README.pod 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. =pod
  2. =head1 NAME
  3. bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
  4. bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
  5. bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
  6. bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
  7. bn_mul_low_recursive, bn_sqr_normal, bn_sqr_recursive,
  8. bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
  9. bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM
  10. library internal functions
  11. =head1 SYNOPSIS
  12. #include <openssl/bn.h>
  13. BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
  14. BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
  15. BN_ULONG w);
  16. void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
  17. BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
  18. BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
  19. int num);
  20. BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
  21. int num);
  22. void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  23. void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  24. void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
  25. void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
  26. int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
  27. void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
  28. int nb);
  29. void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
  30. void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  31. int dna, int dnb, BN_ULONG *tmp);
  32. void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  33. int n, int tna, int tnb, BN_ULONG *tmp);
  34. void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  35. int n2, BN_ULONG *tmp);
  36. void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
  37. void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
  38. void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
  39. void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
  40. void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
  41. BIGNUM *bn_expand(BIGNUM *a, int bits);
  42. BIGNUM *bn_wexpand(BIGNUM *a, int n);
  43. BIGNUM *bn_expand2(BIGNUM *a, int n);
  44. void bn_fix_top(BIGNUM *a);
  45. void bn_check_top(BIGNUM *a);
  46. void bn_print(BIGNUM *a);
  47. void bn_dump(BN_ULONG *d, int n);
  48. void bn_set_max(BIGNUM *a);
  49. void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
  50. void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
  51. =head1 DESCRIPTION
  52. This page documents the internal functions used by the OpenSSL
  53. B<BIGNUM> implementation. They are described here to facilitate
  54. debugging and extending the library. They are I<not> to be used by
  55. applications.
  56. =head2 The BIGNUM structure
  57. typedef struct bignum_st BIGNUM;
  58. struct bignum_st
  59. {
  60. BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
  61. int top; /* Index of last used d +1. */
  62. /* The next are internal book keeping for bn_expand. */
  63. int dmax; /* Size of the d array. */
  64. int neg; /* one if the number is negative */
  65. int flags;
  66. };
  67. The integer value is stored in B<d>, a malloc()ed array of words (B<BN_ULONG>),
  68. least significant word first. A B<BN_ULONG> can be either 16, 32 or 64 bits
  69. in size, depending on the 'number of bits' (B<BITS2>) specified in
  70. C<openssl/bn.h>.
  71. B<dmax> is the size of the B<d> array that has been allocated. B<top>
  72. is the number of words being used, so for a value of 4, bn.d[0]=4 and
  73. bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is
  74. B<0>, the B<d> field can be B<NULL> and B<top> == B<0>.
  75. B<flags> is a bit field of flags which are defined in C<openssl/bn.h>. The
  76. flags begin with B<BN_FLG_>. The macros BN_set_flags(b, n) and
  77. BN_get_flags(b, n) exist to enable or fetch flag(s) B<n> from B<BIGNUM>
  78. structure B<b>.
  79. Various routines in this library require the use of temporary
  80. B<BIGNUM> variables during their execution. Since dynamic memory
  81. allocation to create B<BIGNUM>s is rather expensive when used in
  82. conjunction with repeated subroutine calls, the B<BN_CTX> structure is
  83. used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see
  84. L<BN_CTX_start(3)>.
  85. =head2 Low-level arithmetic operations
  86. These functions are implemented in C and for several platforms in
  87. assembly language:
  88. bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word
  89. arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result
  90. in B<rp>, and returns the high word (carry).
  91. bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num>
  92. word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places
  93. the result in B<rp>, and returns the high word (carry).
  94. bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array
  95. B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap>
  96. word-wise, and places the low and high bytes of the result in B<rp>.
  97. bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>, B<l>)
  98. by B<d> and returns the result.
  99. bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
  100. arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the
  101. result in B<rp>, and returns the high word (carry).
  102. bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word
  103. arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the
  104. result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0
  105. otherwise).
  106. bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
  107. B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the
  108. result in B<r>.
  109. bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
  110. B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the
  111. result in B<r>.
  112. bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and
  113. B<b> and the 8 word array B<r>.
  114. bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and
  115. B<b> and the 16 word array B<r>.
  116. The following functions are implemented in C:
  117. bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a>
  118. and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and
  119. less than B<b>.
  120. bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na>
  121. word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word
  122. array B<r>. It computes B<a>*B<b> and places the result in B<r>.
  123. bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word
  124. arrays B<r>, B<a> and B<b>. It computes the B<n> low words of
  125. B<a>*B<b> and places the result in B<r>.
  126. bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates
  127. on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb>
  128. (B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2>
  129. word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes
  130. B<a>*B<b> and places the result in B<r>.
  131. bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>)
  132. operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and
  133. B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>.
  134. bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the
  135. B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a>
  136. and B<b>.
  137. BN_mul() calls bn_mul_normal(), or an optimized implementation if the
  138. factors have the same size: bn_mul_comba8() is used if they are 8
  139. words long, bn_mul_recursive() if they are larger than
  140. B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word
  141. size, and bn_mul_part_recursive() for others that are larger than
  142. B<BN_MULL_SIZE_NORMAL>.
  143. bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array
  144. B<a> and the 2*B<n> word arrays B<tmp> and B<r>.
  145. The implementations use the following macros which, depending on the
  146. architecture, may use "long long" C operations or inline assembler.
  147. They are defined in C<bn_local.h>.
  148. mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the
  149. low word of the result in B<r> and the high word in B<c>.
  150. mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and
  151. places the low word of the result in B<r> and the high word in B<c>.
  152. sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word
  153. of the result in B<r0> and the high word in B<r1>.
  154. =head2 Size changes
  155. bn_expand() ensures that B<b> has enough space for a B<bits> bit
  156. number. bn_wexpand() ensures that B<b> has enough space for an
  157. B<n> word number. If the number has to be expanded, both macros
  158. call bn_expand2(), which allocates a new B<d> array and copies the
  159. data. They return B<NULL> on error, B<b> otherwise.
  160. The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most
  161. significant non-zero word plus one when B<a> has shrunk.
  162. =head2 Debugging
  163. bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top
  164. E<lt>= (a)-E<gt>dmax)>. A violation will cause the program to abort.
  165. bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d>
  166. (in reverse order, i.e. most significant word first) to stderr.
  167. bn_set_max() makes B<a> a static number with a B<dmax> of its current size.
  168. This is used by bn_set_low() and bn_set_high() to make B<r> a read-only
  169. B<BIGNUM> that contains the B<n> low or high words of B<a>.
  170. If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump()
  171. and bn_set_max() are defined as empty macros.
  172. =head1 SEE ALSO
  173. L<bn(3)>
  174. =head1 COPYRIGHT
  175. Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved.
  176. Licensed under the OpenSSL license (the "License"). You may not use
  177. this file except in compliance with the License. You can obtain a copy
  178. in the file LICENSE in the source distribution or at
  179. L<https://www.openssl.org/source/license.html>.
  180. =cut