123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- /*
- * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- /* least significant word */
- #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
- /* Returns -2 for errors because both -1 and 0 are valid results. */
- int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
- {
- int i;
- int ret = -2; /* avoid 'uninitialized' warning */
- int err = 0;
- BIGNUM *A, *B, *tmp;
- /*-
- * In 'tab', only odd-indexed entries are relevant:
- * For any odd BIGNUM n,
- * tab[BN_lsw(n) & 7]
- * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
- * Note that the sign of n does not matter.
- */
- static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 };
- bn_check_top(a);
- bn_check_top(b);
- BN_CTX_start(ctx);
- A = BN_CTX_get(ctx);
- B = BN_CTX_get(ctx);
- if (B == NULL)
- goto end;
- err = !BN_copy(A, a);
- if (err)
- goto end;
- err = !BN_copy(B, b);
- if (err)
- goto end;
- /*
- * Kronecker symbol, implemented according to Henri Cohen,
- * "A Course in Computational Algebraic Number Theory"
- * (algorithm 1.4.10).
- */
- /* Cohen's step 1: */
- if (BN_is_zero(B)) {
- ret = BN_abs_is_word(A, 1);
- goto end;
- }
- /* Cohen's step 2: */
- if (!BN_is_odd(A) && !BN_is_odd(B)) {
- ret = 0;
- goto end;
- }
- /* now B is non-zero */
- i = 0;
- while (!BN_is_bit_set(B, i))
- i++;
- err = !BN_rshift(B, B, i);
- if (err)
- goto end;
- if (i & 1) {
- /* i is odd */
- /* (thus B was even, thus A must be odd!) */
- /* set 'ret' to $(-1)^{(A^2-1)/8}$ */
- ret = tab[BN_lsw(A) & 7];
- } else {
- /* i is even */
- ret = 1;
- }
- if (B->neg) {
- B->neg = 0;
- if (A->neg)
- ret = -ret;
- }
- /*
- * now B is positive and odd, so what remains to be done is to compute
- * the Jacobi symbol (A/B) and multiply it by 'ret'
- */
- while (1) {
- /* Cohen's step 3: */
- /* B is positive and odd */
- if (BN_is_zero(A)) {
- ret = BN_is_one(B) ? ret : 0;
- goto end;
- }
- /* now A is non-zero */
- i = 0;
- while (!BN_is_bit_set(A, i))
- i++;
- err = !BN_rshift(A, A, i);
- if (err)
- goto end;
- if (i & 1) {
- /* i is odd */
- /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */
- ret = ret * tab[BN_lsw(B) & 7];
- }
- /* Cohen's step 4: */
- /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */
- if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
- ret = -ret;
- /* (A, B) := (B mod |A|, |A|) */
- err = !BN_nnmod(B, B, A, ctx);
- if (err)
- goto end;
- tmp = A;
- A = B;
- B = tmp;
- tmp->neg = 0;
- }
- end:
- BN_CTX_end(ctx);
- if (err)
- return -2;
- else
- return ret;
- }
|