123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 |
- // Copyright 2014 Google Inc. All Rights Reserved.
- //
- // Use of this source code is governed by a BSD-style license
- // that can be found in the COPYING file in the root of the source
- // tree. An additional intellectual property rights grant can be found
- // in the file PATENTS. All contributing project authors may
- // be found in the AUTHORS file in the root of the source tree.
- // -----------------------------------------------------------------------------
- //
- // Utilities for processing transparent channel.
- //
- // Author: Skal (pascal.massimino@gmail.com)
- #include "./dsp.h"
- #if defined(WEBP_USE_SSE2)
- #include <emmintrin.h>
- //------------------------------------------------------------------------------
- static int DispatchAlpha_SSE2(const uint8_t* WEBP_RESTRICT alpha,
- int alpha_stride, int width, int height,
- uint8_t* WEBP_RESTRICT dst, int dst_stride) {
- // alpha_and stores an 'and' operation of all the alpha[] values. The final
- // value is not 0xff if any of the alpha[] is not equal to 0xff.
- uint32_t alpha_and = 0xff;
- int i, j;
- const __m128i zero = _mm_setzero_si128();
- const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB
- const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
- __m128i all_alphas = all_0xff;
- // We must be able to access 3 extra bytes after the last written byte
- // 'dst[4 * width - 4]', because we don't know if alpha is the first or the
- // last byte of the quadruplet.
- const int limit = (width - 1) & ~7;
- for (j = 0; j < height; ++j) {
- __m128i* out = (__m128i*)dst;
- for (i = 0; i < limit; i += 8) {
- // load 8 alpha bytes
- const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]);
- const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
- const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
- const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
- // load 8 dst pixels (32 bytes)
- const __m128i b0_lo = _mm_loadu_si128(out + 0);
- const __m128i b0_hi = _mm_loadu_si128(out + 1);
- // mask dst alpha values
- const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask);
- const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask);
- // combine
- const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo);
- const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi);
- // store
- _mm_storeu_si128(out + 0, b2_lo);
- _mm_storeu_si128(out + 1, b2_hi);
- // accumulate eight alpha 'and' in parallel
- all_alphas = _mm_and_si128(all_alphas, a0);
- out += 2;
- }
- for (; i < width; ++i) {
- const uint32_t alpha_value = alpha[i];
- dst[4 * i] = alpha_value;
- alpha_and &= alpha_value;
- }
- alpha += alpha_stride;
- dst += dst_stride;
- }
- // Combine the eight alpha 'and' into a 8-bit mask.
- alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
- return (alpha_and != 0xff);
- }
- static void DispatchAlphaToGreen_SSE2(const uint8_t* WEBP_RESTRICT alpha,
- int alpha_stride, int width, int height,
- uint32_t* WEBP_RESTRICT dst,
- int dst_stride) {
- int i, j;
- const __m128i zero = _mm_setzero_si128();
- const int limit = width & ~15;
- for (j = 0; j < height; ++j) {
- for (i = 0; i < limit; i += 16) { // process 16 alpha bytes
- const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]);
- const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first!
- const __m128i b1 = _mm_unpackhi_epi8(zero, a0);
- const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero);
- const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero);
- const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero);
- const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero);
- _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo);
- _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi);
- _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo);
- _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi);
- }
- for (; i < width; ++i) dst[i] = alpha[i] << 8;
- alpha += alpha_stride;
- dst += dst_stride;
- }
- }
- static int ExtractAlpha_SSE2(const uint8_t* WEBP_RESTRICT argb, int argb_stride,
- int width, int height,
- uint8_t* WEBP_RESTRICT alpha, int alpha_stride) {
- // alpha_and stores an 'and' operation of all the alpha[] values. The final
- // value is not 0xff if any of the alpha[] is not equal to 0xff.
- uint32_t alpha_and = 0xff;
- int i, j;
- const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha
- const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u);
- __m128i all_alphas = all_0xff;
- // We must be able to access 3 extra bytes after the last written byte
- // 'src[4 * width - 4]', because we don't know if alpha is the first or the
- // last byte of the quadruplet.
- const int limit = (width - 1) & ~7;
- for (j = 0; j < height; ++j) {
- const __m128i* src = (const __m128i*)argb;
- for (i = 0; i < limit; i += 8) {
- // load 32 argb bytes
- const __m128i a0 = _mm_loadu_si128(src + 0);
- const __m128i a1 = _mm_loadu_si128(src + 1);
- const __m128i b0 = _mm_and_si128(a0, a_mask);
- const __m128i b1 = _mm_and_si128(a1, a_mask);
- const __m128i c0 = _mm_packs_epi32(b0, b1);
- const __m128i d0 = _mm_packus_epi16(c0, c0);
- // store
- _mm_storel_epi64((__m128i*)&alpha[i], d0);
- // accumulate eight alpha 'and' in parallel
- all_alphas = _mm_and_si128(all_alphas, d0);
- src += 2;
- }
- for (; i < width; ++i) {
- const uint32_t alpha_value = argb[4 * i];
- alpha[i] = alpha_value;
- alpha_and &= alpha_value;
- }
- argb += argb_stride;
- alpha += alpha_stride;
- }
- // Combine the eight alpha 'and' into a 8-bit mask.
- alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff));
- return (alpha_and == 0xff);
- }
- //------------------------------------------------------------------------------
- // Non-dither premultiplied modes
- #define MULTIPLIER(a) ((a) * 0x8081)
- #define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
- // We can't use a 'const int' for the SHUFFLE value, because it has to be an
- // immediate in the _mm_shufflexx_epi16() instruction. We really need a macro.
- // We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit
- // value.
- #define APPLY_ALPHA(RGBX, SHUFFLE) do { \
- const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \
- const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \
- const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \
- const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \
- const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \
- const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \
- const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \
- const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \
- const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \
- /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \
- const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \
- const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \
- const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \
- const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \
- const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \
- const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \
- const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \
- _mm_storeu_si128((__m128i*)&(RGBX), A3); \
- } while (0)
- static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first,
- int w, int h, int stride) {
- const __m128i zero = _mm_setzero_si128();
- const __m128i kMult = _mm_set1_epi16(0x8081u);
- const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0);
- const int kSpan = 4;
- while (h-- > 0) {
- uint32_t* const rgbx = (uint32_t*)rgba;
- int i;
- if (!alpha_first) {
- for (i = 0; i + kSpan <= w; i += kSpan) {
- APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3));
- }
- } else {
- for (i = 0; i + kSpan <= w; i += kSpan) {
- APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1));
- }
- }
- // Finish with left-overs.
- for (; i < w; ++i) {
- uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
- const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
- const uint32_t a = alpha[4 * i];
- if (a != 0xff) {
- const uint32_t mult = MULTIPLIER(a);
- rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
- rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
- rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
- }
- }
- rgba += stride;
- }
- }
- #undef MULTIPLIER
- #undef PREMULTIPLY
- //------------------------------------------------------------------------------
- // Alpha detection
- static int HasAlpha8b_SSE2(const uint8_t* src, int length) {
- const __m128i all_0xff = _mm_set1_epi8((char)0xff);
- int i = 0;
- for (; i + 16 <= length; i += 16) {
- const __m128i v = _mm_loadu_si128((const __m128i*)(src + i));
- const __m128i bits = _mm_cmpeq_epi8(v, all_0xff);
- const int mask = _mm_movemask_epi8(bits);
- if (mask != 0xffff) return 1;
- }
- for (; i < length; ++i) if (src[i] != 0xff) return 1;
- return 0;
- }
- static int HasAlpha32b_SSE2(const uint8_t* src, int length) {
- const __m128i alpha_mask = _mm_set1_epi32(0xff);
- const __m128i all_0xff = _mm_set1_epi8((char)0xff);
- int i = 0;
- // We don't know if we can access the last 3 bytes after the last alpha
- // value 'src[4 * length - 4]' (because we don't know if alpha is the first
- // or the last byte of the quadruplet). Hence the '-3' protection below.
- length = length * 4 - 3; // size in bytes
- for (; i + 64 <= length; i += 64) {
- const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0));
- const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16));
- const __m128i a2 = _mm_loadu_si128((const __m128i*)(src + i + 32));
- const __m128i a3 = _mm_loadu_si128((const __m128i*)(src + i + 48));
- const __m128i b0 = _mm_and_si128(a0, alpha_mask);
- const __m128i b1 = _mm_and_si128(a1, alpha_mask);
- const __m128i b2 = _mm_and_si128(a2, alpha_mask);
- const __m128i b3 = _mm_and_si128(a3, alpha_mask);
- const __m128i c0 = _mm_packs_epi32(b0, b1);
- const __m128i c1 = _mm_packs_epi32(b2, b3);
- const __m128i d = _mm_packus_epi16(c0, c1);
- const __m128i bits = _mm_cmpeq_epi8(d, all_0xff);
- const int mask = _mm_movemask_epi8(bits);
- if (mask != 0xffff) return 1;
- }
- for (; i + 32 <= length; i += 32) {
- const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0));
- const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16));
- const __m128i b0 = _mm_and_si128(a0, alpha_mask);
- const __m128i b1 = _mm_and_si128(a1, alpha_mask);
- const __m128i c = _mm_packs_epi32(b0, b1);
- const __m128i d = _mm_packus_epi16(c, c);
- const __m128i bits = _mm_cmpeq_epi8(d, all_0xff);
- const int mask = _mm_movemask_epi8(bits);
- if (mask != 0xffff) return 1;
- }
- for (; i <= length; i += 4) if (src[i] != 0xff) return 1;
- return 0;
- }
- static void AlphaReplace_SSE2(uint32_t* src, int length, uint32_t color) {
- const __m128i m_color = _mm_set1_epi32(color);
- const __m128i zero = _mm_setzero_si128();
- int i = 0;
- for (; i + 8 <= length; i += 8) {
- const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0));
- const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 4));
- const __m128i b0 = _mm_srai_epi32(a0, 24);
- const __m128i b1 = _mm_srai_epi32(a1, 24);
- const __m128i c0 = _mm_cmpeq_epi32(b0, zero);
- const __m128i c1 = _mm_cmpeq_epi32(b1, zero);
- const __m128i d0 = _mm_and_si128(c0, m_color);
- const __m128i d1 = _mm_and_si128(c1, m_color);
- const __m128i e0 = _mm_andnot_si128(c0, a0);
- const __m128i e1 = _mm_andnot_si128(c1, a1);
- _mm_storeu_si128((__m128i*)(src + i + 0), _mm_or_si128(d0, e0));
- _mm_storeu_si128((__m128i*)(src + i + 4), _mm_or_si128(d1, e1));
- }
- for (; i < length; ++i) if ((src[i] >> 24) == 0) src[i] = color;
- }
- // -----------------------------------------------------------------------------
- // Apply alpha value to rows
- static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) {
- int x = 0;
- if (!inverse) {
- const int kSpan = 2;
- const __m128i zero = _mm_setzero_si128();
- const __m128i k128 = _mm_set1_epi16(128);
- const __m128i kMult = _mm_set1_epi16(0x0101);
- const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0);
- for (x = 0; x + kSpan <= width; x += kSpan) {
- // To compute 'result = (int)(a * x / 255. + .5)', we use:
- // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16
- const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]);
- const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
- const __m128i A2 = _mm_or_si128(A1, kMask);
- const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3));
- const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3));
- // here, A4 = [ff a0 a0 a0][ff a1 a1 a1]
- const __m128i A5 = _mm_mullo_epi16(A4, A1);
- const __m128i A6 = _mm_add_epi16(A5, k128);
- const __m128i A7 = _mm_mulhi_epu16(A6, kMult);
- const __m128i A10 = _mm_packus_epi16(A7, zero);
- _mm_storel_epi64((__m128i*)&ptr[x], A10);
- }
- }
- width -= x;
- if (width > 0) WebPMultARGBRow_C(ptr + x, width, inverse);
- }
- static void MultRow_SSE2(uint8_t* WEBP_RESTRICT const ptr,
- const uint8_t* WEBP_RESTRICT const alpha,
- int width, int inverse) {
- int x = 0;
- if (!inverse) {
- const __m128i zero = _mm_setzero_si128();
- const __m128i k128 = _mm_set1_epi16(128);
- const __m128i kMult = _mm_set1_epi16(0x0101);
- for (x = 0; x + 8 <= width; x += 8) {
- const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]);
- const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]);
- const __m128i v1 = _mm_unpacklo_epi8(v0, zero);
- const __m128i a1 = _mm_unpacklo_epi8(a0, zero);
- const __m128i v2 = _mm_mullo_epi16(v1, a1);
- const __m128i v3 = _mm_add_epi16(v2, k128);
- const __m128i v4 = _mm_mulhi_epu16(v3, kMult);
- const __m128i v5 = _mm_packus_epi16(v4, zero);
- _mm_storel_epi64((__m128i*)&ptr[x], v5);
- }
- }
- width -= x;
- if (width > 0) WebPMultRow_C(ptr + x, alpha + x, width, inverse);
- }
- //------------------------------------------------------------------------------
- // Entry point
- extern void WebPInitAlphaProcessingSSE2(void);
- WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) {
- WebPMultARGBRow = MultARGBRow_SSE2;
- WebPMultRow = MultRow_SSE2;
- WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2;
- WebPDispatchAlpha = DispatchAlpha_SSE2;
- WebPDispatchAlphaToGreen = DispatchAlphaToGreen_SSE2;
- WebPExtractAlpha = ExtractAlpha_SSE2;
- WebPHasAlpha8b = HasAlpha8b_SSE2;
- WebPHasAlpha32b = HasAlpha32b_SSE2;
- WebPAlphaReplace = AlphaReplace_SSE2;
- }
- #else // !WEBP_USE_SSE2
- WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2)
- #endif // WEBP_USE_SSE2
|