123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660 |
- //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass reassociates n-ary add expressions and eliminates the redundancy
- // exposed by the reassociation.
- //
- // A motivating example:
- //
- // void foo(int a, int b) {
- // bar(a + b);
- // bar((a + 2) + b);
- // }
- //
- // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
- // the above code to
- //
- // int t = a + b;
- // bar(t);
- // bar(t + 2);
- //
- // However, the Reassociate pass is unable to do that because it processes each
- // instruction individually and believes (a + 2) + b is the best form according
- // to its rank system.
- //
- // To address this limitation, NaryReassociate reassociates an expression in a
- // form that reuses existing instructions. As a result, NaryReassociate can
- // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
- // (a + b) is computed before.
- //
- // NaryReassociate works as follows. For every instruction in the form of (a +
- // b) + c, it checks whether a + c or b + c is already computed by a dominating
- // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
- // c) + a and removes the redundancy accordingly. To efficiently look up whether
- // an expression is computed before, we store each instruction seen and its SCEV
- // into an SCEV-to-instruction map.
- //
- // Although the algorithm pattern-matches only ternary additions, it
- // automatically handles many >3-ary expressions by walking through the function
- // in the depth-first order. For example, given
- //
- // (a + c) + d
- // ((a + b) + c) + d
- //
- // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
- // ((a + c) + b) + d into ((a + c) + d) + b.
- //
- // Finally, the above dominator-based algorithm may need to be run multiple
- // iterations before emitting optimal code. One source of this need is that we
- // only split an operand when it is used only once. The above algorithm can
- // eliminate an instruction and decrease the usage count of its operands. As a
- // result, an instruction that previously had multiple uses may become a
- // single-use instruction and thus eligible for split consideration. For
- // example,
- //
- // ac = a + c
- // ab = a + b
- // abc = ab + c
- // ab2 = ab + b
- // ab2c = ab2 + c
- //
- // In the first iteration, we cannot reassociate abc to ac+b because ab is used
- // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
- // result, ab2 becomes dead and ab will be used only once in the second
- // iteration.
- //
- // Limitations and TODO items:
- //
- // 1) We only considers n-ary adds and muls for now. This should be extended
- // and generalized.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/NaryReassociate.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GetElementPtrTypeIterator.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- #include <cassert>
- #include <cstdint>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "nary-reassociate"
- namespace {
- class NaryReassociateLegacyPass : public FunctionPass {
- public:
- static char ID;
- NaryReassociateLegacyPass() : FunctionPass(ID) {
- initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool doInitialization(Module &M) override {
- return false;
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- AU.addPreserved<TargetLibraryInfoWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.setPreservesCFG();
- }
- private:
- NaryReassociatePass Impl;
- };
- } // end anonymous namespace
- char NaryReassociateLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
- "Nary reassociation", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
- "Nary reassociation", false, false)
- FunctionPass *llvm::createNaryReassociatePass() {
- return new NaryReassociateLegacyPass();
- }
- bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
- if (skipFunction(F))
- return false;
- auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
- }
- PreservedAnalyses NaryReassociatePass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto *AC = &AM.getResult<AssumptionAnalysis>(F);
- auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
- auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
- auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
- if (!runImpl(F, AC, DT, SE, TLI, TTI))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<ScalarEvolutionAnalysis>();
- return PA;
- }
- bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
- DominatorTree *DT_, ScalarEvolution *SE_,
- TargetLibraryInfo *TLI_,
- TargetTransformInfo *TTI_) {
- AC = AC_;
- DT = DT_;
- SE = SE_;
- TLI = TLI_;
- TTI = TTI_;
- DL = &F.getParent()->getDataLayout();
- bool Changed = false, ChangedInThisIteration;
- do {
- ChangedInThisIteration = doOneIteration(F);
- Changed |= ChangedInThisIteration;
- } while (ChangedInThisIteration);
- return Changed;
- }
- bool NaryReassociatePass::doOneIteration(Function &F) {
- bool Changed = false;
- SeenExprs.clear();
- // Process the basic blocks in a depth first traversal of the dominator
- // tree. This order ensures that all bases of a candidate are in Candidates
- // when we process it.
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- for (const auto Node : depth_first(DT)) {
- BasicBlock *BB = Node->getBlock();
- for (Instruction &OrigI : *BB) {
- const SCEV *OrigSCEV = nullptr;
- if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) {
- Changed = true;
- OrigI.replaceAllUsesWith(NewI);
- // Add 'OrigI' to the list of dead instructions.
- DeadInsts.push_back(WeakTrackingVH(&OrigI));
- // Add the rewritten instruction to SeenExprs; the original
- // instruction is deleted.
- const SCEV *NewSCEV = SE->getSCEV(NewI);
- SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
- // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
- // is equivalent to I. However, ScalarEvolution::getSCEV may
- // weaken nsw causing NewSCEV not to equal OldSCEV. For example,
- // suppose we reassociate
- // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
- // to
- // NewI = &a[sext(i)] + sext(j).
- //
- // ScalarEvolution computes
- // getSCEV(I) = a + 4 * sext(i + j)
- // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
- // which are different SCEVs.
- //
- // To alleviate this issue of ScalarEvolution not always capturing
- // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
- // map both SCEV before and after tryReassociate(I) to I.
- //
- // This improvement is exercised in @reassociate_gep_nsw in
- // nary-gep.ll.
- if (NewSCEV != OrigSCEV)
- SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
- } else if (OrigSCEV)
- SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI));
- }
- }
- // Delete all dead instructions from 'DeadInsts'.
- // Please note ScalarEvolution is updated along the way.
- RecursivelyDeleteTriviallyDeadInstructionsPermissive(
- DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
- return Changed;
- }
- template <typename PredT>
- Instruction *
- NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
- const SCEV *&OrigSCEV) {
- Value *LHS = nullptr;
- Value *RHS = nullptr;
- auto MinMaxMatcher =
- MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
- m_Value(LHS), m_Value(RHS));
- if (match(I, MinMaxMatcher)) {
- OrigSCEV = SE->getSCEV(I);
- if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
- tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS)))
- return NewMinMax;
- if (auto *NewMinMax = dyn_cast_or_null<Instruction>(
- tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS)))
- return NewMinMax;
- }
- return nullptr;
- }
- Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
- const SCEV *&OrigSCEV) {
- if (!SE->isSCEVable(I->getType()))
- return nullptr;
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::Mul:
- OrigSCEV = SE->getSCEV(I);
- return tryReassociateBinaryOp(cast<BinaryOperator>(I));
- case Instruction::GetElementPtr:
- OrigSCEV = SE->getSCEV(I);
- return tryReassociateGEP(cast<GetElementPtrInst>(I));
- default:
- break;
- }
- // Try to match signed/unsigned Min/Max.
- Instruction *ResI = nullptr;
- // TODO: Currently min/max reassociation is restricted to integer types only
- // due to use of SCEVExpander which my introduce incompatible forms of min/max
- // for pointer types.
- if (I->getType()->isIntegerTy())
- if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
- (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
- (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
- (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
- return ResI;
- return nullptr;
- }
- static bool isGEPFoldable(GetElementPtrInst *GEP,
- const TargetTransformInfo *TTI) {
- SmallVector<const Value *, 4> Indices(GEP->indices());
- return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
- Indices) == TargetTransformInfo::TCC_Free;
- }
- Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
- // Not worth reassociating GEP if it is foldable.
- if (isGEPFoldable(GEP, TTI))
- return nullptr;
- gep_type_iterator GTI = gep_type_begin(*GEP);
- for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
- if (GTI.isSequential()) {
- if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
- GTI.getIndexedType())) {
- return NewGEP;
- }
- }
- }
- return nullptr;
- }
- bool NaryReassociatePass::requiresSignExtension(Value *Index,
- GetElementPtrInst *GEP) {
- unsigned PointerSizeInBits =
- DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
- return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
- }
- GetElementPtrInst *
- NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
- unsigned I, Type *IndexedType) {
- Value *IndexToSplit = GEP->getOperand(I + 1);
- if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
- IndexToSplit = SExt->getOperand(0);
- } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
- // zext can be treated as sext if the source is non-negative.
- if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
- IndexToSplit = ZExt->getOperand(0);
- }
- if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
- // If the I-th index needs sext and the underlying add is not equipped with
- // nsw, we cannot split the add because
- // sext(LHS + RHS) != sext(LHS) + sext(RHS).
- if (requiresSignExtension(IndexToSplit, GEP) &&
- computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
- OverflowResult::NeverOverflows)
- return nullptr;
- Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
- // IndexToSplit = LHS + RHS.
- if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
- return NewGEP;
- // Symmetrically, try IndexToSplit = RHS + LHS.
- if (LHS != RHS) {
- if (auto *NewGEP =
- tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
- return NewGEP;
- }
- }
- return nullptr;
- }
- GetElementPtrInst *
- NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
- unsigned I, Value *LHS,
- Value *RHS, Type *IndexedType) {
- // Look for GEP's closest dominator that has the same SCEV as GEP except that
- // the I-th index is replaced with LHS.
- SmallVector<const SCEV *, 4> IndexExprs;
- for (Use &Index : GEP->indices())
- IndexExprs.push_back(SE->getSCEV(Index));
- // Replace the I-th index with LHS.
- IndexExprs[I] = SE->getSCEV(LHS);
- if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
- DL->getTypeSizeInBits(LHS->getType()).getFixedValue() <
- DL->getTypeSizeInBits(GEP->getOperand(I)->getType())
- .getFixedValue()) {
- // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
- // zext if the source operand is proved non-negative. We should do that
- // consistently so that CandidateExpr more likely appears before. See
- // @reassociate_gep_assume for an example of this canonicalization.
- IndexExprs[I] =
- SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
- }
- const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
- IndexExprs);
- Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
- if (Candidate == nullptr)
- return nullptr;
- IRBuilder<> Builder(GEP);
- // Candidate does not necessarily have the same pointer type as GEP. Use
- // bitcast or pointer cast to make sure they have the same type, so that the
- // later RAUW doesn't complain.
- Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
- assert(Candidate->getType() == GEP->getType());
- // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
- uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
- Type *ElementType = GEP->getResultElementType();
- uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
- // Another less rare case: because I is not necessarily the last index of the
- // GEP, the size of the type at the I-th index (IndexedSize) is not
- // necessarily divisible by ElementSize. For example,
- //
- // #pragma pack(1)
- // struct S {
- // int a[3];
- // int64 b[8];
- // };
- // #pragma pack()
- //
- // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
- //
- // TODO: bail out on this case for now. We could emit uglygep.
- if (IndexedSize % ElementSize != 0)
- return nullptr;
- // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
- Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
- if (RHS->getType() != IntPtrTy)
- RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
- if (IndexedSize != ElementSize) {
- RHS = Builder.CreateMul(
- RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
- }
- GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
- Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
- NewGEP->setIsInBounds(GEP->isInBounds());
- NewGEP->takeName(GEP);
- return NewGEP;
- }
- Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
- Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
- // There is no need to reassociate 0.
- if (SE->getSCEV(I)->isZero())
- return nullptr;
- if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
- return NewI;
- if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
- return NewI;
- return nullptr;
- }
- Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
- BinaryOperator *I) {
- Value *A = nullptr, *B = nullptr;
- // To be conservative, we reassociate I only when it is the only user of (A op
- // B).
- if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
- // I = (A op B) op RHS
- // = (A op RHS) op B or (B op RHS) op A
- const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
- const SCEV *RHSExpr = SE->getSCEV(RHS);
- if (BExpr != RHSExpr) {
- if (auto *NewI =
- tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
- return NewI;
- }
- if (AExpr != RHSExpr) {
- if (auto *NewI =
- tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
- return NewI;
- }
- }
- return nullptr;
- }
- Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
- Value *RHS,
- BinaryOperator *I) {
- // Look for the closest dominator LHS of I that computes LHSExpr, and replace
- // I with LHS op RHS.
- auto *LHS = findClosestMatchingDominator(LHSExpr, I);
- if (LHS == nullptr)
- return nullptr;
- Instruction *NewI = nullptr;
- switch (I->getOpcode()) {
- case Instruction::Add:
- NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
- break;
- case Instruction::Mul:
- NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
- break;
- default:
- llvm_unreachable("Unexpected instruction.");
- }
- NewI->takeName(I);
- return NewI;
- }
- bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
- Value *&Op1, Value *&Op2) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
- case Instruction::Mul:
- return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
- default:
- llvm_unreachable("Unexpected instruction.");
- }
- return false;
- }
- const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
- const SCEV *LHS,
- const SCEV *RHS) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- return SE->getAddExpr(LHS, RHS);
- case Instruction::Mul:
- return SE->getMulExpr(LHS, RHS);
- default:
- llvm_unreachable("Unexpected instruction.");
- }
- return nullptr;
- }
- Instruction *
- NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
- Instruction *Dominatee) {
- auto Pos = SeenExprs.find(CandidateExpr);
- if (Pos == SeenExprs.end())
- return nullptr;
- auto &Candidates = Pos->second;
- // Because we process the basic blocks in pre-order of the dominator tree, a
- // candidate that doesn't dominate the current instruction won't dominate any
- // future instruction either. Therefore, we pop it out of the stack. This
- // optimization makes the algorithm O(n).
- while (!Candidates.empty()) {
- // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
- // removed
- // during rewriting.
- if (Value *Candidate = Candidates.back()) {
- Instruction *CandidateInstruction = cast<Instruction>(Candidate);
- if (DT->dominates(CandidateInstruction, Dominatee))
- return CandidateInstruction;
- }
- Candidates.pop_back();
- }
- return nullptr;
- }
- template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
- if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>)
- return scSMaxExpr;
- else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>)
- return scUMaxExpr;
- else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>)
- return scSMinExpr;
- else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>)
- return scUMinExpr;
- llvm_unreachable("Can't convert MinMax pattern to SCEV type");
- return scUnknown;
- }
- // Parameters:
- // I - instruction matched by MaxMinMatch matcher
- // MaxMinMatch - min/max idiom matcher
- // LHS - first operand of I
- // RHS - second operand of I
- template <typename MaxMinT>
- Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
- MaxMinT MaxMinMatch,
- Value *LHS, Value *RHS) {
- Value *A = nullptr, *B = nullptr;
- MaxMinT m_MaxMin(m_Value(A), m_Value(B));
- if (LHS->hasNUsesOrMore(3) ||
- // The optimization is profitable only if LHS can be removed in the end.
- // In other words LHS should be used (directly or indirectly) by I only.
- llvm::any_of(LHS->users(),
- [&](auto *U) {
- return U != I &&
- !(U->hasOneUser() && *U->users().begin() == I);
- }) ||
- !match(LHS, m_MaxMin))
- return nullptr;
- auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B,
- const SCEV *BExpr, Value *C,
- const SCEV *CExpr) -> Value * {
- SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr};
- const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
- const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
- Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
- if (!R1MinMax)
- return nullptr;
- LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n");
- SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(C),
- SE->getUnknown(R1MinMax)};
- const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
- SCEVExpander Expander(*SE, *DL, "nary-reassociate");
- Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
- NewMinMax->setName(Twine(I->getName()).concat(".nary"));
- LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n"
- << "NARY: Inserting: " << *NewMinMax << "\n");
- return NewMinMax;
- };
- const SCEV *AExpr = SE->getSCEV(A);
- const SCEV *BExpr = SE->getSCEV(B);
- const SCEV *RHSExpr = SE->getSCEV(RHS);
- if (BExpr != RHSExpr) {
- // Try (A op RHS) op B
- if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr))
- return NewMinMax;
- }
- if (AExpr != RHSExpr) {
- // Try (RHS op B) op A
- if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr))
- return NewMinMax;
- }
- return nullptr;
- }
|