v3_addr.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. /*
  2. * Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * Implementation of RFC 3779 section 2.2.
  11. */
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <assert.h>
  15. #include <string.h>
  16. #include "internal/cryptlib.h"
  17. #include <openssl/conf.h>
  18. #include <openssl/asn1.h>
  19. #include <openssl/asn1t.h>
  20. #include <openssl/buffer.h>
  21. #include <openssl/x509v3.h>
  22. #include "crypto/x509.h"
  23. #include "ext_dat.h"
  24. #ifndef OPENSSL_NO_RFC3779
  25. /*
  26. * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
  27. */
  28. ASN1_SEQUENCE(IPAddressRange) = {
  29. ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
  30. ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
  31. } ASN1_SEQUENCE_END(IPAddressRange)
  32. ASN1_CHOICE(IPAddressOrRange) = {
  33. ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
  34. ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
  35. } ASN1_CHOICE_END(IPAddressOrRange)
  36. ASN1_CHOICE(IPAddressChoice) = {
  37. ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
  38. ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
  39. } ASN1_CHOICE_END(IPAddressChoice)
  40. ASN1_SEQUENCE(IPAddressFamily) = {
  41. ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
  42. ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
  43. } ASN1_SEQUENCE_END(IPAddressFamily)
  44. ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
  45. ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
  46. IPAddrBlocks, IPAddressFamily)
  47. static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
  48. IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
  49. IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
  50. IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
  51. IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
  52. /*
  53. * How much buffer space do we need for a raw address?
  54. */
  55. #define ADDR_RAW_BUF_LEN 16
  56. /*
  57. * What's the address length associated with this AFI?
  58. */
  59. static int length_from_afi(const unsigned afi)
  60. {
  61. switch (afi) {
  62. case IANA_AFI_IPV4:
  63. return 4;
  64. case IANA_AFI_IPV6:
  65. return 16;
  66. default:
  67. return 0;
  68. }
  69. }
  70. /*
  71. * Extract the AFI from an IPAddressFamily.
  72. */
  73. unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
  74. {
  75. if (f == NULL
  76. || f->addressFamily == NULL
  77. || f->addressFamily->data == NULL
  78. || f->addressFamily->length < 2)
  79. return 0;
  80. return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
  81. }
  82. /*
  83. * Expand the bitstring form of an address into a raw byte array.
  84. * At the moment this is coded for simplicity, not speed.
  85. */
  86. static int addr_expand(unsigned char *addr,
  87. const ASN1_BIT_STRING *bs,
  88. const int length, const unsigned char fill)
  89. {
  90. if (bs->length < 0 || bs->length > length)
  91. return 0;
  92. if (bs->length > 0) {
  93. memcpy(addr, bs->data, bs->length);
  94. if ((bs->flags & 7) != 0) {
  95. unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
  96. if (fill == 0)
  97. addr[bs->length - 1] &= ~mask;
  98. else
  99. addr[bs->length - 1] |= mask;
  100. }
  101. }
  102. memset(addr + bs->length, fill, length - bs->length);
  103. return 1;
  104. }
  105. /*
  106. * Extract the prefix length from a bitstring.
  107. */
  108. #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
  109. /*
  110. * i2r handler for one address bitstring.
  111. */
  112. static int i2r_address(BIO *out,
  113. const unsigned afi,
  114. const unsigned char fill, const ASN1_BIT_STRING *bs)
  115. {
  116. unsigned char addr[ADDR_RAW_BUF_LEN];
  117. int i, n;
  118. if (bs->length < 0)
  119. return 0;
  120. switch (afi) {
  121. case IANA_AFI_IPV4:
  122. if (!addr_expand(addr, bs, 4, fill))
  123. return 0;
  124. BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
  125. break;
  126. case IANA_AFI_IPV6:
  127. if (!addr_expand(addr, bs, 16, fill))
  128. return 0;
  129. for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
  130. n -= 2) ;
  131. for (i = 0; i < n; i += 2)
  132. BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
  133. (i < 14 ? ":" : ""));
  134. if (i < 16)
  135. BIO_puts(out, ":");
  136. if (i == 0)
  137. BIO_puts(out, ":");
  138. break;
  139. default:
  140. for (i = 0; i < bs->length; i++)
  141. BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
  142. BIO_printf(out, "[%d]", (int)(bs->flags & 7));
  143. break;
  144. }
  145. return 1;
  146. }
  147. /*
  148. * i2r handler for a sequence of addresses and ranges.
  149. */
  150. static int i2r_IPAddressOrRanges(BIO *out,
  151. const int indent,
  152. const IPAddressOrRanges *aors,
  153. const unsigned afi)
  154. {
  155. int i;
  156. for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
  157. const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
  158. BIO_printf(out, "%*s", indent, "");
  159. switch (aor->type) {
  160. case IPAddressOrRange_addressPrefix:
  161. if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
  162. return 0;
  163. BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
  164. continue;
  165. case IPAddressOrRange_addressRange:
  166. if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
  167. return 0;
  168. BIO_puts(out, "-");
  169. if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
  170. return 0;
  171. BIO_puts(out, "\n");
  172. continue;
  173. }
  174. }
  175. return 1;
  176. }
  177. /*
  178. * i2r handler for an IPAddrBlocks extension.
  179. */
  180. static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
  181. void *ext, BIO *out, int indent)
  182. {
  183. const IPAddrBlocks *addr = ext;
  184. int i;
  185. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  186. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  187. const unsigned int afi = X509v3_addr_get_afi(f);
  188. switch (afi) {
  189. case IANA_AFI_IPV4:
  190. BIO_printf(out, "%*sIPv4", indent, "");
  191. break;
  192. case IANA_AFI_IPV6:
  193. BIO_printf(out, "%*sIPv6", indent, "");
  194. break;
  195. default:
  196. BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
  197. break;
  198. }
  199. if (f->addressFamily->length > 2) {
  200. switch (f->addressFamily->data[2]) {
  201. case 1:
  202. BIO_puts(out, " (Unicast)");
  203. break;
  204. case 2:
  205. BIO_puts(out, " (Multicast)");
  206. break;
  207. case 3:
  208. BIO_puts(out, " (Unicast/Multicast)");
  209. break;
  210. case 4:
  211. BIO_puts(out, " (MPLS)");
  212. break;
  213. case 64:
  214. BIO_puts(out, " (Tunnel)");
  215. break;
  216. case 65:
  217. BIO_puts(out, " (VPLS)");
  218. break;
  219. case 66:
  220. BIO_puts(out, " (BGP MDT)");
  221. break;
  222. case 128:
  223. BIO_puts(out, " (MPLS-labeled VPN)");
  224. break;
  225. default:
  226. BIO_printf(out, " (Unknown SAFI %u)",
  227. (unsigned)f->addressFamily->data[2]);
  228. break;
  229. }
  230. }
  231. switch (f->ipAddressChoice->type) {
  232. case IPAddressChoice_inherit:
  233. BIO_puts(out, ": inherit\n");
  234. break;
  235. case IPAddressChoice_addressesOrRanges:
  236. BIO_puts(out, ":\n");
  237. if (!i2r_IPAddressOrRanges(out,
  238. indent + 2,
  239. f->ipAddressChoice->
  240. u.addressesOrRanges, afi))
  241. return 0;
  242. break;
  243. }
  244. }
  245. return 1;
  246. }
  247. /*
  248. * Sort comparison function for a sequence of IPAddressOrRange
  249. * elements.
  250. *
  251. * There's no sane answer we can give if addr_expand() fails, and an
  252. * assertion failure on externally supplied data is seriously uncool,
  253. * so we just arbitrarily declare that if given invalid inputs this
  254. * function returns -1. If this messes up your preferred sort order
  255. * for garbage input, tough noogies.
  256. */
  257. static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
  258. const IPAddressOrRange *b, const int length)
  259. {
  260. unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
  261. int prefixlen_a = 0, prefixlen_b = 0;
  262. int r;
  263. switch (a->type) {
  264. case IPAddressOrRange_addressPrefix:
  265. if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
  266. return -1;
  267. prefixlen_a = addr_prefixlen(a->u.addressPrefix);
  268. break;
  269. case IPAddressOrRange_addressRange:
  270. if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
  271. return -1;
  272. prefixlen_a = length * 8;
  273. break;
  274. }
  275. switch (b->type) {
  276. case IPAddressOrRange_addressPrefix:
  277. if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
  278. return -1;
  279. prefixlen_b = addr_prefixlen(b->u.addressPrefix);
  280. break;
  281. case IPAddressOrRange_addressRange:
  282. if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
  283. return -1;
  284. prefixlen_b = length * 8;
  285. break;
  286. }
  287. if ((r = memcmp(addr_a, addr_b, length)) != 0)
  288. return r;
  289. else
  290. return prefixlen_a - prefixlen_b;
  291. }
  292. /*
  293. * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
  294. * comparison routines are only allowed two arguments.
  295. */
  296. static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  297. const IPAddressOrRange *const *b)
  298. {
  299. return IPAddressOrRange_cmp(*a, *b, 4);
  300. }
  301. /*
  302. * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
  303. * comparison routines are only allowed two arguments.
  304. */
  305. static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
  306. const IPAddressOrRange *const *b)
  307. {
  308. return IPAddressOrRange_cmp(*a, *b, 16);
  309. }
  310. /*
  311. * Calculate whether a range collapses to a prefix.
  312. * See last paragraph of RFC 3779 2.2.3.7.
  313. */
  314. static int range_should_be_prefix(const unsigned char *min,
  315. const unsigned char *max, const int length)
  316. {
  317. unsigned char mask;
  318. int i, j;
  319. /*
  320. * It is the responsibility of the caller to confirm min <= max. We don't
  321. * use ossl_assert() here since we have no way of signalling an error from
  322. * this function - so we just use a plain assert instead.
  323. */
  324. assert(memcmp(min, max, length) <= 0);
  325. for (i = 0; i < length && min[i] == max[i]; i++) ;
  326. for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
  327. if (i < j)
  328. return -1;
  329. if (i > j)
  330. return i * 8;
  331. mask = min[i] ^ max[i];
  332. switch (mask) {
  333. case 0x01:
  334. j = 7;
  335. break;
  336. case 0x03:
  337. j = 6;
  338. break;
  339. case 0x07:
  340. j = 5;
  341. break;
  342. case 0x0F:
  343. j = 4;
  344. break;
  345. case 0x1F:
  346. j = 3;
  347. break;
  348. case 0x3F:
  349. j = 2;
  350. break;
  351. case 0x7F:
  352. j = 1;
  353. break;
  354. default:
  355. return -1;
  356. }
  357. if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
  358. return -1;
  359. else
  360. return i * 8 + j;
  361. }
  362. /*
  363. * Construct a prefix.
  364. */
  365. static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
  366. const int prefixlen, const int afilen)
  367. {
  368. int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
  369. IPAddressOrRange *aor = IPAddressOrRange_new();
  370. if (prefixlen < 0 || prefixlen > (afilen * 8))
  371. return 0;
  372. if (aor == NULL)
  373. return 0;
  374. aor->type = IPAddressOrRange_addressPrefix;
  375. if (aor->u.addressPrefix == NULL &&
  376. (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
  377. goto err;
  378. if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
  379. goto err;
  380. aor->u.addressPrefix->flags &= ~7;
  381. aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  382. if (bitlen > 0) {
  383. aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
  384. aor->u.addressPrefix->flags |= 8 - bitlen;
  385. }
  386. *result = aor;
  387. return 1;
  388. err:
  389. IPAddressOrRange_free(aor);
  390. return 0;
  391. }
  392. /*
  393. * Construct a range. If it can be expressed as a prefix,
  394. * return a prefix instead. Doing this here simplifies
  395. * the rest of the code considerably.
  396. */
  397. static int make_addressRange(IPAddressOrRange **result,
  398. unsigned char *min,
  399. unsigned char *max, const int length)
  400. {
  401. IPAddressOrRange *aor;
  402. int i, prefixlen;
  403. if (memcmp(min, max, length) > 0)
  404. return 0;
  405. if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
  406. return make_addressPrefix(result, min, prefixlen, length);
  407. if ((aor = IPAddressOrRange_new()) == NULL)
  408. return 0;
  409. aor->type = IPAddressOrRange_addressRange;
  410. if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
  411. goto err;
  412. if (aor->u.addressRange->min == NULL &&
  413. (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
  414. goto err;
  415. if (aor->u.addressRange->max == NULL &&
  416. (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
  417. goto err;
  418. for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
  419. if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
  420. goto err;
  421. aor->u.addressRange->min->flags &= ~7;
  422. aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  423. if (i > 0) {
  424. unsigned char b = min[i - 1];
  425. int j = 1;
  426. while ((b & (0xFFU >> j)) != 0)
  427. ++j;
  428. aor->u.addressRange->min->flags |= 8 - j;
  429. }
  430. for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
  431. if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
  432. goto err;
  433. aor->u.addressRange->max->flags &= ~7;
  434. aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
  435. if (i > 0) {
  436. unsigned char b = max[i - 1];
  437. int j = 1;
  438. while ((b & (0xFFU >> j)) != (0xFFU >> j))
  439. ++j;
  440. aor->u.addressRange->max->flags |= 8 - j;
  441. }
  442. *result = aor;
  443. return 1;
  444. err:
  445. IPAddressOrRange_free(aor);
  446. return 0;
  447. }
  448. /*
  449. * Construct a new address family or find an existing one.
  450. */
  451. static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
  452. const unsigned afi,
  453. const unsigned *safi)
  454. {
  455. IPAddressFamily *f;
  456. unsigned char key[3];
  457. int keylen;
  458. int i;
  459. key[0] = (afi >> 8) & 0xFF;
  460. key[1] = afi & 0xFF;
  461. if (safi != NULL) {
  462. key[2] = *safi & 0xFF;
  463. keylen = 3;
  464. } else {
  465. keylen = 2;
  466. }
  467. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  468. f = sk_IPAddressFamily_value(addr, i);
  469. if (f->addressFamily->length == keylen &&
  470. !memcmp(f->addressFamily->data, key, keylen))
  471. return f;
  472. }
  473. if ((f = IPAddressFamily_new()) == NULL)
  474. goto err;
  475. if (f->ipAddressChoice == NULL &&
  476. (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
  477. goto err;
  478. if (f->addressFamily == NULL &&
  479. (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
  480. goto err;
  481. if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
  482. goto err;
  483. if (!sk_IPAddressFamily_push(addr, f))
  484. goto err;
  485. return f;
  486. err:
  487. IPAddressFamily_free(f);
  488. return NULL;
  489. }
  490. /*
  491. * Add an inheritance element.
  492. */
  493. int X509v3_addr_add_inherit(IPAddrBlocks *addr,
  494. const unsigned afi, const unsigned *safi)
  495. {
  496. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  497. if (f == NULL ||
  498. f->ipAddressChoice == NULL ||
  499. (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  500. f->ipAddressChoice->u.addressesOrRanges != NULL))
  501. return 0;
  502. if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  503. f->ipAddressChoice->u.inherit != NULL)
  504. return 1;
  505. if (f->ipAddressChoice->u.inherit == NULL &&
  506. (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
  507. return 0;
  508. f->ipAddressChoice->type = IPAddressChoice_inherit;
  509. return 1;
  510. }
  511. /*
  512. * Construct an IPAddressOrRange sequence, or return an existing one.
  513. */
  514. static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
  515. const unsigned afi,
  516. const unsigned *safi)
  517. {
  518. IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
  519. IPAddressOrRanges *aors = NULL;
  520. if (f == NULL ||
  521. f->ipAddressChoice == NULL ||
  522. (f->ipAddressChoice->type == IPAddressChoice_inherit &&
  523. f->ipAddressChoice->u.inherit != NULL))
  524. return NULL;
  525. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
  526. aors = f->ipAddressChoice->u.addressesOrRanges;
  527. if (aors != NULL)
  528. return aors;
  529. if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
  530. return NULL;
  531. switch (afi) {
  532. case IANA_AFI_IPV4:
  533. (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
  534. break;
  535. case IANA_AFI_IPV6:
  536. (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
  537. break;
  538. }
  539. f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
  540. f->ipAddressChoice->u.addressesOrRanges = aors;
  541. return aors;
  542. }
  543. /*
  544. * Add a prefix.
  545. */
  546. int X509v3_addr_add_prefix(IPAddrBlocks *addr,
  547. const unsigned afi,
  548. const unsigned *safi,
  549. unsigned char *a, const int prefixlen)
  550. {
  551. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  552. IPAddressOrRange *aor;
  553. if (aors == NULL
  554. || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
  555. return 0;
  556. if (sk_IPAddressOrRange_push(aors, aor))
  557. return 1;
  558. IPAddressOrRange_free(aor);
  559. return 0;
  560. }
  561. /*
  562. * Add a range.
  563. */
  564. int X509v3_addr_add_range(IPAddrBlocks *addr,
  565. const unsigned afi,
  566. const unsigned *safi,
  567. unsigned char *min, unsigned char *max)
  568. {
  569. IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
  570. IPAddressOrRange *aor;
  571. int length = length_from_afi(afi);
  572. if (aors == NULL)
  573. return 0;
  574. if (!make_addressRange(&aor, min, max, length))
  575. return 0;
  576. if (sk_IPAddressOrRange_push(aors, aor))
  577. return 1;
  578. IPAddressOrRange_free(aor);
  579. return 0;
  580. }
  581. /*
  582. * Extract min and max values from an IPAddressOrRange.
  583. */
  584. static int extract_min_max(IPAddressOrRange *aor,
  585. unsigned char *min, unsigned char *max, int length)
  586. {
  587. if (aor == NULL || min == NULL || max == NULL)
  588. return 0;
  589. switch (aor->type) {
  590. case IPAddressOrRange_addressPrefix:
  591. return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
  592. addr_expand(max, aor->u.addressPrefix, length, 0xFF));
  593. case IPAddressOrRange_addressRange:
  594. return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
  595. addr_expand(max, aor->u.addressRange->max, length, 0xFF));
  596. }
  597. return 0;
  598. }
  599. /*
  600. * Public wrapper for extract_min_max().
  601. */
  602. int X509v3_addr_get_range(IPAddressOrRange *aor,
  603. const unsigned afi,
  604. unsigned char *min,
  605. unsigned char *max, const int length)
  606. {
  607. int afi_length = length_from_afi(afi);
  608. if (aor == NULL || min == NULL || max == NULL ||
  609. afi_length == 0 || length < afi_length ||
  610. (aor->type != IPAddressOrRange_addressPrefix &&
  611. aor->type != IPAddressOrRange_addressRange) ||
  612. !extract_min_max(aor, min, max, afi_length))
  613. return 0;
  614. return afi_length;
  615. }
  616. /*
  617. * Sort comparison function for a sequence of IPAddressFamily.
  618. *
  619. * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
  620. * the ordering: I can read it as meaning that IPv6 without a SAFI
  621. * comes before IPv4 with a SAFI, which seems pretty weird. The
  622. * examples in appendix B suggest that the author intended the
  623. * null-SAFI rule to apply only within a single AFI, which is what I
  624. * would have expected and is what the following code implements.
  625. */
  626. static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
  627. const IPAddressFamily *const *b_)
  628. {
  629. const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
  630. const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
  631. int len = ((a->length <= b->length) ? a->length : b->length);
  632. int cmp = memcmp(a->data, b->data, len);
  633. return cmp ? cmp : a->length - b->length;
  634. }
  635. /*
  636. * Check whether an IPAddrBLocks is in canonical form.
  637. */
  638. int X509v3_addr_is_canonical(IPAddrBlocks *addr)
  639. {
  640. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  641. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  642. IPAddressOrRanges *aors;
  643. int i, j, k;
  644. /*
  645. * Empty extension is canonical.
  646. */
  647. if (addr == NULL)
  648. return 1;
  649. /*
  650. * Check whether the top-level list is in order.
  651. */
  652. for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
  653. const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
  654. const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
  655. if (IPAddressFamily_cmp(&a, &b) >= 0)
  656. return 0;
  657. }
  658. /*
  659. * Top level's ok, now check each address family.
  660. */
  661. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  662. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  663. int length = length_from_afi(X509v3_addr_get_afi(f));
  664. /*
  665. * Inheritance is canonical. Anything other than inheritance or
  666. * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
  667. */
  668. if (f == NULL || f->ipAddressChoice == NULL)
  669. return 0;
  670. switch (f->ipAddressChoice->type) {
  671. case IPAddressChoice_inherit:
  672. continue;
  673. case IPAddressChoice_addressesOrRanges:
  674. break;
  675. default:
  676. return 0;
  677. }
  678. /*
  679. * It's an IPAddressOrRanges sequence, check it.
  680. */
  681. aors = f->ipAddressChoice->u.addressesOrRanges;
  682. if (sk_IPAddressOrRange_num(aors) == 0)
  683. return 0;
  684. for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
  685. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  686. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
  687. if (!extract_min_max(a, a_min, a_max, length) ||
  688. !extract_min_max(b, b_min, b_max, length))
  689. return 0;
  690. /*
  691. * Punt misordered list, overlapping start, or inverted range.
  692. */
  693. if (memcmp(a_min, b_min, length) >= 0 ||
  694. memcmp(a_min, a_max, length) > 0 ||
  695. memcmp(b_min, b_max, length) > 0)
  696. return 0;
  697. /*
  698. * Punt if adjacent or overlapping. Check for adjacency by
  699. * subtracting one from b_min first.
  700. */
  701. for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
  702. if (memcmp(a_max, b_min, length) >= 0)
  703. return 0;
  704. /*
  705. * Check for range that should be expressed as a prefix.
  706. */
  707. if (a->type == IPAddressOrRange_addressRange &&
  708. range_should_be_prefix(a_min, a_max, length) >= 0)
  709. return 0;
  710. }
  711. /*
  712. * Check range to see if it's inverted or should be a
  713. * prefix.
  714. */
  715. j = sk_IPAddressOrRange_num(aors) - 1;
  716. {
  717. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  718. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  719. if (!extract_min_max(a, a_min, a_max, length))
  720. return 0;
  721. if (memcmp(a_min, a_max, length) > 0 ||
  722. range_should_be_prefix(a_min, a_max, length) >= 0)
  723. return 0;
  724. }
  725. }
  726. }
  727. /*
  728. * If we made it through all that, we're happy.
  729. */
  730. return 1;
  731. }
  732. /*
  733. * Whack an IPAddressOrRanges into canonical form.
  734. */
  735. static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
  736. const unsigned afi)
  737. {
  738. int i, j, length = length_from_afi(afi);
  739. /*
  740. * Sort the IPAddressOrRanges sequence.
  741. */
  742. sk_IPAddressOrRange_sort(aors);
  743. /*
  744. * Clean up representation issues, punt on duplicates or overlaps.
  745. */
  746. for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
  747. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
  748. IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
  749. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  750. unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
  751. if (!extract_min_max(a, a_min, a_max, length) ||
  752. !extract_min_max(b, b_min, b_max, length))
  753. return 0;
  754. /*
  755. * Punt inverted ranges.
  756. */
  757. if (memcmp(a_min, a_max, length) > 0 ||
  758. memcmp(b_min, b_max, length) > 0)
  759. return 0;
  760. /*
  761. * Punt overlaps.
  762. */
  763. if (memcmp(a_max, b_min, length) >= 0)
  764. return 0;
  765. /*
  766. * Merge if a and b are adjacent. We check for
  767. * adjacency by subtracting one from b_min first.
  768. */
  769. for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
  770. if (memcmp(a_max, b_min, length) == 0) {
  771. IPAddressOrRange *merged;
  772. if (!make_addressRange(&merged, a_min, b_max, length))
  773. return 0;
  774. (void)sk_IPAddressOrRange_set(aors, i, merged);
  775. (void)sk_IPAddressOrRange_delete(aors, i + 1);
  776. IPAddressOrRange_free(a);
  777. IPAddressOrRange_free(b);
  778. --i;
  779. continue;
  780. }
  781. }
  782. /*
  783. * Check for inverted final range.
  784. */
  785. j = sk_IPAddressOrRange_num(aors) - 1;
  786. {
  787. IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
  788. if (a != NULL && a->type == IPAddressOrRange_addressRange) {
  789. unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
  790. if (!extract_min_max(a, a_min, a_max, length))
  791. return 0;
  792. if (memcmp(a_min, a_max, length) > 0)
  793. return 0;
  794. }
  795. }
  796. return 1;
  797. }
  798. /*
  799. * Whack an IPAddrBlocks extension into canonical form.
  800. */
  801. int X509v3_addr_canonize(IPAddrBlocks *addr)
  802. {
  803. int i;
  804. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  805. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  806. if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
  807. !IPAddressOrRanges_canonize(f->ipAddressChoice->
  808. u.addressesOrRanges,
  809. X509v3_addr_get_afi(f)))
  810. return 0;
  811. }
  812. (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
  813. sk_IPAddressFamily_sort(addr);
  814. if (!ossl_assert(X509v3_addr_is_canonical(addr)))
  815. return 0;
  816. return 1;
  817. }
  818. /*
  819. * v2i handler for the IPAddrBlocks extension.
  820. */
  821. static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
  822. struct v3_ext_ctx *ctx,
  823. STACK_OF(CONF_VALUE) *values)
  824. {
  825. static const char v4addr_chars[] = "0123456789.";
  826. static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
  827. IPAddrBlocks *addr = NULL;
  828. char *s = NULL, *t;
  829. int i;
  830. if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
  831. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  832. return NULL;
  833. }
  834. for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
  835. CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
  836. unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
  837. unsigned afi, *safi = NULL, safi_;
  838. const char *addr_chars = NULL;
  839. int prefixlen, i1, i2, delim, length;
  840. if (!name_cmp(val->name, "IPv4")) {
  841. afi = IANA_AFI_IPV4;
  842. } else if (!name_cmp(val->name, "IPv6")) {
  843. afi = IANA_AFI_IPV6;
  844. } else if (!name_cmp(val->name, "IPv4-SAFI")) {
  845. afi = IANA_AFI_IPV4;
  846. safi = &safi_;
  847. } else if (!name_cmp(val->name, "IPv6-SAFI")) {
  848. afi = IANA_AFI_IPV6;
  849. safi = &safi_;
  850. } else {
  851. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  852. X509V3_R_EXTENSION_NAME_ERROR);
  853. X509V3_conf_err(val);
  854. goto err;
  855. }
  856. switch (afi) {
  857. case IANA_AFI_IPV4:
  858. addr_chars = v4addr_chars;
  859. break;
  860. case IANA_AFI_IPV6:
  861. addr_chars = v6addr_chars;
  862. break;
  863. }
  864. length = length_from_afi(afi);
  865. /*
  866. * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
  867. * the other input values.
  868. */
  869. if (safi != NULL) {
  870. *safi = strtoul(val->value, &t, 0);
  871. t += strspn(t, " \t");
  872. if (*safi > 0xFF || *t++ != ':') {
  873. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
  874. X509V3_conf_err(val);
  875. goto err;
  876. }
  877. t += strspn(t, " \t");
  878. s = OPENSSL_strdup(t);
  879. } else {
  880. s = OPENSSL_strdup(val->value);
  881. }
  882. if (s == NULL) {
  883. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  884. goto err;
  885. }
  886. /*
  887. * Check for inheritance. Not worth additional complexity to
  888. * optimize this (seldom-used) case.
  889. */
  890. if (strcmp(s, "inherit") == 0) {
  891. if (!X509v3_addr_add_inherit(addr, afi, safi)) {
  892. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  893. X509V3_R_INVALID_INHERITANCE);
  894. X509V3_conf_err(val);
  895. goto err;
  896. }
  897. OPENSSL_free(s);
  898. s = NULL;
  899. continue;
  900. }
  901. i1 = strspn(s, addr_chars);
  902. i2 = i1 + strspn(s + i1, " \t");
  903. delim = s[i2++];
  904. s[i1] = '\0';
  905. if (a2i_ipadd(min, s) != length) {
  906. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
  907. X509V3_conf_err(val);
  908. goto err;
  909. }
  910. switch (delim) {
  911. case '/':
  912. prefixlen = (int)strtoul(s + i2, &t, 10);
  913. if (t == s + i2
  914. || *t != '\0'
  915. || prefixlen > (length * 8)
  916. || prefixlen < 0) {
  917. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  918. X509V3_R_EXTENSION_VALUE_ERROR);
  919. X509V3_conf_err(val);
  920. goto err;
  921. }
  922. if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
  923. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  924. goto err;
  925. }
  926. break;
  927. case '-':
  928. i1 = i2 + strspn(s + i2, " \t");
  929. i2 = i1 + strspn(s + i1, addr_chars);
  930. if (i1 == i2 || s[i2] != '\0') {
  931. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  932. X509V3_R_EXTENSION_VALUE_ERROR);
  933. X509V3_conf_err(val);
  934. goto err;
  935. }
  936. if (a2i_ipadd(max, s + i1) != length) {
  937. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  938. X509V3_R_INVALID_IPADDRESS);
  939. X509V3_conf_err(val);
  940. goto err;
  941. }
  942. if (memcmp(min, max, length_from_afi(afi)) > 0) {
  943. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  944. X509V3_R_EXTENSION_VALUE_ERROR);
  945. X509V3_conf_err(val);
  946. goto err;
  947. }
  948. if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
  949. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  950. goto err;
  951. }
  952. break;
  953. case '\0':
  954. if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
  955. X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
  956. goto err;
  957. }
  958. break;
  959. default:
  960. X509V3err(X509V3_F_V2I_IPADDRBLOCKS,
  961. X509V3_R_EXTENSION_VALUE_ERROR);
  962. X509V3_conf_err(val);
  963. goto err;
  964. }
  965. OPENSSL_free(s);
  966. s = NULL;
  967. }
  968. /*
  969. * Canonize the result, then we're done.
  970. */
  971. if (!X509v3_addr_canonize(addr))
  972. goto err;
  973. return addr;
  974. err:
  975. OPENSSL_free(s);
  976. sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
  977. return NULL;
  978. }
  979. /*
  980. * OpenSSL dispatch
  981. */
  982. const X509V3_EXT_METHOD v3_addr = {
  983. NID_sbgp_ipAddrBlock, /* nid */
  984. 0, /* flags */
  985. ASN1_ITEM_ref(IPAddrBlocks), /* template */
  986. 0, 0, 0, 0, /* old functions, ignored */
  987. 0, /* i2s */
  988. 0, /* s2i */
  989. 0, /* i2v */
  990. v2i_IPAddrBlocks, /* v2i */
  991. i2r_IPAddrBlocks, /* i2r */
  992. 0, /* r2i */
  993. NULL /* extension-specific data */
  994. };
  995. /*
  996. * Figure out whether extension sues inheritance.
  997. */
  998. int X509v3_addr_inherits(IPAddrBlocks *addr)
  999. {
  1000. int i;
  1001. if (addr == NULL)
  1002. return 0;
  1003. for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
  1004. IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
  1005. if (f->ipAddressChoice->type == IPAddressChoice_inherit)
  1006. return 1;
  1007. }
  1008. return 0;
  1009. }
  1010. /*
  1011. * Figure out whether parent contains child.
  1012. */
  1013. static int addr_contains(IPAddressOrRanges *parent,
  1014. IPAddressOrRanges *child, int length)
  1015. {
  1016. unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
  1017. unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
  1018. int p, c;
  1019. if (child == NULL || parent == child)
  1020. return 1;
  1021. if (parent == NULL)
  1022. return 0;
  1023. p = 0;
  1024. for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
  1025. if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
  1026. c_min, c_max, length))
  1027. return -1;
  1028. for (;; p++) {
  1029. if (p >= sk_IPAddressOrRange_num(parent))
  1030. return 0;
  1031. if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
  1032. p_min, p_max, length))
  1033. return 0;
  1034. if (memcmp(p_max, c_max, length) < 0)
  1035. continue;
  1036. if (memcmp(p_min, c_min, length) > 0)
  1037. return 0;
  1038. break;
  1039. }
  1040. }
  1041. return 1;
  1042. }
  1043. /*
  1044. * Test whether a is a subset of b.
  1045. */
  1046. int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
  1047. {
  1048. int i;
  1049. if (a == NULL || a == b)
  1050. return 1;
  1051. if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
  1052. return 0;
  1053. (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
  1054. for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
  1055. IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
  1056. int j = sk_IPAddressFamily_find(b, fa);
  1057. IPAddressFamily *fb;
  1058. fb = sk_IPAddressFamily_value(b, j);
  1059. if (fb == NULL)
  1060. return 0;
  1061. if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
  1062. fa->ipAddressChoice->u.addressesOrRanges,
  1063. length_from_afi(X509v3_addr_get_afi(fb))))
  1064. return 0;
  1065. }
  1066. return 1;
  1067. }
  1068. /*
  1069. * Validation error handling via callback.
  1070. */
  1071. #define validation_err(_err_) \
  1072. do { \
  1073. if (ctx != NULL) { \
  1074. ctx->error = _err_; \
  1075. ctx->error_depth = i; \
  1076. ctx->current_cert = x; \
  1077. ret = ctx->verify_cb(0, ctx); \
  1078. } else { \
  1079. ret = 0; \
  1080. } \
  1081. if (!ret) \
  1082. goto done; \
  1083. } while (0)
  1084. /*
  1085. * Core code for RFC 3779 2.3 path validation.
  1086. *
  1087. * Returns 1 for success, 0 on error.
  1088. *
  1089. * When returning 0, ctx->error MUST be set to an appropriate value other than
  1090. * X509_V_OK.
  1091. */
  1092. static int addr_validate_path_internal(X509_STORE_CTX *ctx,
  1093. STACK_OF(X509) *chain,
  1094. IPAddrBlocks *ext)
  1095. {
  1096. IPAddrBlocks *child = NULL;
  1097. int i, j, ret = 1;
  1098. X509 *x;
  1099. if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
  1100. || !ossl_assert(ctx != NULL || ext != NULL)
  1101. || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
  1102. if (ctx != NULL)
  1103. ctx->error = X509_V_ERR_UNSPECIFIED;
  1104. return 0;
  1105. }
  1106. /*
  1107. * Figure out where to start. If we don't have an extension to
  1108. * check, we're done. Otherwise, check canonical form and
  1109. * set up for walking up the chain.
  1110. */
  1111. if (ext != NULL) {
  1112. i = -1;
  1113. x = NULL;
  1114. } else {
  1115. i = 0;
  1116. x = sk_X509_value(chain, i);
  1117. if ((ext = x->rfc3779_addr) == NULL)
  1118. goto done;
  1119. }
  1120. if (!X509v3_addr_is_canonical(ext))
  1121. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1122. (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
  1123. if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
  1124. X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL,
  1125. ERR_R_MALLOC_FAILURE);
  1126. if (ctx != NULL)
  1127. ctx->error = X509_V_ERR_OUT_OF_MEM;
  1128. ret = 0;
  1129. goto done;
  1130. }
  1131. /*
  1132. * Now walk up the chain. No cert may list resources that its
  1133. * parent doesn't list.
  1134. */
  1135. for (i++; i < sk_X509_num(chain); i++) {
  1136. x = sk_X509_value(chain, i);
  1137. if (!X509v3_addr_is_canonical(x->rfc3779_addr))
  1138. validation_err(X509_V_ERR_INVALID_EXTENSION);
  1139. if (x->rfc3779_addr == NULL) {
  1140. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1141. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1142. if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
  1143. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1144. break;
  1145. }
  1146. }
  1147. continue;
  1148. }
  1149. (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
  1150. IPAddressFamily_cmp);
  1151. for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
  1152. IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
  1153. int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
  1154. IPAddressFamily *fp =
  1155. sk_IPAddressFamily_value(x->rfc3779_addr, k);
  1156. if (fp == NULL) {
  1157. if (fc->ipAddressChoice->type ==
  1158. IPAddressChoice_addressesOrRanges) {
  1159. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1160. break;
  1161. }
  1162. continue;
  1163. }
  1164. if (fp->ipAddressChoice->type ==
  1165. IPAddressChoice_addressesOrRanges) {
  1166. if (fc->ipAddressChoice->type == IPAddressChoice_inherit
  1167. || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
  1168. fc->ipAddressChoice->u.addressesOrRanges,
  1169. length_from_afi(X509v3_addr_get_afi(fc))))
  1170. sk_IPAddressFamily_set(child, j, fp);
  1171. else
  1172. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1173. }
  1174. }
  1175. }
  1176. /*
  1177. * Trust anchor can't inherit.
  1178. */
  1179. if (x->rfc3779_addr != NULL) {
  1180. for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
  1181. IPAddressFamily *fp =
  1182. sk_IPAddressFamily_value(x->rfc3779_addr, j);
  1183. if (fp->ipAddressChoice->type == IPAddressChoice_inherit
  1184. && sk_IPAddressFamily_find(child, fp) >= 0)
  1185. validation_err(X509_V_ERR_UNNESTED_RESOURCE);
  1186. }
  1187. }
  1188. done:
  1189. sk_IPAddressFamily_free(child);
  1190. return ret;
  1191. }
  1192. #undef validation_err
  1193. /*
  1194. * RFC 3779 2.3 path validation -- called from X509_verify_cert().
  1195. */
  1196. int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
  1197. {
  1198. if (ctx->chain == NULL
  1199. || sk_X509_num(ctx->chain) == 0
  1200. || ctx->verify_cb == NULL) {
  1201. ctx->error = X509_V_ERR_UNSPECIFIED;
  1202. return 0;
  1203. }
  1204. return addr_validate_path_internal(ctx, ctx->chain, NULL);
  1205. }
  1206. /*
  1207. * RFC 3779 2.3 path validation of an extension.
  1208. * Test whether chain covers extension.
  1209. */
  1210. int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
  1211. IPAddrBlocks *ext, int allow_inheritance)
  1212. {
  1213. if (ext == NULL)
  1214. return 1;
  1215. if (chain == NULL || sk_X509_num(chain) == 0)
  1216. return 0;
  1217. if (!allow_inheritance && X509v3_addr_inherits(ext))
  1218. return 0;
  1219. return addr_validate_path_internal(NULL, chain, ext);
  1220. }
  1221. #endif /* OPENSSL_NO_RFC3779 */