123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452 |
- /* Byte-wise substring search, using the Two-Way algorithm.
- Copyright (C) 2008-2013 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- Written by Eric Blake <ebb9@byu.net>, 2008.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 3, or (at your option)
- any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License along
- with this program; if not, see <http://www.gnu.org/licenses/>. */
- /* Before including this file, you need to include <config.h> and
- <string.h>, and define:
- RESULT_TYPE A macro that expands to the return type.
- AVAILABLE(h, h_l, j, n_l)
- A macro that returns nonzero if there are
- at least N_L bytes left starting at H[J].
- H is 'unsigned char *', H_L, J, and N_L
- are 'size_t'; H_L is an lvalue. For
- NUL-terminated searches, H_L can be
- modified each iteration to avoid having
- to compute the end of H up front.
- For case-insensitivity, you may optionally define:
- CMP_FUNC(p1, p2, l) A macro that returns 0 iff the first L
- characters of P1 and P2 are equal.
- CANON_ELEMENT(c) A macro that canonicalizes an element right after
- it has been fetched from one of the two strings.
- The argument is an 'unsigned char'; the result
- must be an 'unsigned char' as well.
- This file undefines the macros documented above, and defines
- LONG_NEEDLE_THRESHOLD.
- */
- #include <limits.h>
- #include <stdint.h>
- /* We use the Two-Way string matching algorithm (also known as
- Chrochemore-Perrin), which guarantees linear complexity with
- constant space. Additionally, for long needles, we also use a bad
- character shift table similar to the Boyer-Moore algorithm to
- achieve improved (potentially sub-linear) performance.
- See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260,
- http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm,
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.6641&rep=rep1&type=pdf
- */
- /* Point at which computing a bad-byte shift table is likely to be
- worthwhile. Small needles should not compute a table, since it
- adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
- speedup no greater than a factor of NEEDLE_LEN. The larger the
- needle, the better the potential performance gain. On the other
- hand, on non-POSIX systems with CHAR_BIT larger than eight, the
- memory required for the table is prohibitive. */
- #if CHAR_BIT < 10
- # define LONG_NEEDLE_THRESHOLD 32U
- #else
- # define LONG_NEEDLE_THRESHOLD SIZE_MAX
- #endif
- #ifndef MAX
- # define MAX(a, b) ((a < b) ? (b) : (a))
- #endif
- #ifndef CANON_ELEMENT
- # define CANON_ELEMENT(c) c
- #endif
- #ifndef CMP_FUNC
- # define CMP_FUNC memcmp
- #endif
- /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
- Return the index of the first byte in the right half, and set
- *PERIOD to the global period of the right half.
- The global period of a string is the smallest index (possibly its
- length) at which all remaining bytes in the string are repetitions
- of the prefix (the last repetition may be a subset of the prefix).
- When NEEDLE is factored into two halves, a local period is the
- length of the smallest word that shares a suffix with the left half
- and shares a prefix with the right half. All factorizations of a
- non-empty NEEDLE have a local period of at least 1 and no greater
- than NEEDLE_LEN.
- A critical factorization has the property that the local period
- equals the global period. All strings have at least one critical
- factorization with the left half smaller than the global period.
- And while some strings have more than one critical factorization,
- it is provable that with an ordered alphabet, at least one of the
- critical factorizations corresponds to a maximal suffix.
- Given an ordered alphabet, a critical factorization can be computed
- in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
- shorter of two ordered maximal suffixes. The ordered maximal
- suffixes are determined by lexicographic comparison while tracking
- periodicity. */
- static size_t
- critical_factorization (const unsigned char *needle, size_t needle_len,
- size_t *period)
- {
- /* Index of last byte of left half, or SIZE_MAX. */
- size_t max_suffix, max_suffix_rev;
- size_t j; /* Index into NEEDLE for current candidate suffix. */
- size_t k; /* Offset into current period. */
- size_t p; /* Intermediate period. */
- unsigned char a, b; /* Current comparison bytes. */
- /* Special case NEEDLE_LEN of 1 or 2 (all callers already filtered
- out 0-length needles. */
- if (needle_len < 3)
- {
- *period = 1;
- return needle_len - 1;
- }
- /* Invariants:
- 0 <= j < NEEDLE_LEN - 1
- -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
- min(max_suffix, max_suffix_rev) < global period of NEEDLE
- 1 <= p <= global period of NEEDLE
- p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
- 1 <= k <= p
- */
- /* Perform lexicographic search. */
- max_suffix = SIZE_MAX;
- j = 0;
- k = p = 1;
- while (j + k < needle_len)
- {
- a = CANON_ELEMENT (needle[j + k]);
- b = CANON_ELEMENT (needle[max_suffix + k]);
- if (a < b)
- {
- /* Suffix is smaller, period is entire prefix so far. */
- j += k;
- k = 1;
- p = j - max_suffix;
- }
- else if (a == b)
- {
- /* Advance through repetition of the current period. */
- if (k != p)
- ++k;
- else
- {
- j += p;
- k = 1;
- }
- }
- else /* b < a */
- {
- /* Suffix is larger, start over from current location. */
- max_suffix = j++;
- k = p = 1;
- }
- }
- *period = p;
- /* Perform reverse lexicographic search. */
- max_suffix_rev = SIZE_MAX;
- j = 0;
- k = p = 1;
- while (j + k < needle_len)
- {
- a = CANON_ELEMENT (needle[j + k]);
- b = CANON_ELEMENT (needle[max_suffix_rev + k]);
- if (b < a)
- {
- /* Suffix is smaller, period is entire prefix so far. */
- j += k;
- k = 1;
- p = j - max_suffix_rev;
- }
- else if (a == b)
- {
- /* Advance through repetition of the current period. */
- if (k != p)
- ++k;
- else
- {
- j += p;
- k = 1;
- }
- }
- else /* a < b */
- {
- /* Suffix is larger, start over from current location. */
- max_suffix_rev = j++;
- k = p = 1;
- }
- }
- /* Choose the shorter suffix. Return the index of the first byte of
- the right half, rather than the last byte of the left half.
- For some examples, 'banana' has two critical factorizations, both
- exposed by the two lexicographic extreme suffixes of 'anana' and
- 'nana', where both suffixes have a period of 2. On the other
- hand, with 'aab' and 'bba', both strings have a single critical
- factorization of the last byte, with the suffix having a period
- of 1. While the maximal lexicographic suffix of 'aab' is 'b',
- the maximal lexicographic suffix of 'bba' is 'ba', which is not a
- critical factorization. Conversely, the maximal reverse
- lexicographic suffix of 'a' works for 'bba', but not 'ab' for
- 'aab'. The shorter suffix of the two will always be a critical
- factorization. */
- if (max_suffix_rev + 1 < max_suffix + 1)
- return max_suffix + 1;
- *period = p;
- return max_suffix_rev + 1;
- }
- /* Return the first location of non-empty NEEDLE within HAYSTACK, or
- NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
- method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
- Performance is guaranteed to be linear, with an initialization cost
- of 2 * NEEDLE_LEN comparisons.
- If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
- most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
- If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
- HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. */
- static RETURN_TYPE
- two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
- const unsigned char *needle, size_t needle_len)
- {
- size_t i; /* Index into current byte of NEEDLE. */
- size_t j; /* Index into current window of HAYSTACK. */
- size_t period; /* The period of the right half of needle. */
- size_t suffix; /* The index of the right half of needle. */
- /* Factor the needle into two halves, such that the left half is
- smaller than the global period, and the right half is
- periodic (with a period as large as NEEDLE_LEN - suffix). */
- suffix = critical_factorization (needle, needle_len, &period);
- /* Perform the search. Each iteration compares the right half
- first. */
- if (CMP_FUNC (needle, needle + period, suffix) == 0)
- {
- /* Entire needle is periodic; a mismatch in the left half can
- only advance by the period, so use memory to avoid rescanning
- known occurrences of the period in the right half. */
- size_t memory = 0;
- j = 0;
- while (AVAILABLE (haystack, haystack_len, j, needle_len))
- {
- /* Scan for matches in right half. */
- i = MAX (suffix, memory);
- while (i < needle_len && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- ++i;
- if (needle_len <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (memory < i + 1 && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- --i;
- if (i + 1 < memory + 1)
- return (RETURN_TYPE) (haystack + j);
- /* No match, so remember how many repetitions of period
- on the right half were scanned. */
- j += period;
- memory = needle_len - period;
- }
- else
- {
- j += i - suffix + 1;
- memory = 0;
- }
- }
- }
- else
- {
- /* The two halves of needle are distinct; no extra memory is
- required, and any mismatch results in a maximal shift. */
- period = MAX (suffix, needle_len - suffix) + 1;
- j = 0;
- while (AVAILABLE (haystack, haystack_len, j, needle_len))
- {
- /* Scan for matches in right half. */
- i = suffix;
- while (i < needle_len && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- ++i;
- if (needle_len <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- --i;
- if (i == SIZE_MAX)
- return (RETURN_TYPE) (haystack + j);
- j += period;
- }
- else
- j += i - suffix + 1;
- }
- }
- return NULL;
- }
- /* Return the first location of non-empty NEEDLE within HAYSTACK, or
- NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
- method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
- Performance is guaranteed to be linear, with an initialization cost
- of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
- If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
- most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
- and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
- If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
- HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
- sublinear performance is not possible. */
- static RETURN_TYPE
- two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
- const unsigned char *needle, size_t needle_len)
- {
- size_t i; /* Index into current byte of NEEDLE. */
- size_t j; /* Index into current window of HAYSTACK. */
- size_t period; /* The period of the right half of needle. */
- size_t suffix; /* The index of the right half of needle. */
- size_t shift_table[1U << CHAR_BIT]; /* See below. */
- /* Factor the needle into two halves, such that the left half is
- smaller than the global period, and the right half is
- periodic (with a period as large as NEEDLE_LEN - suffix). */
- suffix = critical_factorization (needle, needle_len, &period);
- /* Populate shift_table. For each possible byte value c,
- shift_table[c] is the distance from the last occurrence of c to
- the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
- shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
- for (i = 0; i < 1U << CHAR_BIT; i++)
- shift_table[i] = needle_len;
- for (i = 0; i < needle_len; i++)
- shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
- /* Perform the search. Each iteration compares the right half
- first. */
- if (CMP_FUNC (needle, needle + period, suffix) == 0)
- {
- /* Entire needle is periodic; a mismatch in the left half can
- only advance by the period, so use memory to avoid rescanning
- known occurrences of the period in the right half. */
- size_t memory = 0;
- size_t shift;
- j = 0;
- while (AVAILABLE (haystack, haystack_len, j, needle_len))
- {
- /* Check the last byte first; if it does not match, then
- shift to the next possible match location. */
- shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
- if (0 < shift)
- {
- if (memory && shift < period)
- {
- /* Since needle is periodic, but the last period has
- a byte out of place, there can be no match until
- after the mismatch. */
- shift = needle_len - period;
- }
- memory = 0;
- j += shift;
- continue;
- }
- /* Scan for matches in right half. The last byte has
- already been matched, by virtue of the shift table. */
- i = MAX (suffix, memory);
- while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- ++i;
- if (needle_len - 1 <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (memory < i + 1 && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- --i;
- if (i + 1 < memory + 1)
- return (RETURN_TYPE) (haystack + j);
- /* No match, so remember how many repetitions of period
- on the right half were scanned. */
- j += period;
- memory = needle_len - period;
- }
- else
- {
- j += i - suffix + 1;
- memory = 0;
- }
- }
- }
- else
- {
- /* The two halves of needle are distinct; no extra memory is
- required, and any mismatch results in a maximal shift. */
- size_t shift;
- period = MAX (suffix, needle_len - suffix) + 1;
- j = 0;
- while (AVAILABLE (haystack, haystack_len, j, needle_len))
- {
- /* Check the last byte first; if it does not match, then
- shift to the next possible match location. */
- shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
- if (0 < shift)
- {
- j += shift;
- continue;
- }
- /* Scan for matches in right half. The last byte has
- already been matched, by virtue of the shift table. */
- i = suffix;
- while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- ++i;
- if (needle_len - 1 <= i)
- {
- /* Scan for matches in left half. */
- i = suffix - 1;
- while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
- == CANON_ELEMENT (haystack[i + j])))
- --i;
- if (i == SIZE_MAX)
- return (RETURN_TYPE) (haystack + j);
- j += period;
- }
- else
- j += i - suffix + 1;
- }
- }
- return NULL;
- }
- #undef AVAILABLE
- #undef CANON_ELEMENT
- #undef CMP_FUNC
- #undef MAX
- #undef RETURN_TYPE
|