123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- // Copyright (c) 2016 The mathutil Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package mathutil // import "modernc.org/mathutil"
- import (
- "fmt"
- "math/big"
- )
- func abs(n int) uint64 {
- if n >= 0 {
- return uint64(n)
- }
- return uint64(-n)
- }
- // QuadPolyDiscriminant returns the discriminant of a quadratic polynomial in
- // one variable of the form a*x^2+b*x+c with integer coefficients a, b, c, or
- // an error on overflow.
- //
- // ds is the square of the discriminant. If |ds| is a square number, d is set
- // to sqrt(|ds|), otherwise d is < 0.
- func QuadPolyDiscriminant(a, b, c int) (ds, d int, _ error) {
- if 2*BitLenUint64(abs(b)) > IntBits-1 ||
- 2+BitLenUint64(abs(a))+BitLenUint64(abs(c)) > IntBits-1 {
- return 0, 0, fmt.Errorf("overflow")
- }
- ds = b*b - 4*a*c
- s := ds
- if s < 0 {
- s = -s
- }
- d64 := SqrtUint64(uint64(s))
- if d64*d64 != uint64(s) {
- return ds, -1, nil
- }
- return ds, int(d64), nil
- }
- // PolyFactor describes an irreducible factor of a polynomial in one variable
- // with integer coefficients P, Q of the form P*x+Q.
- type PolyFactor struct {
- P, Q int
- }
- // QuadPolyFactors returns the content and the irreducible factors of the
- // primitive part of a quadratic polynomial in one variable with integer
- // coefficients a, b, c of the form a*x^2+b*x+c in integers, or an error on
- // overflow.
- //
- // If the factorization in integers does not exists, the return value is (0,
- // nil, nil).
- //
- // See also:
- // https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
- func QuadPolyFactors(a, b, c int) (content int, primitivePart []PolyFactor, _ error) {
- content = int(GCDUint64(abs(a), GCDUint64(abs(b), abs(c))))
- switch {
- case content == 0:
- content = 1
- case content > 0:
- if a < 0 || a == 0 && b < 0 {
- content = -content
- }
- }
- a /= content
- b /= content
- c /= content
- if a == 0 {
- if b == 0 {
- return content, []PolyFactor{{0, c}}, nil
- }
- if b < 0 && c < 0 {
- b = -b
- c = -c
- }
- if b < 0 {
- b = -b
- c = -c
- }
- return content, []PolyFactor{{b, c}}, nil
- }
- ds, d, err := QuadPolyDiscriminant(a, b, c)
- if err != nil {
- return 0, nil, err
- }
- if ds < 0 || d < 0 {
- return 0, nil, nil
- }
- x1num := -b + d
- x1denom := 2 * a
- gcd := int(GCDUint64(abs(x1num), abs(x1denom)))
- x1num /= gcd
- x1denom /= gcd
- x2num := -b - d
- x2denom := 2 * a
- gcd = int(GCDUint64(abs(x2num), abs(x2denom)))
- x2num /= gcd
- x2denom /= gcd
- return content, []PolyFactor{{x1denom, -x1num}, {x2denom, -x2num}}, nil
- }
- // QuadPolyDiscriminantBig returns the discriminant of a quadratic polynomial
- // in one variable of the form a*x^2+b*x+c with integer coefficients a, b, c.
- //
- // ds is the square of the discriminant. If |ds| is a square number, d is set
- // to sqrt(|ds|), otherwise d is nil.
- func QuadPolyDiscriminantBig(a, b, c *big.Int) (ds, d *big.Int) {
- ds = big.NewInt(0).Set(b)
- ds.Mul(ds, b)
- x := big.NewInt(4)
- x.Mul(x, a)
- x.Mul(x, c)
- ds.Sub(ds, x)
- s := big.NewInt(0).Set(ds)
- if s.Sign() < 0 {
- s.Neg(s)
- }
- if s.Bit(1) != 0 { // s is not a square number
- return ds, nil
- }
- d = SqrtBig(s)
- x.Set(d)
- x.Mul(x, x)
- if x.Cmp(s) != 0 { // s is not a square number
- d = nil
- }
- return ds, d
- }
- // PolyFactorBig describes an irreducible factor of a polynomial in one
- // variable with integer coefficients P, Q of the form P*x+Q.
- type PolyFactorBig struct {
- P, Q *big.Int
- }
- // QuadPolyFactorsBig returns the content and the irreducible factors of the
- // primitive part of a quadratic polynomial in one variable with integer
- // coefficients a, b, c of the form a*x^2+b*x+c in integers.
- //
- // If the factorization in integers does not exists, the return value is (nil,
- // nil).
- //
- // See also:
- // https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization
- func QuadPolyFactorsBig(a, b, c *big.Int) (content *big.Int, primitivePart []PolyFactorBig) {
- content = bigGCD(bigAbs(a), bigGCD(bigAbs(b), bigAbs(c)))
- switch {
- case content.Sign() == 0:
- content.SetInt64(1)
- case content.Sign() > 0:
- if a.Sign() < 0 || a.Sign() == 0 && b.Sign() < 0 {
- content = bigNeg(content)
- }
- }
- a = bigDiv(a, content)
- b = bigDiv(b, content)
- c = bigDiv(c, content)
- if a.Sign() == 0 {
- if b.Sign() == 0 {
- return content, []PolyFactorBig{{big.NewInt(0), c}}
- }
- if b.Sign() < 0 && c.Sign() < 0 {
- b = bigNeg(b)
- c = bigNeg(c)
- }
- if b.Sign() < 0 {
- b = bigNeg(b)
- c = bigNeg(c)
- }
- return content, []PolyFactorBig{{b, c}}
- }
- ds, d := QuadPolyDiscriminantBig(a, b, c)
- if ds.Sign() < 0 || d == nil {
- return nil, nil
- }
- x1num := bigAdd(bigNeg(b), d)
- x1denom := bigMul(_2, a)
- gcd := bigGCD(bigAbs(x1num), bigAbs(x1denom))
- x1num = bigDiv(x1num, gcd)
- x1denom = bigDiv(x1denom, gcd)
- x2num := bigAdd(bigNeg(b), bigNeg(d))
- x2denom := bigMul(_2, a)
- gcd = bigGCD(bigAbs(x2num), bigAbs(x2denom))
- x2num = bigDiv(x2num, gcd)
- x2denom = bigDiv(x2denom, gcd)
- return content, []PolyFactorBig{{x1denom, bigNeg(x1num)}, {x2denom, bigNeg(x2num)}}
- }
- func bigAbs(n *big.Int) *big.Int {
- n = big.NewInt(0).Set(n)
- if n.Sign() >= 0 {
- return n
- }
- return n.Neg(n)
- }
- func bigDiv(a, b *big.Int) *big.Int {
- a = big.NewInt(0).Set(a)
- return a.Div(a, b)
- }
- func bigGCD(a, b *big.Int) *big.Int {
- a = big.NewInt(0).Set(a)
- b = big.NewInt(0).Set(b)
- for b.Sign() != 0 {
- c := big.NewInt(0)
- c.Mod(a, b)
- a, b = b, c
- }
- return a
- }
- func bigNeg(n *big.Int) *big.Int {
- n = big.NewInt(0).Set(n)
- return n.Neg(n)
- }
- func bigMul(a, b *big.Int) *big.Int {
- r := big.NewInt(0).Set(a)
- return r.Mul(r, b)
- }
- func bigAdd(a, b *big.Int) *big.Int {
- r := big.NewInt(0).Set(a)
- return r.Add(r, b)
- }
|