123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- /*
- * Copyright (c) 1988-1997 Sam Leffler
- * Copyright (c) 1991-1997 Silicon Graphics, Inc.
- *
- * Permission to use, copy, modify, distribute, and sell this software and
- * its documentation for any purpose is hereby granted without fee, provided
- * that (i) the above copyright notices and this permission notice appear in
- * all copies of the software and related documentation, and (ii) the names of
- * Sam Leffler and Silicon Graphics may not be used in any advertising or
- * publicity relating to the software without the specific, prior written
- * permission of Sam Leffler and Silicon Graphics.
- *
- * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
- * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- *
- * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
- * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
- * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
- * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
- * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
- * OF THIS SOFTWARE.
- */
- /*
- * CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
- * from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
- * the permission of John Cupitt, the VIPS author.
- */
- /*
- * TIFF Library.
- *
- * Color space conversion routines.
- */
- #include "tiffiop.h"
- #include <math.h>
- /*
- * Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
- */
- void TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32_t l, int32_t a, int32_t b,
- float *X, float *Y, float *Z)
- {
- TIFFCIELab16ToXYZ(cielab, l * 257, a * 256, b * 256, X, Y, Z);
- }
- /*
- * For CIELab encoded in 16 bits, L is an unsigned integer range [0,65535].
- * The a* and b* components are signed integers range [-32768,32767]. The 16
- * bit chrominance values are encoded as 256 times the 1976 CIE a* and b*
- * values
- */
- void TIFFCIELab16ToXYZ(TIFFCIELabToRGB *cielab, uint32_t l, int32_t a,
- int32_t b, float *X, float *Y, float *Z)
- {
- float L = (float)l * 100.0F / 65535.0F;
- float cby, tmp;
- if (L < 8.856F)
- {
- *Y = (L * cielab->Y0) / 903.292F;
- cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
- }
- else
- {
- cby = (L + 16.0F) / 116.0F;
- *Y = cielab->Y0 * cby * cby * cby;
- }
- tmp = (float)a / 256.0F / 500.0F + cby;
- if (tmp < 0.2069F)
- *X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
- else
- *X = cielab->X0 * tmp * tmp * tmp;
- tmp = cby - (float)b / 256.0F / 200.0F;
- if (tmp < 0.2069F)
- *Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
- else
- *Z = cielab->Z0 * tmp * tmp * tmp;
- }
- #define RINT(R) ((uint32_t)((R) > 0 ? ((R) + 0.5) : ((R)-0.5)))
- /*
- * Convert color value from the XYZ space to RGB.
- */
- void TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
- uint32_t *r, uint32_t *g, uint32_t *b)
- {
- int i;
- float Yr, Yg, Yb;
- float *matrix = &cielab->display.d_mat[0][0];
- /* Multiply through the matrix to get luminosity values. */
- Yr = matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
- Yg = matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
- Yb = matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
- /* Clip input */
- Yr = TIFFmax(Yr, cielab->display.d_Y0R);
- Yg = TIFFmax(Yg, cielab->display.d_Y0G);
- Yb = TIFFmax(Yb, cielab->display.d_Y0B);
- /* Avoid overflow in case of wrong input values */
- Yr = TIFFmin(Yr, cielab->display.d_YCR);
- Yg = TIFFmin(Yg, cielab->display.d_YCG);
- Yb = TIFFmin(Yb, cielab->display.d_YCB);
- /* Turn luminosity to colour value. */
- i = (int)((Yr - cielab->display.d_Y0R) / cielab->rstep);
- i = TIFFmin(cielab->range, i);
- *r = RINT(cielab->Yr2r[i]);
- i = (int)((Yg - cielab->display.d_Y0G) / cielab->gstep);
- i = TIFFmin(cielab->range, i);
- *g = RINT(cielab->Yg2g[i]);
- i = (int)((Yb - cielab->display.d_Y0B) / cielab->bstep);
- i = TIFFmin(cielab->range, i);
- *b = RINT(cielab->Yb2b[i]);
- /* Clip output. */
- *r = TIFFmin(*r, cielab->display.d_Vrwr);
- *g = TIFFmin(*g, cielab->display.d_Vrwg);
- *b = TIFFmin(*b, cielab->display.d_Vrwb);
- }
- #undef RINT
- /*
- * Allocate conversion state structures and make look_up tables for
- * the Yr,Yb,Yg <=> r,g,b conversions.
- */
- int TIFFCIELabToRGBInit(TIFFCIELabToRGB *cielab, const TIFFDisplay *display,
- float *refWhite)
- {
- int i;
- double dfGamma;
- cielab->range = CIELABTORGB_TABLE_RANGE;
- _TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
- /* Red */
- dfGamma = 1.0 / cielab->display.d_gammaR;
- cielab->rstep =
- (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
- for (i = 0; i <= cielab->range; i++)
- {
- cielab->Yr2r[i] = cielab->display.d_Vrwr *
- ((float)pow((double)i / cielab->range, dfGamma));
- }
- /* Green */
- dfGamma = 1.0 / cielab->display.d_gammaG;
- cielab->gstep =
- (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
- for (i = 0; i <= cielab->range; i++)
- {
- cielab->Yg2g[i] = cielab->display.d_Vrwg *
- ((float)pow((double)i / cielab->range, dfGamma));
- }
- /* Blue */
- dfGamma = 1.0 / cielab->display.d_gammaB;
- cielab->bstep =
- (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
- for (i = 0; i <= cielab->range; i++)
- {
- cielab->Yb2b[i] = cielab->display.d_Vrwb *
- ((float)pow((double)i / cielab->range, dfGamma));
- }
- /* Init reference white point */
- cielab->X0 = refWhite[0];
- cielab->Y0 = refWhite[1];
- cielab->Z0 = refWhite[2];
- return 0;
- }
- /*
- * Convert color value from the YCbCr space to RGB.
- * The colorspace conversion algorithm comes from the IJG v5a code;
- * see below for more information on how it works.
- */
- #define SHIFT 16
- #define FIX(x) ((int32_t)((x) * (1L << SHIFT) + 0.5))
- #define ONE_HALF ((int32_t)(1 << (SHIFT - 1)))
- #define Code2V(c, RB, RW, CR) \
- ((((c) - (int32_t)(RB)) * (float)(CR)) / \
- (float)(((RW) - (RB) != 0) ? ((RW) - (RB)) : 1))
- /* !((f)>=(min)) written that way to deal with NaN */
- #define CLAMP(f, min, max) \
- ((!((f) >= (min))) ? (min) : (f) > (max) ? (max) : (f))
- #define HICLAMP(f, max) ((f) > (max) ? (max) : (f))
- void TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32_t Y, int32_t Cb, int32_t Cr,
- uint32_t *r, uint32_t *g, uint32_t *b)
- {
- int32_t i;
- /* XXX: Only 8-bit YCbCr input supported for now */
- Y = HICLAMP(Y, 255);
- Cb = CLAMP(Cb, 0, 255);
- Cr = CLAMP(Cr, 0, 255);
- i = ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr];
- *r = CLAMP(i, 0, 255);
- i = ycbcr->Y_tab[Y] +
- (int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT);
- *g = CLAMP(i, 0, 255);
- i = ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb];
- *b = CLAMP(i, 0, 255);
- }
- /* Clamp function for sanitization purposes. Normally clamping should not */
- /* occur for well behaved chroma and refBlackWhite coefficients */
- static float CLAMPw(float v, float vmin, float vmax)
- {
- if (v < vmin)
- {
- /* printf("%f clamped to %f\n", v, vmin); */
- return vmin;
- }
- if (v > vmax)
- {
- /* printf("%f clamped to %f\n", v, vmax); */
- return vmax;
- }
- return v;
- }
- /*
- * Initialize the YCbCr->RGB conversion tables. The conversion
- * is done according to the 6.0 spec:
- *
- * R = Y + Cr*(2 - 2*LumaRed)
- * B = Y + Cb*(2 - 2*LumaBlue)
- * G = Y
- * - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
- * - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
- *
- * To avoid floating point arithmetic the fractional constants that
- * come out of the equations are represented as fixed point values
- * in the range 0...2^16. We also eliminate multiplications by
- * pre-calculating possible values indexed by Cb and Cr (this code
- * assumes conversion is being done for 8-bit samples).
- */
- int TIFFYCbCrToRGBInit(TIFFYCbCrToRGB *ycbcr, float *luma, float *refBlackWhite)
- {
- TIFFRGBValue *clamptab;
- int i;
- #define LumaRed luma[0]
- #define LumaGreen luma[1]
- #define LumaBlue luma[2]
- clamptab =
- (TIFFRGBValue *)((uint8_t *)ycbcr +
- TIFFroundup_32(sizeof(TIFFYCbCrToRGB), sizeof(long)));
- _TIFFmemset(clamptab, 0, 256); /* v < 0 => 0 */
- ycbcr->clamptab = (clamptab += 256);
- for (i = 0; i < 256; i++)
- clamptab[i] = (TIFFRGBValue)i;
- _TIFFmemset(clamptab + 256, 255, 2 * 256); /* v > 255 => 255 */
- ycbcr->Cr_r_tab = (int *)(clamptab + 3 * 256);
- ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
- ycbcr->Cr_g_tab = (int32_t *)(ycbcr->Cb_b_tab + 256);
- ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
- ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
- {
- float f1 = 2 - 2 * LumaRed;
- int32_t D1 = FIX(CLAMP(f1, 0.0F, 2.0F));
- float f2 = LumaRed * f1 / LumaGreen;
- int32_t D2 = -FIX(CLAMP(f2, 0.0F, 2.0F));
- float f3 = 2 - 2 * LumaBlue;
- int32_t D3 = FIX(CLAMP(f3, 0.0F, 2.0F));
- float f4 = LumaBlue * f3 / LumaGreen;
- int32_t D4 = -FIX(CLAMP(f4, 0.0F, 2.0F));
- int x;
- #undef LumaBlue
- #undef LumaGreen
- #undef LumaRed
- /*
- * i is the actual input pixel value in the range 0..255
- * Cb and Cr values are in the range -128..127 (actually
- * they are in a range defined by the ReferenceBlackWhite
- * tag) so there is some range shifting to do here when
- * constructing tables indexed by the raw pixel data.
- */
- for (i = 0, x = -128; i < 256; i++, x++)
- {
- int32_t Cr = (int32_t)CLAMPw(Code2V(x, refBlackWhite[4] - 128.0F,
- refBlackWhite[5] - 128.0F, 127),
- -128.0F * 32, 128.0F * 32);
- int32_t Cb = (int32_t)CLAMPw(Code2V(x, refBlackWhite[2] - 128.0F,
- refBlackWhite[3] - 128.0F, 127),
- -128.0F * 32, 128.0F * 32);
- ycbcr->Cr_r_tab[i] = (int32_t)((D1 * Cr + ONE_HALF) >> SHIFT);
- ycbcr->Cb_b_tab[i] = (int32_t)((D3 * Cb + ONE_HALF) >> SHIFT);
- ycbcr->Cr_g_tab[i] = D2 * Cr;
- ycbcr->Cb_g_tab[i] = D4 * Cb + ONE_HALF;
- ycbcr->Y_tab[i] = (int32_t)CLAMPw(
- Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255),
- -128.0F * 32, 128.0F * 32);
- }
- }
- return 0;
- }
- #undef HICLAMP
- #undef CLAMP
- #undef Code2V
- #undef SHIFT
- #undef ONE_HALF
- #undef FIX
|