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
- if (VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- }
- ++NumGuards;
- return CheckBI;
- }
- /// Cost multiplier is a way to limit potentially exponential behavior
- /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
- /// candidates available. Also accounting for the number of "sibling" loops with
- /// the idea to account for previous unswitches that already happened on this
- /// cluster of loops. There was an attempt to keep this formula simple,
- /// just enough to limit the worst case behavior. Even if it is not that simple
- /// now it is still not an attempt to provide a detailed heuristic size
- /// prediction.
- ///
- /// TODO: Make a proper accounting of "explosion" effect for all kinds of
- /// unswitch candidates, making adequate predictions instead of wild guesses.
- /// That requires knowing not just the number of "remaining" candidates but
- /// also costs of unswitching for each of these candidates.
- static int CalculateUnswitchCostMultiplier(
- const Instruction &TI, const Loop &L, const LoopInfo &LI,
- const DominatorTree &DT,
- ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
- // Guards and other exiting conditions do not contribute to exponential
- // explosion as soon as they dominate the latch (otherwise there might be
- // another path to the latch remaining that does not allow to eliminate the
- // loop copy on unswitch).
- const BasicBlock *Latch = L.getLoopLatch();
- const BasicBlock *CondBlock = TI.getParent();
- if (DT.dominates(CondBlock, Latch) &&
- (isGuard(&TI) ||
- llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) {
- return L.contains(SuccBB);
- }) <= 1)) {
- NumCostMultiplierSkipped++;
- return 1;
- }
- auto *ParentL = L.getParentLoop();
- int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
- : std::distance(LI.begin(), LI.end()));
- // Count amount of clones that all the candidates might cause during
- // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
- int UnswitchedClones = 0;
- for (auto Candidate : UnswitchCandidates) {
- const Instruction *CI = Candidate.TI;
- const BasicBlock *CondBlock = CI->getParent();
- bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
- if (isGuard(CI)) {
- if (!SkipExitingSuccessors)
- UnswitchedClones++;
- continue;
- }
- int NonExitingSuccessors =
- llvm::count_if(successors(CondBlock),
- [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
- return !SkipExitingSuccessors || L.contains(SuccBB);
- });
- UnswitchedClones += Log2_32(NonExitingSuccessors);
- }
- // Ignore up to the "unscaled candidates" number of unswitch candidates
- // when calculating the power-of-two scaling of the cost. The main idea
- // with this control is to allow a small number of unswitches to happen
- // and rely more on siblings multiplier (see below) when the number
- // of candidates is small.
- unsigned ClonesPower =
- std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
- // Allowing top-level loops to spread a bit more than nested ones.
- int SiblingsMultiplier =
- std::max((ParentL ? SiblingsCount
- : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
- 1);
- // Compute the cost multiplier in a way that won't overflow by saturating
- // at an upper bound.
- int CostMultiplier;
- if (ClonesPower > Log2_32(UnswitchThreshold) ||
- SiblingsMultiplier > UnswitchThreshold)
- CostMultiplier = UnswitchThreshold;
- else
- CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
- (int)UnswitchThreshold);
- LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
- << " (siblings " << SiblingsMultiplier << " * clones "
- << (1 << ClonesPower) << ")"
- << " for unswitch candidate: " << TI << "\n");
- return CostMultiplier;
- }
- static bool collectUnswitchCandidates(
- SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
- IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
- const Loop &L, const LoopInfo &LI, AAResults &AA,
- const MemorySSAUpdater *MSSAU) {
- assert(UnswitchCandidates.empty() && "Should be!");
- // Whether or not we should also collect guards in the loop.
- bool CollectGuards = false;
- if (UnswitchGuards) {
- auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
- Intrinsic::getName(Intrinsic::experimental_guard));
- if (GuardDecl && !GuardDecl->use_empty())
- CollectGuards = true;
- }
- for (auto *BB : L.blocks()) {
- if (LI.getLoopFor(BB) != &L)
- continue;
- if (CollectGuards)
- for (auto &I : *BB)
- if (isGuard(&I)) {
- auto *Cond =
- skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0));
- // TODO: Support AND, OR conditions and partial unswitching.
- if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
- UnswitchCandidates.push_back({&I, {Cond}});
- }
- if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
- // We can only consider fully loop-invariant switch conditions as we need
- // to completely eliminate the switch after unswitching.
- if (!isa<Constant>(SI->getCondition()) &&
- L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
- UnswitchCandidates.push_back({SI, {SI->getCondition()}});
- continue;
- }
- auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
- if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
- BI->getSuccessor(0) == BI->getSuccessor(1))
- continue;
- Value *Cond = skipTrivialSelect(BI->getCondition());
- if (isa<Constant>(Cond))
- continue;
- if (L.isLoopInvariant(Cond)) {
- UnswitchCandidates.push_back({BI, {Cond}});
- continue;
- }
- Instruction &CondI = *cast<Instruction>(Cond);
- if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
- TinyPtrVector<Value *> Invariants =
- collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
- if (Invariants.empty())
- continue;
- UnswitchCandidates.push_back({BI, std::move(Invariants)});
- continue;
- }
- }
- if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
- !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
- return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
- })) {
- MemorySSA *MSSA = MSSAU->getMemorySSA();
- if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
- LLVM_DEBUG(
- dbgs() << "simple-loop-unswitch: Found partially invariant condition "
- << *Info->InstToDuplicate[0] << "\n");
- PartialIVInfo = *Info;
- PartialIVCondBranch = L.getHeader()->getTerminator();
- TinyPtrVector<Value *> ValsToDuplicate;
- llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
- UnswitchCandidates.push_back(
- {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
- }
- }
- return !UnswitchCandidates.empty();
- }
- static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
- if (!L.isSafeToClone())
- return false;
- for (auto *BB : L.blocks())
- for (auto &I : *BB) {
- if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
- return false;
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
- if (CB->isConvergent())
- return false;
- }
- }
- // Check if there are irreducible CFG cycles in this loop. If so, we cannot
- // easily unswitch non-trivial edges out of the loop. Doing so might turn the
- // irreducible control flow into reducible control flow and introduce new
- // loops "out of thin air". If we ever discover important use cases for doing
- // this, we can add support to loop unswitch, but it is a lot of complexity
- // for what seems little or no real world benefit.
- LoopBlocksRPO RPOT(&L);
- RPOT.perform(&LI);
- if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
- return false;
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L.getUniqueExitBlocks(ExitBlocks);
- // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
- // instruction as we don't know how to split those exit blocks.
- // FIXME: We should teach SplitBlock to handle this and remove this
- // restriction.
- for (auto *ExitBB : ExitBlocks) {
- auto *I = ExitBB->getFirstNonPHI();
- if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
- LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
- "in exit block\n");
- return false;
- }
- }
- return true;
- }
- static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
- ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
- const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
- const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
- // Given that unswitching these terminators will require duplicating parts of
- // the loop, so we need to be able to model that cost. Compute the ephemeral
- // values and set up a data structure to hold per-BB costs. We cache each
- // block's cost so that we don't recompute this when considering different
- // subsets of the loop for duplication during unswitching.
- SmallPtrSet<const Value *, 4> EphValues;
- CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
- SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
- // Compute the cost of each block, as well as the total loop cost. Also, bail
- // out if we see instructions which are incompatible with loop unswitching
- // (convergent, noduplicate, or cross-basic-block tokens).
- // FIXME: We might be able to safely handle some of these in non-duplicated
- // regions.
- TargetTransformInfo::TargetCostKind CostKind =
- L.getHeader()->getParent()->hasMinSize()
- ? TargetTransformInfo::TCK_CodeSize
- : TargetTransformInfo::TCK_SizeAndLatency;
- InstructionCost LoopCost = 0;
- for (auto *BB : L.blocks()) {
- InstructionCost Cost = 0;
- for (auto &I : *BB) {
- if (EphValues.count(&I))
- continue;
- Cost += TTI.getInstructionCost(&I, CostKind);
- }
- assert(Cost >= 0 && "Must not have negative costs!");
- LoopCost += Cost;
- assert(LoopCost >= 0 && "Must not have negative loop costs!");
- BBCostMap[BB] = Cost;
- }
- LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
- // Now we find the best candidate by searching for the one with the following
- // properties in order:
- //
- // 1) An unswitching cost below the threshold
- // 2) The smallest number of duplicated unswitch candidates (to avoid
- // creating redundant subsequent unswitching)
- // 3) The smallest cost after unswitching.
- //
- // We prioritize reducing fanout of unswitch candidates provided the cost
- // remains below the threshold because this has a multiplicative effect.
- //
- // This requires memoizing each dominator subtree to avoid redundant work.
- //
- // FIXME: Need to actually do the number of candidates part above.
- SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
- // Given a terminator which might be unswitched, computes the non-duplicated
- // cost for that terminator.
- auto ComputeUnswitchedCost = [&](Instruction &TI,
- bool FullUnswitch) -> InstructionCost {
- BasicBlock &BB = *TI.getParent();
- SmallPtrSet<BasicBlock *, 4> Visited;
- InstructionCost Cost = 0;
- for (BasicBlock *SuccBB : successors(&BB)) {
- // Don't count successors more than once.
- if (!Visited.insert(SuccBB).second)
- continue;
- // If this is a partial unswitch candidate, then it must be a conditional
- // branch with a condition of either `or`, `and`, their corresponding
- // select forms or partially invariant instructions. In that case, one of
- // the successors is necessarily duplicated, so don't even try to remove
- // its cost.
- if (!FullUnswitch) {
- auto &BI = cast<BranchInst>(TI);
- Value *Cond = skipTrivialSelect(BI.getCondition());
- if (match(Cond, m_LogicalAnd())) {
- if (SuccBB == BI.getSuccessor(1))
- continue;
- } else if (match(Cond, m_LogicalOr())) {
- if (SuccBB == BI.getSuccessor(0))
- continue;
- } else if ((PartialIVInfo.KnownValue->isOneValue() &&
- SuccBB == BI.getSuccessor(0)) ||
- (!PartialIVInfo.KnownValue->isOneValue() &&
- SuccBB == BI.getSuccessor(1)))
- continue;
- }
- // This successor's domtree will not need to be duplicated after
- // unswitching if the edge to the successor dominates it (and thus the
- // entire tree). This essentially means there is no other path into this
- // subtree and so it will end up live in only one clone of the loop.
- if (SuccBB->getUniquePredecessor() ||
- llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
- return PredBB == &BB || DT.dominates(SuccBB, PredBB);
- })) {
- Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
- assert(Cost <= LoopCost &&
- "Non-duplicated cost should never exceed total loop cost!");
- }
- }
- // Now scale the cost by the number of unique successors minus one. We
- // subtract one because there is already at least one copy of the entire
- // loop. This is computing the new cost of unswitching a condition.
- // Note that guards always have 2 unique successors that are implicit and
- // will be materialized if we decide to unswitch it.
- int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
- assert(SuccessorsCount > 1 &&
- "Cannot unswitch a condition without multiple distinct successors!");
- return (LoopCost - Cost) * (SuccessorsCount - 1);
- };
- std::optional<NonTrivialUnswitchCandidate> Best;
- for (auto &Candidate : UnswitchCandidates) {
- Instruction &TI = *Candidate.TI;
- ArrayRef<Value *> Invariants = Candidate.Invariants;
- BranchInst *BI = dyn_cast<BranchInst>(&TI);
- InstructionCost CandidateCost = ComputeUnswitchedCost(
- TI, /*FullUnswitch*/ !BI ||
- (Invariants.size() == 1 &&
- Invariants[0] == skipTrivialSelect(BI->getCondition())));
- // Calculate cost multiplier which is a tool to limit potentially
- // exponential behavior of loop-unswitch.
- if (EnableUnswitchCostMultiplier) {
- int CostMultiplier =
- CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
- assert(
- (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
- "cost multiplier needs to be in the range of 1..UnswitchThreshold");
- CandidateCost *= CostMultiplier;
- LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
- << " (multiplier: " << CostMultiplier << ")"
- << " for unswitch candidate: " << TI << "\n");
- } else {
- LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
- << " for unswitch candidate: " << TI << "\n");
- }
- if (!Best || CandidateCost < Best->Cost) {
- Best = Candidate;
- Best->Cost = CandidateCost;
- }
- }
- assert(Best && "Must be!");
- return *Best;
- }
- static bool unswitchBestCondition(
- Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
- AAResults &AA, TargetTransformInfo &TTI,
- function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
- ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
- function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
- // Collect all invariant conditions within this loop (as opposed to an inner
- // loop which would be handled when visiting that inner loop).
- SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
- IVConditionInfo PartialIVInfo;
- Instruction *PartialIVCondBranch = nullptr;
- // If we didn't find any candidates, we're done.
- if (!collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
- PartialIVCondBranch, L, LI, AA, MSSAU))
- return false;
- LLVM_DEBUG(
- dbgs() << "Considering " << UnswitchCandidates.size()
- << " non-trivial loop invariant conditions for unswitching.\n");
- NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
- UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
- assert(Best.TI && "Failed to find loop unswitch candidate");
- assert(Best.Cost && "Failed to compute cost");
- if (*Best.Cost >= UnswitchThreshold) {
- LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
- << "\n");
- return false;
- }
- if (Best.TI != PartialIVCondBranch)
- PartialIVInfo.InstToDuplicate.clear();
- // If the best candidate is a guard, turn it into a branch.
- if (isGuard(Best.TI))
- Best.TI =
- turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU);
- LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost
- << ") terminator: " << *Best.TI << "\n");
- unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT,
- LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB);
- return true;
- }
- /// Unswitch control flow predicated on loop invariant conditions.
- ///
- /// This first hoists all branches or switches which are trivial (IE, do not
- /// require duplicating any part of the loop) out of the loop body. It then
- /// looks at other loop invariant control flows and tries to unswitch those as
- /// well by cloning the loop if the result is small enough.
- ///
- /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
- /// also updated based on the unswitch. The `MSSA` analysis is also updated if
- /// valid (i.e. its use is enabled).
- ///
- /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
- /// true, we will attempt to do non-trivial unswitching as well as trivial
- /// unswitching.
- ///
- /// The `UnswitchCB` callback provided will be run after unswitching is
- /// complete, with the first parameter set to `true` if the provided loop
- /// remains a loop, and a list of new sibling loops created.
- ///
- /// If `SE` is non-null, we will update that analysis based on the unswitching
- /// done.
- static bool
- unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
- AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
- bool NonTrivial,
- function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
- ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
- ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
- function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
- assert(L.isRecursivelyLCSSAForm(DT, LI) &&
- "Loops must be in LCSSA form before unswitching.");
- // Must be in loop simplified form: we need a preheader and dedicated exits.
- if (!L.isLoopSimplifyForm())
- return false;
- // Try trivial unswitch first before loop over other basic blocks in the loop.
- if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
- // If we unswitched successfully we will want to clean up the loop before
- // processing it further so just mark it as unswitched and return.
- UnswitchCB(/*CurrentLoopValid*/ true, false, {});
- return true;
- }
- // Check whether we should continue with non-trivial conditions.
- // EnableNonTrivialUnswitch: Global variable that forces non-trivial
- // unswitching for testing and debugging.
- // NonTrivial: Parameter that enables non-trivial unswitching for this
- // invocation of the transform. But this should be allowed only
- // for targets without branch divergence.
- //
- // FIXME: If divergence analysis becomes available to a loop
- // transform, we should allow unswitching for non-trivial uniform
- // branches even on targets that have divergence.
- // https://bugs.llvm.org/show_bug.cgi?id=48819
- bool ContinueWithNonTrivial =
- EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
- if (!ContinueWithNonTrivial)
- return false;
- // Skip non-trivial unswitching for optsize functions.
- if (L.getHeader()->getParent()->hasOptSize())
- return false;
- // Skip cold loops, as unswitching them brings little benefit
- // but increases the code size
- if (PSI && PSI->hasProfileSummary() && BFI &&
- PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) {
- LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
- return false;
- }
- // Perform legality checks.
- if (!isSafeForNoNTrivialUnswitching(L, LI))
- return false;
- // For non-trivial unswitching, because it often creates new loops, we rely on
- // the pass manager to iterate on the loops rather than trying to immediately
- // reach a fixed point. There is no substantial advantage to iterating
- // internally, and if any of the new loops are simplified enough to contain
- // trivial unswitching we want to prefer those.
- // Try to unswitch the best invariant condition. We prefer this full unswitch to
- // a partial unswitch when possible below the threshold.
- if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
- DestroyLoopCB))
- return true;
- // No other opportunities to unswitch.
- return false;
- }
- PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- Function &F = *L.getHeader()->getParent();
- (void)F;
- ProfileSummaryInfo *PSI = nullptr;
- if (auto OuterProxy =
- AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR)
- .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F))
- PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
- LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
- << "\n");
- // Save the current loop name in a variable so that we can report it even
- // after it has been deleted.
- std::string LoopName = std::string(L.getName());
- auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
- bool PartiallyInvariant,
- ArrayRef<Loop *> NewLoops) {
- // If we did a non-trivial unswitch, we have added new (cloned) loops.
- if (!NewLoops.empty())
- U.addSiblingLoops(NewLoops);
- // If the current loop remains valid, we should revisit it to catch any
- // other unswitch opportunities. Otherwise, we need to mark it as deleted.
- if (CurrentLoopValid) {
- if (PartiallyInvariant) {
- // Mark the new loop as partially unswitched, to avoid unswitching on
- // the same condition again.
- auto &Context = L.getHeader()->getContext();
- MDNode *DisableUnswitchMD = MDNode::get(
- Context,
- MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
- MDNode *NewLoopID = makePostTransformationMetadata(
- Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
- {DisableUnswitchMD});
- L.setLoopID(NewLoopID);
- } else
- U.revisitCurrentLoop();
- } else
- U.markLoopAsDeleted(L, LoopName);
- };
- auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
- U.markLoopAsDeleted(L, Name);
- };
- std::optional<MemorySSAUpdater> MSSAU;
- if (AR.MSSA) {
- MSSAU = MemorySSAUpdater(AR.MSSA);
- if (VerifyMemorySSA)
- AR.MSSA->verifyMemorySSA();
- }
- if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
- UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI,
- DestroyLoopCB))
- return PreservedAnalyses::all();
- if (AR.MSSA && VerifyMemorySSA)
- AR.MSSA->verifyMemorySSA();
- // Historically this pass has had issues with the dominator tree so verify it
- // in asserts builds.
- assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
- auto PA = getLoopPassPreservedAnalyses();
- if (AR.MSSA)
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- void SimpleLoopUnswitchPass::printPipeline(
- raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
- static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
- OS, MapClassName2PassName);
- OS << "<";
- OS << (NonTrivial ? "" : "no-") << "nontrivial;";
- OS << (Trivial ? "" : "no-") << "trivial";
- OS << ">";
- }
- namespace {
- class SimpleLoopUnswitchLegacyPass : public LoopPass {
- bool NonTrivial;
- public:
- static char ID; // Pass ID, replacement for typeid
- explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
- : LoopPass(ID), NonTrivial(NonTrivial) {
- initializeSimpleLoopUnswitchLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
- };
- } // end anonymous namespace
- bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
- if (skipLoop(L))
- return false;
- Function &F = *L->getHeader()->getParent();
- LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
- << "\n");
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
- MemorySSAUpdater MSSAU(MSSA);
- auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- auto *SE = SEWP ? &SEWP->getSE() : nullptr;
- auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
- ArrayRef<Loop *> NewLoops) {
- // If we did a non-trivial unswitch, we have added new (cloned) loops.
- for (auto *NewL : NewLoops)
- LPM.addLoop(*NewL);
- // If the current loop remains valid, re-add it to the queue. This is
- // a little wasteful as we'll finish processing the current loop as well,
- // but it is the best we can do in the old PM.
- if (CurrentLoopValid) {
- // If the current loop has been unswitched using a partially invariant
- // condition, we should not re-add the current loop to avoid unswitching
- // on the same condition again.
- if (!PartiallyInvariant)
- LPM.addLoop(*L);
- } else
- LPM.markLoopAsDeleted(*L);
- };
- auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
- LPM.markLoopAsDeleted(L);
- };
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- bool Changed =
- unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
- &MSSAU, nullptr, nullptr, DestroyLoopCB);
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- // Historically this pass has had issues with the dominator tree so verify it
- // in asserts builds.
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- return Changed;
- }
- char SimpleLoopUnswitchLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
- "Simple unswitch loops", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopPass)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
- "Simple unswitch loops", false, false)
- Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
- return new SimpleLoopUnswitchLegacyPass(NonTrivial);
- }
|