123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760 |
- /*
- * Floating point number functions.
- *
- * Copyright (C) 2001-2007 Peter Johnson
- *
- * Based on public-domain x86 assembly code by Randall Hyde (8/28/91).
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- */
- #include "util.h"
- #include <ctype.h>
- #include "coretype.h"
- #include "bitvect.h"
- #include "file.h"
- #include "errwarn.h"
- #include "floatnum.h"
- /* 97-bit internal floating point format:
- * 0000000s eeeeeeee eeeeeeee m.....................................m
- * Sign exponent mantissa (80 bits)
- * 79 0
- *
- * Only L.O. bit of Sign byte is significant. The rest is zero.
- * Exponent is bias 32767.
- * Mantissa does NOT have an implied one bit (it's explicit).
- */
- struct yasm_floatnum {
- /*@only@*/ wordptr mantissa; /* Allocated to MANT_BITS bits */
- unsigned short exponent;
- unsigned char sign;
- unsigned char flags;
- };
- /* constants describing parameters of internal floating point format */
- #define MANT_BITS 80
- #define MANT_BYTES 10
- #define MANT_SIGDIGITS 24
- #define EXP_BIAS 0x7FFF
- #define EXP_INF 0xFFFF
- #define EXP_MAX 0xFFFE
- #define EXP_MIN 1
- #define EXP_ZERO 0
- /* Flag settings for flags field */
- #define FLAG_ISZERO 1<<0
- /* Note this structure integrates the floatnum structure */
- typedef struct POT_Entry_s {
- yasm_floatnum f;
- int dec_exponent;
- } POT_Entry;
- /* "Source" for POT_Entry. */
- typedef struct POT_Entry_Source_s {
- unsigned char mantissa[MANT_BYTES]; /* little endian mantissa */
- unsigned short exponent; /* Bias 32767 exponent */
- } POT_Entry_Source;
- /* Power of ten tables used by the floating point I/O routines.
- * The POT_Table? arrays are built from the POT_Table?_Source arrays at
- * runtime by POT_Table_Init().
- */
- /* This table contains the powers of ten raised to negative powers of two:
- *
- * entry[12-n] = 10 ** (-2 ** n) for 0 <= n <= 12.
- * entry[13] = 1.0
- */
- static /*@only@*/ POT_Entry *POT_TableN;
- static POT_Entry_Source POT_TableN_Source[] = {
- {{0xe3,0x2d,0xde,0x9f,0xce,0xd2,0xc8,0x04,0xdd,0xa6},0x4ad8}, /* 1e-4096 */
- {{0x25,0x49,0xe4,0x2d,0x36,0x34,0x4f,0x53,0xae,0xce},0x656b}, /* 1e-2048 */
- {{0xa6,0x87,0xbd,0xc0,0x57,0xda,0xa5,0x82,0xa6,0xa2},0x72b5}, /* 1e-1024 */
- {{0x33,0x71,0x1c,0xd2,0x23,0xdb,0x32,0xee,0x49,0x90},0x795a}, /* 1e-512 */
- {{0x91,0xfa,0x39,0x19,0x7a,0x63,0x25,0x43,0x31,0xc0},0x7cac}, /* 1e-256 */
- {{0x7d,0xac,0xa0,0xe4,0xbc,0x64,0x7c,0x46,0xd0,0xdd},0x7e55}, /* 1e-128 */
- {{0x24,0x3f,0xa5,0xe9,0x39,0xa5,0x27,0xea,0x7f,0xa8},0x7f2a}, /* 1e-64 */
- {{0xde,0x67,0xba,0x94,0x39,0x45,0xad,0x1e,0xb1,0xcf},0x7f94}, /* 1e-32 */
- {{0x2f,0x4c,0x5b,0xe1,0x4d,0xc4,0xbe,0x94,0x95,0xe6},0x7fc9}, /* 1e-16 */
- {{0xc2,0xfd,0xfc,0xce,0x61,0x84,0x11,0x77,0xcc,0xab},0x7fe4}, /* 1e-8 */
- {{0xc3,0xd3,0x2b,0x65,0x19,0xe2,0x58,0x17,0xb7,0xd1},0x7ff1}, /* 1e-4 */
- {{0x71,0x3d,0x0a,0xd7,0xa3,0x70,0x3d,0x0a,0xd7,0xa3},0x7ff8}, /* 1e-2 */
- {{0xcd,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc,0xcc},0x7ffb}, /* 1e-1 */
- {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},0x7fff}, /* 1e-0 */
- };
- /* This table contains the powers of ten raised to positive powers of two:
- *
- * entry[12-n] = 10 ** (2 ** n) for 0 <= n <= 12.
- * entry[13] = 1.0
- * entry[-1] = entry[0];
- *
- * There is a -1 entry since it is possible for the algorithm to back up
- * before the table. This -1 entry is created at runtime by duplicating the
- * 0 entry.
- */
- static /*@only@*/ POT_Entry *POT_TableP;
- static POT_Entry_Source POT_TableP_Source[] = {
- {{0x4c,0xc9,0x9a,0x97,0x20,0x8a,0x02,0x52,0x60,0xc4},0xb525}, /* 1e+4096 */
- {{0x4d,0xa7,0xe4,0x5d,0x3d,0xc5,0x5d,0x3b,0x8b,0x9e},0x9a92}, /* 1e+2048 */
- {{0x0d,0x65,0x17,0x0c,0x75,0x81,0x86,0x75,0x76,0xc9},0x8d48}, /* 1e+1024 */
- {{0x65,0xcc,0xc6,0x91,0x0e,0xa6,0xae,0xa0,0x19,0xe3},0x86a3}, /* 1e+512 */
- {{0xbc,0xdd,0x8d,0xde,0xf9,0x9d,0xfb,0xeb,0x7e,0xaa},0x8351}, /* 1e+256 */
- {{0x6f,0xc6,0xdf,0x8c,0xe9,0x80,0xc9,0x47,0xba,0x93},0x81a8}, /* 1e+128 */
- {{0xbf,0x3c,0xd5,0xa6,0xcf,0xff,0x49,0x1f,0x78,0xc2},0x80d3}, /* 1e+64 */
- {{0x20,0xf0,0x9d,0xb5,0x70,0x2b,0xa8,0xad,0xc5,0x9d},0x8069}, /* 1e+32 */
- {{0x00,0x00,0x00,0x00,0x00,0x04,0xbf,0xc9,0x1b,0x8e},0x8034}, /* 1e+16 */
- {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xbc,0xbe},0x8019}, /* 1e+8 */
- {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x9c},0x800c}, /* 1e+4 */
- {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xc8},0x8005}, /* 1e+2 */
- {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xa0},0x8002}, /* 1e+1 */
- {{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80},0x7fff}, /* 1e+0 */
- };
- static void
- POT_Table_Init_Entry(/*@out@*/ POT_Entry *e, POT_Entry_Source *s, int dec_exp)
- {
- /* Save decimal exponent */
- e->dec_exponent = dec_exp;
- /* Initialize mantissa */
- e->f.mantissa = BitVector_Create(MANT_BITS, FALSE);
- BitVector_Block_Store(e->f.mantissa, s->mantissa, MANT_BYTES);
- /* Initialize exponent */
- e->f.exponent = s->exponent;
- /* Set sign to 0 (positive) */
- e->f.sign = 0;
- /* Clear flags */
- e->f.flags = 0;
- }
- /*@-compdef@*/
- void
- yasm_floatnum_initialize(void)
- /*@globals undef POT_TableN, undef POT_TableP, POT_TableP_Source,
- POT_TableN_Source @*/
- {
- int dec_exp = 1;
- int i;
- /* Allocate space for two POT tables */
- POT_TableN = yasm_xmalloc(14*sizeof(POT_Entry));
- POT_TableP = yasm_xmalloc(15*sizeof(POT_Entry)); /* note 1 extra for -1 */
- /* Initialize entry[0..12] */
- for (i=12; i>=0; i--) {
- POT_Table_Init_Entry(&POT_TableN[i], &POT_TableN_Source[i], 0-dec_exp);
- POT_Table_Init_Entry(&POT_TableP[i+1], &POT_TableP_Source[i], dec_exp);
- dec_exp *= 2; /* Update decimal exponent */
- }
- /* Initialize entry[13] */
- POT_Table_Init_Entry(&POT_TableN[13], &POT_TableN_Source[13], 0);
- POT_Table_Init_Entry(&POT_TableP[14], &POT_TableP_Source[13], 0);
- /* Initialize entry[-1] for POT_TableP */
- POT_Table_Init_Entry(&POT_TableP[0], &POT_TableP_Source[0], 4096);
- /* Offset POT_TableP so that [0] becomes [-1] */
- POT_TableP++;
- }
- /*@=compdef@*/
- /*@-globstate@*/
- void
- yasm_floatnum_cleanup(void)
- {
- int i;
- /* Un-offset POT_TableP */
- POT_TableP--;
- for (i=0; i<14; i++) {
- BitVector_Destroy(POT_TableN[i].f.mantissa);
- BitVector_Destroy(POT_TableP[i].f.mantissa);
- }
- BitVector_Destroy(POT_TableP[14].f.mantissa);
- yasm_xfree(POT_TableN);
- yasm_xfree(POT_TableP);
- }
- /*@=globstate@*/
- static void
- floatnum_normalize(yasm_floatnum *flt)
- {
- long norm_amt;
- if (BitVector_is_empty(flt->mantissa)) {
- flt->exponent = 0;
- return;
- }
- /* Look for the highest set bit, shift to make it the MSB, and adjust
- * exponent. Don't let exponent go negative. */
- norm_amt = (MANT_BITS-1)-Set_Max(flt->mantissa);
- if (norm_amt > (long)flt->exponent)
- norm_amt = (long)flt->exponent;
- BitVector_Move_Left(flt->mantissa, (N_int)norm_amt);
- flt->exponent -= (unsigned short)norm_amt;
- }
- /* acc *= op */
- static void
- floatnum_mul(yasm_floatnum *acc, const yasm_floatnum *op)
- {
- long expon;
- wordptr product, op1, op2;
- long norm_amt;
- /* Compute the new sign */
- acc->sign ^= op->sign;
- /* Check for multiply by 0 */
- if (BitVector_is_empty(acc->mantissa) || BitVector_is_empty(op->mantissa)) {
- BitVector_Empty(acc->mantissa);
- acc->exponent = EXP_ZERO;
- return;
- }
- /* Add exponents, checking for overflow/underflow. */
- expon = (((int)acc->exponent)-EXP_BIAS) + (((int)op->exponent)-EXP_BIAS);
- expon += EXP_BIAS;
- if (expon > EXP_MAX) {
- /* Overflow; return infinity. */
- BitVector_Empty(acc->mantissa);
- acc->exponent = EXP_INF;
- return;
- } else if (expon < EXP_MIN) {
- /* Underflow; return zero. */
- BitVector_Empty(acc->mantissa);
- acc->exponent = EXP_ZERO;
- return;
- }
- /* Add one to the final exponent, as the multiply shifts one extra time. */
- acc->exponent = (unsigned short)(expon+1);
- /* Allocate space for the multiply result */
- product = BitVector_Create((N_int)((MANT_BITS+1)*2), FALSE);
- /* Allocate 1-bit-longer fields to force the operands to be unsigned */
- op1 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);
- op2 = BitVector_Create((N_int)(MANT_BITS+1), FALSE);
- /* Make the operands unsigned after copying from original operands */
- BitVector_Copy(op1, acc->mantissa);
- BitVector_MSB(op1, 0);
- BitVector_Copy(op2, op->mantissa);
- BitVector_MSB(op2, 0);
- /* Compute the product of the mantissas */
- BitVector_Multiply(product, op1, op2);
- /* Normalize the product. Note: we know the product is non-zero because
- * both of the original operands were non-zero.
- *
- * Look for the highest set bit, shift to make it the MSB, and adjust
- * exponent. Don't let exponent go negative.
- */
- norm_amt = (MANT_BITS*2-1)-Set_Max(product);
- if (norm_amt > (long)acc->exponent)
- norm_amt = (long)acc->exponent;
- BitVector_Move_Left(product, (N_int)norm_amt);
- acc->exponent -= (unsigned short)norm_amt;
- /* Store the highest bits of the result */
- BitVector_Interval_Copy(acc->mantissa, product, 0, MANT_BITS, MANT_BITS);
- /* Free allocated variables */
- BitVector_Destroy(product);
- BitVector_Destroy(op1);
- BitVector_Destroy(op2);
- }
- yasm_floatnum *
- yasm_floatnum_create(const char *str)
- {
- yasm_floatnum *flt;
- int dec_exponent, dec_exp_add; /* decimal (powers of 10) exponent */
- int POT_index;
- wordptr operand[2];
- int sig_digits;
- int decimal_pt;
- boolean carry;
- flt = yasm_xmalloc(sizeof(yasm_floatnum));
- flt->mantissa = BitVector_Create(MANT_BITS, TRUE);
- /* allocate and initialize calculation variables */
- operand[0] = BitVector_Create(MANT_BITS, TRUE);
- operand[1] = BitVector_Create(MANT_BITS, TRUE);
- dec_exponent = 0;
- sig_digits = 0;
- decimal_pt = 1;
- /* set initial flags to 0 */
- flt->flags = 0;
- /* check for + or - character and skip */
- if (*str == '-') {
- flt->sign = 1;
- str++;
- } else if (*str == '+') {
- flt->sign = 0;
- str++;
- } else
- flt->sign = 0;
- /* eliminate any leading zeros (which do not count as significant digits) */
- while (*str == '0')
- str++;
- /* When we reach the end of the leading zeros, first check for a decimal
- * point. If the number is of the form "0---0.0000" we need to get rid
- * of the zeros after the decimal point and not count them as significant
- * digits.
- */
- if (*str == '.') {
- str++;
- while (*str == '0') {
- str++;
- dec_exponent--;
- }
- } else {
- /* The number is of the form "yyy.xxxx" (where y <> 0). */
- while (isdigit(*str)) {
- /* See if we've processed more than the max significant digits: */
- if (sig_digits < MANT_SIGDIGITS) {
- /* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
- BitVector_shift_left(flt->mantissa, 0);
- BitVector_Copy(operand[0], flt->mantissa);
- BitVector_Move_Left(flt->mantissa, 2);
- carry = 0;
- BitVector_add(operand[1], operand[0], flt->mantissa, &carry);
- /* Add in current digit */
- BitVector_Empty(operand[0]);
- BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
- carry = 0;
- BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
- } else {
- /* Can't integrate more digits with mantissa, so instead just
- * raise by a power of ten.
- */
- dec_exponent++;
- }
- sig_digits++;
- str++;
- }
- if (*str == '.')
- str++;
- else
- decimal_pt = 0;
- }
- if (decimal_pt) {
- /* Process the digits to the right of the decimal point. */
- while (isdigit(*str)) {
- /* See if we've processed more than 19 significant digits: */
- if (sig_digits < 19) {
- /* Raise by a power of ten */
- dec_exponent--;
- /* Multiply mantissa by 10 [x = (x<<1)+(x<<3)] */
- BitVector_shift_left(flt->mantissa, 0);
- BitVector_Copy(operand[0], flt->mantissa);
- BitVector_Move_Left(flt->mantissa, 2);
- carry = 0;
- BitVector_add(operand[1], operand[0], flt->mantissa, &carry);
- /* Add in current digit */
- BitVector_Empty(operand[0]);
- BitVector_Chunk_Store(operand[0], 4, 0, (N_long)(*str-'0'));
- carry = 0;
- BitVector_add(flt->mantissa, operand[1], operand[0], &carry);
- }
- sig_digits++;
- str++;
- }
- }
- if (*str == 'e' || *str == 'E') {
- str++;
- /* We just saw the "E" character, now read in the exponent value and
- * add it into dec_exponent.
- */
- dec_exp_add = 0;
- sscanf(str, "%d", &dec_exp_add);
- dec_exponent += dec_exp_add;
- }
- /* Free calculation variables. */
- BitVector_Destroy(operand[1]);
- BitVector_Destroy(operand[0]);
- /* Normalize the number, checking for 0 first. */
- if (BitVector_is_empty(flt->mantissa)) {
- /* Mantissa is 0, zero exponent too. */
- flt->exponent = 0;
- /* Set zero flag so output functions don't see 0 value as underflow. */
- flt->flags |= FLAG_ISZERO;
- /* Return 0 value. */
- return flt;
- }
- /* Exponent if already norm. */
- flt->exponent = (unsigned short)(0x7FFF+(MANT_BITS-1));
- floatnum_normalize(flt);
- /* The number is normalized. Now multiply by 10 the number of times
- * specified in DecExponent. This uses the power of ten tables to speed
- * up this operation (and make it more accurate).
- */
- if (dec_exponent > 0) {
- POT_index = 0;
- /* Until we hit 1.0 or finish exponent or overflow */
- while ((POT_index < 14) && (dec_exponent != 0) &&
- (flt->exponent != EXP_INF)) {
- /* Find the first power of ten in the table which is just less than
- * the exponent.
- */
- while (dec_exponent < POT_TableP[POT_index].dec_exponent)
- POT_index++;
- if (POT_index < 14) {
- /* Subtract out what we're multiplying in from exponent */
- dec_exponent -= POT_TableP[POT_index].dec_exponent;
- /* Multiply by current power of 10 */
- floatnum_mul(flt, &POT_TableP[POT_index].f);
- }
- }
- } else if (dec_exponent < 0) {
- POT_index = 0;
- /* Until we hit 1.0 or finish exponent or underflow */
- while ((POT_index < 14) && (dec_exponent != 0) &&
- (flt->exponent != EXP_ZERO)) {
- /* Find the first power of ten in the table which is just less than
- * the exponent.
- */
- while (dec_exponent > POT_TableN[POT_index].dec_exponent)
- POT_index++;
- if (POT_index < 14) {
- /* Subtract out what we're multiplying in from exponent */
- dec_exponent -= POT_TableN[POT_index].dec_exponent;
- /* Multiply by current power of 10 */
- floatnum_mul(flt, &POT_TableN[POT_index].f);
- }
- }
- }
- /* Round the result. (Don't round underflow or overflow). Also don't
- * increment if this would cause the mantissa to wrap.
- */
- if ((flt->exponent != EXP_INF) && (flt->exponent != EXP_ZERO) &&
- !BitVector_is_full(flt->mantissa))
- BitVector_increment(flt->mantissa);
- return flt;
- }
- yasm_floatnum *
- yasm_floatnum_copy(const yasm_floatnum *flt)
- {
- yasm_floatnum *f = yasm_xmalloc(sizeof(yasm_floatnum));
- f->mantissa = BitVector_Clone(flt->mantissa);
- f->exponent = flt->exponent;
- f->sign = flt->sign;
- f->flags = flt->flags;
- return f;
- }
- void
- yasm_floatnum_destroy(yasm_floatnum *flt)
- {
- BitVector_Destroy(flt->mantissa);
- yasm_xfree(flt);
- }
- int
- yasm_floatnum_calc(yasm_floatnum *acc, yasm_expr_op op,
- /*@unused@*/ yasm_floatnum *operand)
- {
- if (op != YASM_EXPR_NEG) {
- yasm_error_set(YASM_ERROR_FLOATING_POINT,
- N_("Unsupported floating-point arithmetic operation"));
- return 1;
- }
- acc->sign ^= 1;
- return 0;
- }
- int
- yasm_floatnum_get_int(const yasm_floatnum *flt, unsigned long *ret_val)
- {
- unsigned char t[4];
- if (yasm_floatnum_get_sized(flt, t, 4, 32, 0, 0, 0)) {
- *ret_val = 0xDEADBEEFUL; /* Obviously incorrect return value */
- return 1;
- }
- YASM_LOAD_32_L(*ret_val, &t[0]);
- return 0;
- }
- /* Function used by conversion routines to actually perform the conversion.
- *
- * ptr -> the array to return the little-endian floating point value into.
- * flt -> the floating point value to convert.
- * byte_size -> the size in bytes of the output format.
- * mant_bits -> the size in bits of the output mantissa.
- * implicit1 -> does the output format have an implicit 1? 1=yes, 0=no.
- * exp_bits -> the size in bits of the output exponent.
- *
- * Returns 0 on success, 1 if overflow, -1 if underflow.
- */
- static int
- floatnum_get_common(const yasm_floatnum *flt, /*@out@*/ unsigned char *ptr,
- N_int byte_size, N_int mant_bits, int implicit1,
- N_int exp_bits)
- {
- long exponent = (long)flt->exponent;
- wordptr output;
- charptr buf;
- unsigned int len;
- unsigned int overflow = 0, underflow = 0;
- int retval = 0;
- long exp_bias = (1<<(exp_bits-1))-1;
- long exp_inf = (1<<exp_bits)-1;
- output = BitVector_Create(byte_size*8, TRUE);
- /* copy mantissa */
- BitVector_Interval_Copy(output, flt->mantissa, 0,
- (N_int)((MANT_BITS-implicit1)-mant_bits),
- mant_bits);
- /* round mantissa */
- if (BitVector_bit_test(flt->mantissa, (MANT_BITS-implicit1)-(mant_bits+1)))
- BitVector_increment(output);
- if (BitVector_bit_test(output, mant_bits)) {
- /* overflowed, so zero mantissa (and set explicit bit if necessary) */
- BitVector_Empty(output);
- BitVector_Bit_Copy(output, mant_bits-1, !implicit1);
- /* and up the exponent (checking for overflow) */
- if (exponent+1 >= EXP_INF)
- overflow = 1;
- else
- exponent++;
- }
- /* adjust the exponent to the output bias, checking for overflow */
- exponent -= EXP_BIAS-exp_bias;
- if (exponent >= exp_inf)
- overflow = 1;
- else if (exponent <= 0)
- underflow = 1;
- /* underflow and overflow both set!? */
- if (underflow && overflow)
- yasm_internal_error(N_("Both underflow and overflow set"));
- /* check for underflow or overflow and set up appropriate output */
- if (underflow) {
- BitVector_Empty(output);
- exponent = 0;
- if (!(flt->flags & FLAG_ISZERO))
- retval = -1;
- } else if (overflow) {
- BitVector_Empty(output);
- exponent = exp_inf;
- retval = 1;
- }
- /* move exponent into place */
- BitVector_Chunk_Store(output, exp_bits, mant_bits, (N_long)exponent);
- /* merge in sign bit */
- BitVector_Bit_Copy(output, byte_size*8-1, flt->sign);
- /* get little-endian bytes */
- buf = BitVector_Block_Read(output, &len);
- if (len < byte_size)
- yasm_internal_error(
- N_("Byte length of BitVector does not match bit length"));
- /* copy to output */
- memcpy(ptr, buf, byte_size*sizeof(unsigned char));
- /* free allocated resources */
- yasm_xfree(buf);
- BitVector_Destroy(output);
- return retval;
- }
- /* IEEE-754r "half precision" format:
- * 16 bits:
- * 15 9 Bit 0
- * | | |
- * seee eemm mmmm mmmm
- *
- * e = bias 15 exponent
- * s = sign bit
- * m = mantissa bits, bit 10 is an implied one bit.
- *
- * IEEE-754 (Intel) "single precision" format:
- * 32 bits:
- * Bit 31 Bit 22 Bit 0
- * | | |
- * seeeeeee emmmmmmm mmmmmmmm mmmmmmmm
- *
- * e = bias 127 exponent
- * s = sign bit
- * m = mantissa bits, bit 23 is an implied one bit.
- *
- * IEEE-754 (Intel) "double precision" format:
- * 64 bits:
- * bit 63 bit 51 bit 0
- * | | |
- * seeeeeee eeeemmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm
- *
- * e = bias 1023 exponent.
- * s = sign bit.
- * m = mantissa bits. Bit 52 is an implied one bit.
- *
- * IEEE-754 (Intel) "extended precision" format:
- * 80 bits:
- * bit 79 bit 63 bit 0
- * | | |
- * seeeeeee eeeeeeee mmmmmmmm m...m m...m m...m m...m m...m
- *
- * e = bias 16383 exponent
- * m = 64 bit mantissa with NO implied bit!
- * s = sign (for mantissa)
- */
- int
- yasm_floatnum_get_sized(const yasm_floatnum *flt, unsigned char *ptr,
- size_t destsize, size_t valsize, size_t shift,
- int bigendian, int warn)
- {
- int retval;
- if (destsize*8 != valsize || shift>0 || bigendian) {
- /* TODO */
- yasm_internal_error(N_("unsupported floatnum functionality"));
- }
- switch (destsize) {
- case 2:
- retval = floatnum_get_common(flt, ptr, 2, 10, 1, 5);
- break;
- case 4:
- retval = floatnum_get_common(flt, ptr, 4, 23, 1, 8);
- break;
- case 8:
- retval = floatnum_get_common(flt, ptr, 8, 52, 1, 11);
- break;
- case 10:
- retval = floatnum_get_common(flt, ptr, 10, 64, 0, 15);
- break;
- default:
- yasm_internal_error(N_("Invalid float conversion size"));
- /*@notreached@*/
- return 1;
- }
- if (warn) {
- if (retval < 0)
- yasm_warn_set(YASM_WARN_GENERAL,
- N_("underflow in floating point expression"));
- else if (retval > 0)
- yasm_warn_set(YASM_WARN_GENERAL,
- N_("overflow in floating point expression"));
- }
- return retval;
- }
- /* 1 if the size is valid, 0 if it isn't */
- int
- yasm_floatnum_check_size(/*@unused@*/ const yasm_floatnum *flt, size_t size)
- {
- switch (size) {
- case 16:
- case 32:
- case 64:
- case 80:
- return 1;
- default:
- return 0;
- }
- }
- void
- yasm_floatnum_print(const yasm_floatnum *flt, FILE *f)
- {
- unsigned char out[10];
- unsigned char *str;
- int i;
- /* Internal format */
- str = BitVector_to_Hex(flt->mantissa);
- fprintf(f, "%c %s *2^%04x\n", flt->sign?'-':'+', (char *)str,
- flt->exponent);
- yasm_xfree(str);
- /* 32-bit (single precision) format */
- fprintf(f, "32-bit: %d: ",
- yasm_floatnum_get_sized(flt, out, 4, 32, 0, 0, 0));
- for (i=0; i<4; i++)
- fprintf(f, "%02x ", out[i]);
- fprintf(f, "\n");
- /* 64-bit (double precision) format */
- fprintf(f, "64-bit: %d: ",
- yasm_floatnum_get_sized(flt, out, 8, 64, 0, 0, 0));
- for (i=0; i<8; i++)
- fprintf(f, "%02x ", out[i]);
- fprintf(f, "\n");
- /* 80-bit (extended precision) format */
- fprintf(f, "80-bit: %d: ",
- yasm_floatnum_get_sized(flt, out, 10, 80, 0, 0, 0));
- for (i=0; i<10; i++)
- fprintf(f, "%02x ", out[i]);
- fprintf(f, "\n");
- }
|