123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 |
- //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass hoists and/or decomposes/recomposes integer division and remainder
- // instructions to enable CFG improvements and better codegen.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/DivRemPairs.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/DebugCounter.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BypassSlowDivision.h"
- #include <optional>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "div-rem-pairs"
- STATISTIC(NumPairs, "Number of div/rem pairs");
- STATISTIC(NumRecomposed, "Number of instructions recomposed");
- STATISTIC(NumHoisted, "Number of instructions hoisted");
- STATISTIC(NumDecomposed, "Number of instructions decomposed");
- DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
- "Controls transformations in div-rem-pairs pass");
- namespace {
- struct ExpandedMatch {
- DivRemMapKey Key;
- Instruction *Value;
- };
- } // namespace
- /// See if we can match: (which is the form we expand into)
- /// X - ((X ?/ Y) * Y)
- /// which is equivalent to:
- /// X ?% Y
- static std::optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
- Value *Dividend, *XroundedDownToMultipleOfY;
- if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
- return std::nullopt;
- Value *Divisor;
- Instruction *Div;
- // Look for ((X / Y) * Y)
- if (!match(
- XroundedDownToMultipleOfY,
- m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
- m_Instruction(Div)),
- m_Deferred(Divisor))))
- return std::nullopt;
- ExpandedMatch M;
- M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
- M.Key.Dividend = Dividend;
- M.Key.Divisor = Divisor;
- M.Value = &I;
- return M;
- }
- namespace {
- /// A thin wrapper to store two values that we matched as div-rem pair.
- /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
- struct DivRemPairWorklistEntry {
- /// The actual udiv/sdiv instruction. Source of truth.
- AssertingVH<Instruction> DivInst;
- /// The instruction that we have matched as a remainder instruction.
- /// Should only be used as Value, don't introspect it.
- AssertingVH<Instruction> RemInst;
- DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
- : DivInst(DivInst_), RemInst(RemInst_) {
- assert((DivInst->getOpcode() == Instruction::UDiv ||
- DivInst->getOpcode() == Instruction::SDiv) &&
- "Not a division.");
- assert(DivInst->getType() == RemInst->getType() && "Types should match.");
- // We can't check anything else about remainder instruction,
- // it's not strictly required to be a urem/srem.
- }
- /// The type for this pair, identical for both the div and rem.
- Type *getType() const { return DivInst->getType(); }
- /// Is this pair signed or unsigned?
- bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
- /// In this pair, what are the divident and divisor?
- Value *getDividend() const { return DivInst->getOperand(0); }
- Value *getDivisor() const { return DivInst->getOperand(1); }
- bool isRemExpanded() const {
- switch (RemInst->getOpcode()) {
- case Instruction::SRem:
- case Instruction::URem:
- return false; // single 'rem' instruction - unexpanded form.
- default:
- return true; // anything else means we have remainder in expanded form.
- }
- }
- };
- } // namespace
- using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
- /// Find matching pairs of integer div/rem ops (they have the same numerator,
- /// denominator, and signedness). Place those pairs into a worklist for further
- /// processing. This indirection is needed because we have to use TrackingVH<>
- /// because we will be doing RAUW, and if one of the rem instructions we change
- /// happens to be an input to another div/rem in the maps, we'd have problems.
- static DivRemWorklistTy getWorklist(Function &F) {
- // Insert all divide and remainder instructions into maps keyed by their
- // operands and opcode (signed or unsigned).
- DenseMap<DivRemMapKey, Instruction *> DivMap;
- // Use a MapVector for RemMap so that instructions are moved/inserted in a
- // deterministic order.
- MapVector<DivRemMapKey, Instruction *> RemMap;
- for (auto &BB : F) {
- for (auto &I : BB) {
- if (I.getOpcode() == Instruction::SDiv)
- DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
- else if (I.getOpcode() == Instruction::UDiv)
- DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
- else if (I.getOpcode() == Instruction::SRem)
- RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
- else if (I.getOpcode() == Instruction::URem)
- RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
- else if (auto Match = matchExpandedRem(I))
- RemMap[Match->Key] = Match->Value;
- }
- }
- // We'll accumulate the matching pairs of div-rem instructions here.
- DivRemWorklistTy Worklist;
- // We can iterate over either map because we are only looking for matched
- // pairs. Choose remainders for efficiency because they are usually even more
- // rare than division.
- for (auto &RemPair : RemMap) {
- // Find the matching division instruction from the division map.
- auto It = DivMap.find(RemPair.first);
- if (It == DivMap.end())
- continue;
- // We have a matching pair of div/rem instructions.
- NumPairs++;
- Instruction *RemInst = RemPair.second;
- // Place it in the worklist.
- Worklist.emplace_back(It->second, RemInst);
- }
- return Worklist;
- }
- /// Find matching pairs of integer div/rem ops (they have the same numerator,
- /// denominator, and signedness). If they exist in different basic blocks, bring
- /// them together by hoisting or replace the common division operation that is
- /// implicit in the remainder:
- /// X % Y <--> X - ((X / Y) * Y).
- ///
- /// We can largely ignore the normal safety and cost constraints on speculation
- /// of these ops when we find a matching pair. This is because we are already
- /// guaranteed that any exceptions and most cost are already incurred by the
- /// first member of the pair.
- ///
- /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
- /// SimplifyCFG, but it's split off on its own because it's different enough
- /// that it doesn't quite match the stated objectives of those passes.
- static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
- const DominatorTree &DT) {
- bool Changed = false;
- // Get the matching pairs of div-rem instructions. We want this extra
- // indirection to avoid dealing with having to RAUW the keys of the maps.
- DivRemWorklistTy Worklist = getWorklist(F);
- // Process each entry in the worklist.
- for (DivRemPairWorklistEntry &E : Worklist) {
- if (!DebugCounter::shouldExecute(DRPCounter))
- continue;
- bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
- auto &DivInst = E.DivInst;
- auto &RemInst = E.RemInst;
- const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
- (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
- if (HasDivRemOp && E.isRemExpanded()) {
- // The target supports div+rem but the rem is expanded.
- // We should recompose it first.
- Value *X = E.getDividend();
- Value *Y = E.getDivisor();
- Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
- : BinaryOperator::CreateURem(X, Y);
- // Note that we place it right next to the original expanded instruction,
- // and letting further handling to move it if needed.
- RealRem->setName(RemInst->getName() + ".recomposed");
- RealRem->insertAfter(RemInst);
- Instruction *OrigRemInst = RemInst;
- // Update AssertingVH<> with new instruction so it doesn't assert.
- RemInst = RealRem;
- // And replace the original instruction with the new one.
- OrigRemInst->replaceAllUsesWith(RealRem);
- OrigRemInst->eraseFromParent();
- NumRecomposed++;
- // Note that we have left ((X / Y) * Y) around.
- // If it had other uses we could rewrite it as X - X % Y
- Changed = true;
- }
- assert((!E.isRemExpanded() || !HasDivRemOp) &&
- "*If* the target supports div-rem, then by now the RemInst *is* "
- "Instruction::[US]Rem.");
- // If the target supports div+rem and the instructions are in the same block
- // already, there's nothing to do. The backend should handle this. If the
- // target does not support div+rem, then we will decompose the rem.
- if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
- continue;
- bool DivDominates = DT.dominates(DivInst, RemInst);
- if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
- // We have matching div-rem pair, but they are in two different blocks,
- // neither of which dominates one another.
- BasicBlock *PredBB = nullptr;
- BasicBlock *DivBB = DivInst->getParent();
- BasicBlock *RemBB = RemInst->getParent();
- // It's only safe to hoist if every instruction before the Div/Rem in the
- // basic block is guaranteed to transfer execution.
- auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) {
- for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E;
- ++I)
- if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
- return false;
- return true;
- };
- // Look for something like this
- // PredBB
- // | \
- // | Rem
- // | /
- // Div
- //
- // If the Rem block has a single predecessor and successor, and all paths
- // from PredBB go to either RemBB or DivBB, and execution of RemBB and
- // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If
- // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave
- // Rem where it is and rewrite it to mul/sub.
- if (RemBB->getSingleSuccessor() == DivBB) {
- PredBB = RemBB->getUniquePredecessor();
- // Look for something like this
- // PredBB
- // / \
- // Div Rem
- //
- // If the Rem and Din blocks share a unique predecessor, and all
- // paths from PredBB go to either RemBB or DivBB, and execution of RemBB
- // and DivBB will always reach the Div/Rem, we can hoist Div to PredBB.
- // If we have a DivRem operation we can also hoist Rem. By hoisting both
- // ops to the same block, we reduce code size and allow the DivRem to
- // issue sooner. Without a DivRem op, this transformation is
- // unprofitable because we would end up performing an extra Mul+Sub on
- // the Rem path.
- } else if (BasicBlock *RemPredBB = RemBB->getUniquePredecessor()) {
- // This hoist is only profitable when the target has a DivRem op.
- if (HasDivRemOp && RemPredBB == DivBB->getUniquePredecessor())
- PredBB = RemPredBB;
- }
- // FIXME: We could handle more hoisting cases.
- if (PredBB && !isa<CatchSwitchInst>(PredBB->getTerminator()) &&
- isGuaranteedToTransferExecutionToSuccessor(PredBB->getTerminator()) &&
- IsSafeToHoist(RemInst, RemBB) && IsSafeToHoist(DivInst, DivBB) &&
- all_of(successors(PredBB),
- [&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) &&
- all_of(predecessors(DivBB),
- [&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) {
- DivDominates = true;
- DivInst->moveBefore(PredBB->getTerminator());
- Changed = true;
- if (HasDivRemOp) {
- RemInst->moveBefore(PredBB->getTerminator());
- continue;
- }
- } else
- continue;
- }
- // The target does not have a single div/rem operation,
- // and the rem is already in expanded form. Nothing to do.
- if (!HasDivRemOp && E.isRemExpanded())
- continue;
- if (HasDivRemOp) {
- // The target has a single div/rem operation. Hoist the lower instruction
- // to make the matched pair visible to the backend.
- if (DivDominates)
- RemInst->moveAfter(DivInst);
- else
- DivInst->moveAfter(RemInst);
- NumHoisted++;
- } else {
- // The target does not have a single div/rem operation,
- // and the rem is *not* in a already-expanded form.
- // Decompose the remainder calculation as:
- // X % Y --> X - ((X / Y) * Y).
- assert(!RemOriginallyWasInExpandedForm &&
- "We should not be expanding if the rem was in expanded form to "
- "begin with.");
- Value *X = E.getDividend();
- Value *Y = E.getDivisor();
- Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
- Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
- // If the remainder dominates, then hoist the division up to that block:
- //
- // bb1:
- // %rem = srem %x, %y
- // bb2:
- // %div = sdiv %x, %y
- // -->
- // bb1:
- // %div = sdiv %x, %y
- // %mul = mul %div, %y
- // %rem = sub %x, %mul
- //
- // If the division dominates, it's already in the right place. The mul+sub
- // will be in a different block because we don't assume that they are
- // cheap to speculatively execute:
- //
- // bb1:
- // %div = sdiv %x, %y
- // bb2:
- // %rem = srem %x, %y
- // -->
- // bb1:
- // %div = sdiv %x, %y
- // bb2:
- // %mul = mul %div, %y
- // %rem = sub %x, %mul
- //
- // If the div and rem are in the same block, we do the same transform,
- // but any code movement would be within the same block.
- if (!DivDominates)
- DivInst->moveBefore(RemInst);
- Mul->insertAfter(RemInst);
- Sub->insertAfter(Mul);
- // If X can be undef, X should be frozen first.
- // For example, let's assume that Y = 1 & X = undef:
- // %div = sdiv undef, 1 // %div = undef
- // %rem = srem undef, 1 // %rem = 0
- // =>
- // %div = sdiv undef, 1 // %div = undef
- // %mul = mul %div, 1 // %mul = undef
- // %rem = sub %x, %mul // %rem = undef - undef = undef
- // If X is not frozen, %rem becomes undef after transformation.
- // TODO: We need a undef-specific checking function in ValueTracking
- if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) {
- auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst);
- DivInst->setOperand(0, FrX);
- Sub->setOperand(0, FrX);
- }
- // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
- // but %rem in tgt can be one of many integer values.
- if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) {
- auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst);
- DivInst->setOperand(1, FrY);
- Mul->setOperand(1, FrY);
- }
- // Now kill the explicit remainder. We have replaced it with:
- // (sub X, (mul (div X, Y), Y)
- Sub->setName(RemInst->getName() + ".decomposed");
- Instruction *OrigRemInst = RemInst;
- // Update AssertingVH<> with new instruction so it doesn't assert.
- RemInst = Sub;
- // And replace the original instruction with the new one.
- OrigRemInst->replaceAllUsesWith(Sub);
- OrigRemInst->eraseFromParent();
- NumDecomposed++;
- }
- Changed = true;
- }
- return Changed;
- }
- // Pass manager boilerplate below here.
- namespace {
- struct DivRemPairsLegacyPass : public FunctionPass {
- static char ID;
- DivRemPairsLegacyPass() : FunctionPass(ID) {
- initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.setPreservesCFG();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- FunctionPass::getAnalysisUsage(AU);
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- return optimizeDivRem(F, TTI, DT);
- }
- };
- } // namespace
- char DivRemPairsLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
- "Hoist/decompose integer division and remainder", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
- "Hoist/decompose integer division and remainder", false,
- false)
- FunctionPass *llvm::createDivRemPairsPass() {
- return new DivRemPairsLegacyPass();
- }
- PreservedAnalyses DivRemPairsPass::run(Function &F,
- FunctionAnalysisManager &FAM) {
- TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
- DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
- if (!optimizeDivRem(F, TTI, DT))
- return PreservedAnalyses::all();
- // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
|