bn_local.h 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #ifndef OSSL_CRYPTO_BN_LOCAL_H
  10. # define OSSL_CRYPTO_BN_LOCAL_H
  11. /*
  12. * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
  13. * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
  14. * Configure script and needs to support both 32-bit and 64-bit.
  15. */
  16. # include <openssl/opensslconf.h>
  17. # if !defined(OPENSSL_SYS_UEFI)
  18. # include "crypto/bn_conf.h"
  19. # endif
  20. # include "crypto/bn.h"
  21. /*
  22. * These preprocessor symbols control various aspects of the bignum headers
  23. * and library code. They're not defined by any "normal" configuration, as
  24. * they are intended for development and testing purposes. NB: defining all
  25. * three can be useful for debugging application code as well as openssl
  26. * itself. BN_DEBUG - turn on various debugging alterations to the bignum
  27. * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up
  28. * mismanagement of bignum internals. You must also define BN_DEBUG.
  29. */
  30. /* #define BN_DEBUG */
  31. /* #define BN_DEBUG_RAND */
  32. /*
  33. * This should limit the stack usage due to alloca to about 4K.
  34. * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
  35. * Beyond that size bn_mul_mont is no longer used, and the constant time
  36. * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
  37. * Note that bn_mul_mont does an alloca that is hidden away in assembly.
  38. * It is not recommended to do computations with numbers exceeding this limit,
  39. * since the result will be highly version dependent:
  40. * While the current OpenSSL version will use non-optimized, but safe code,
  41. * previous versions will use optimized code, that may crash due to unexpected
  42. * stack overflow, and future versions may very well turn this into a hard
  43. * limit.
  44. * Note however, that it is possible to override the size limit using
  45. * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
  46. * stack limit is known and taken into consideration.
  47. */
  48. # ifndef BN_SOFT_LIMIT
  49. # define BN_SOFT_LIMIT (4096 / BN_BYTES)
  50. # endif
  51. # ifndef OPENSSL_SMALL_FOOTPRINT
  52. # define BN_MUL_COMBA
  53. # define BN_SQR_COMBA
  54. # define BN_RECURSION
  55. # endif
  56. /*
  57. * This next option uses the C libraries (2 word)/(1 word) function. If it is
  58. * not defined, I use my C version (which is slower). The reason for this
  59. * flag is that when the particular C compiler library routine is used, and
  60. * the library is linked with a different compiler, the library is missing.
  61. * This mostly happens when the library is built with gcc and then linked
  62. * using normal cc. This would be a common occurrence because gcc normally
  63. * produces code that is 2 times faster than system compilers for the big
  64. * number stuff. For machines with only one compiler (or shared libraries),
  65. * this should be on. Again this in only really a problem on machines using
  66. * "long long's", are 32bit, and are not using my assembler code.
  67. */
  68. # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
  69. defined(OPENSSL_SYS_WIN32) || defined(linux)
  70. # define BN_DIV2W
  71. # endif
  72. /*
  73. * 64-bit processor with LP64 ABI
  74. */
  75. # ifdef SIXTY_FOUR_BIT_LONG
  76. # define BN_ULLONG unsigned long long
  77. # define BN_BITS4 32
  78. # define BN_MASK2 (0xffffffffffffffffL)
  79. # define BN_MASK2l (0xffffffffL)
  80. # define BN_MASK2h (0xffffffff00000000L)
  81. # define BN_MASK2h1 (0xffffffff80000000L)
  82. # define BN_DEC_CONV (10000000000000000000UL)
  83. # define BN_DEC_NUM 19
  84. # define BN_DEC_FMT1 "%lu"
  85. # define BN_DEC_FMT2 "%019lu"
  86. # endif
  87. /*
  88. * 64-bit processor other than LP64 ABI
  89. */
  90. # ifdef SIXTY_FOUR_BIT
  91. # undef BN_LLONG
  92. # undef BN_ULLONG
  93. # define BN_BITS4 32
  94. # define BN_MASK2 (0xffffffffffffffffLL)
  95. # define BN_MASK2l (0xffffffffL)
  96. # define BN_MASK2h (0xffffffff00000000LL)
  97. # define BN_MASK2h1 (0xffffffff80000000LL)
  98. # define BN_DEC_CONV (10000000000000000000ULL)
  99. # define BN_DEC_NUM 19
  100. # define BN_DEC_FMT1 "%llu"
  101. # define BN_DEC_FMT2 "%019llu"
  102. # endif
  103. # ifdef THIRTY_TWO_BIT
  104. # ifdef BN_LLONG
  105. # if defined(_WIN32) && !defined(__GNUC__)
  106. # define BN_ULLONG unsigned __int64
  107. # else
  108. # define BN_ULLONG unsigned long long
  109. # endif
  110. # endif
  111. # define BN_BITS4 16
  112. # define BN_MASK2 (0xffffffffL)
  113. # define BN_MASK2l (0xffff)
  114. # define BN_MASK2h1 (0xffff8000L)
  115. # define BN_MASK2h (0xffff0000L)
  116. # define BN_DEC_CONV (1000000000L)
  117. # define BN_DEC_NUM 9
  118. # define BN_DEC_FMT1 "%u"
  119. # define BN_DEC_FMT2 "%09u"
  120. # endif
  121. /*-
  122. * Bignum consistency macros
  123. * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
  124. * bignum data after direct manipulations on the data. There is also an
  125. * "internal" macro, bn_check_top(), for verifying that there are no leading
  126. * zeroes. Unfortunately, some auditing is required due to the fact that
  127. * bn_fix_top() has become an overabused duct-tape because bignum data is
  128. * occasionally passed around in an inconsistent state. So the following
  129. * changes have been made to sort this out;
  130. * - bn_fix_top()s implementation has been moved to bn_correct_top()
  131. * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
  132. * bn_check_top() is as before.
  133. * - if BN_DEBUG *is* defined;
  134. * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
  135. * consistent. (ed: only if BN_DEBUG_RAND is defined)
  136. * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
  137. * The idea is to have debug builds flag up inconsistent bignums when they
  138. * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
  139. * the use of bn_fix_top() was appropriate (ie. it follows directly after code
  140. * that manipulates the bignum) it is converted to bn_correct_top(), and if it
  141. * was not appropriate, we convert it permanently to bn_check_top() and track
  142. * down the cause of the bug. Eventually, no internal code should be using the
  143. * bn_fix_top() macro. External applications and libraries should try this with
  144. * their own code too, both in terms of building against the openssl headers
  145. * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
  146. * defined. This not only improves external code, it provides more test
  147. * coverage for openssl's own code.
  148. */
  149. # ifdef BN_DEBUG
  150. /*
  151. * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
  152. * bn_correct_top, in other words such vectors are permitted to have zeros
  153. * in most significant limbs. Such vectors are used internally to achieve
  154. * execution time invariance for critical operations with private keys.
  155. * It's BN_DEBUG-only flag, because user application is not supposed to
  156. * observe it anyway. Moreover, optimizing compiler would actually remove
  157. * all operations manipulating the bit in question in non-BN_DEBUG build.
  158. */
  159. # define BN_FLG_FIXED_TOP 0x10000
  160. # ifdef BN_DEBUG_RAND
  161. # define bn_pollute(a) \
  162. do { \
  163. const BIGNUM *_bnum1 = (a); \
  164. if (_bnum1->top < _bnum1->dmax) { \
  165. unsigned char _tmp_char; \
  166. /* We cast away const without the compiler knowing, any \
  167. * *genuinely* constant variables that aren't mutable \
  168. * wouldn't be constructed with top!=dmax. */ \
  169. BN_ULONG *_not_const; \
  170. memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
  171. RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
  172. memset(_not_const + _bnum1->top, _tmp_char, \
  173. sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
  174. } \
  175. } while(0)
  176. # else
  177. # define bn_pollute(a)
  178. # endif
  179. # define bn_check_top(a) \
  180. do { \
  181. const BIGNUM *_bnum2 = (a); \
  182. if (_bnum2 != NULL) { \
  183. int _top = _bnum2->top; \
  184. (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
  185. (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
  186. || _bnum2->d[_top - 1] != 0))); \
  187. bn_pollute(_bnum2); \
  188. } \
  189. } while(0)
  190. # define bn_fix_top(a) bn_check_top(a)
  191. # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
  192. # define bn_wcheck_size(bn, words) \
  193. do { \
  194. const BIGNUM *_bnum2 = (bn); \
  195. assert((words) <= (_bnum2)->dmax && \
  196. (words) >= (_bnum2)->top); \
  197. /* avoid unused variable warning with NDEBUG */ \
  198. (void)(_bnum2); \
  199. } while(0)
  200. # else /* !BN_DEBUG */
  201. # define BN_FLG_FIXED_TOP 0
  202. # define bn_pollute(a)
  203. # define bn_check_top(a)
  204. # define bn_fix_top(a) bn_correct_top(a)
  205. # define bn_check_size(bn, bits)
  206. # define bn_wcheck_size(bn, words)
  207. # endif
  208. BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
  209. BN_ULONG w);
  210. BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
  211. void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
  212. BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
  213. BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  214. int num);
  215. BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  216. int num);
  217. struct bignum_st {
  218. BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit
  219. * chunks. */
  220. int top; /* Index of last used d +1. */
  221. /* The next are internal book keeping for bn_expand. */
  222. int dmax; /* Size of the d array. */
  223. int neg; /* one if the number is negative */
  224. int flags;
  225. };
  226. /* Used for montgomery multiplication */
  227. struct bn_mont_ctx_st {
  228. int ri; /* number of bits in R */
  229. BIGNUM RR; /* used to convert to montgomery form,
  230. possibly zero-padded */
  231. BIGNUM N; /* The modulus */
  232. BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
  233. * stored for bignum algorithm) */
  234. BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
  235. * changed with 0.9.9, was "BN_ULONG n0;"
  236. * before) */
  237. int flags;
  238. };
  239. /*
  240. * Used for reciprocal division/mod functions It cannot be shared between
  241. * threads
  242. */
  243. struct bn_recp_ctx_st {
  244. BIGNUM N; /* the divisor */
  245. BIGNUM Nr; /* the reciprocal */
  246. int num_bits;
  247. int shift;
  248. int flags;
  249. };
  250. /* Used for slow "generation" functions. */
  251. struct bn_gencb_st {
  252. unsigned int ver; /* To handle binary (in)compatibility */
  253. void *arg; /* callback-specific data */
  254. union {
  255. /* if (ver==1) - handles old style callbacks */
  256. void (*cb_1) (int, int, void *);
  257. /* if (ver==2) - new callback style */
  258. int (*cb_2) (int, int, BN_GENCB *);
  259. } cb;
  260. };
  261. /*-
  262. * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
  263. *
  264. *
  265. * For window size 'w' (w >= 2) and a random 'b' bits exponent,
  266. * the number of multiplications is a constant plus on average
  267. *
  268. * 2^(w-1) + (b-w)/(w+1);
  269. *
  270. * here 2^(w-1) is for precomputing the table (we actually need
  271. * entries only for windows that have the lowest bit set), and
  272. * (b-w)/(w+1) is an approximation for the expected number of
  273. * w-bit windows, not counting the first one.
  274. *
  275. * Thus we should use
  276. *
  277. * w >= 6 if b > 671
  278. * w = 5 if 671 > b > 239
  279. * w = 4 if 239 > b > 79
  280. * w = 3 if 79 > b > 23
  281. * w <= 2 if 23 > b
  282. *
  283. * (with draws in between). Very small exponents are often selected
  284. * with low Hamming weight, so we use w = 1 for b <= 23.
  285. */
  286. # define BN_window_bits_for_exponent_size(b) \
  287. ((b) > 671 ? 6 : \
  288. (b) > 239 ? 5 : \
  289. (b) > 79 ? 4 : \
  290. (b) > 23 ? 3 : 1)
  291. /*
  292. * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
  293. * line width of the target processor is at least the following value.
  294. */
  295. # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
  296. # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
  297. /*
  298. * Window sizes optimized for fixed window size modular exponentiation
  299. * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
  300. * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
  301. * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
  302. * defined for cache line sizes of 32 and 64, cache line sizes where
  303. * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
  304. * used on processors that have a 128 byte or greater cache line size.
  305. */
  306. # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
  307. # define BN_window_bits_for_ctime_exponent_size(b) \
  308. ((b) > 937 ? 6 : \
  309. (b) > 306 ? 5 : \
  310. (b) > 89 ? 4 : \
  311. (b) > 22 ? 3 : 1)
  312. # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
  313. # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
  314. # define BN_window_bits_for_ctime_exponent_size(b) \
  315. ((b) > 306 ? 5 : \
  316. (b) > 89 ? 4 : \
  317. (b) > 22 ? 3 : 1)
  318. # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
  319. # endif
  320. /* Pentium pro 16,16,16,32,64 */
  321. /* Alpha 16,16,16,16.64 */
  322. # define BN_MULL_SIZE_NORMAL (16)/* 32 */
  323. # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
  324. # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
  325. # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
  326. # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
  327. /*
  328. * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
  329. * size_t was used to perform integer-only operations on pointers. This
  330. * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
  331. * is still only 32 bits. What's needed in these cases is an integer type
  332. * with the same size as a pointer, which size_t is not certain to be. The
  333. * only fix here is VMS-specific.
  334. */
  335. # if defined(OPENSSL_SYS_VMS)
  336. # if __INITIAL_POINTER_SIZE == 64
  337. # define PTR_SIZE_INT long long
  338. # else /* __INITIAL_POINTER_SIZE == 64 */
  339. # define PTR_SIZE_INT int
  340. # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
  341. # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
  342. # define PTR_SIZE_INT size_t
  343. # endif /* defined(OPENSSL_SYS_VMS) [else] */
  344. # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
  345. /*
  346. * BN_UMULT_HIGH section.
  347. * If the compiler doesn't support 2*N integer type, then you have to
  348. * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
  349. * shifts and additions which unavoidably results in severe performance
  350. * penalties. Of course provided that the hardware is capable of producing
  351. * 2*N result... That's when you normally start considering assembler
  352. * implementation. However! It should be pointed out that some CPUs (e.g.,
  353. * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
  354. * the upper half of the product placing the result into a general
  355. * purpose register. Now *if* the compiler supports inline assembler,
  356. * then it's not impossible to implement the "bignum" routines (and have
  357. * the compiler optimize 'em) exhibiting "native" performance in C. That's
  358. * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
  359. * support 2*64 integer type, which is also used here.
  360. */
  361. # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
  362. (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
  363. # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
  364. # define BN_UMULT_LOHI(low,high,a,b) ({ \
  365. __uint128_t ret=(__uint128_t)(a)*(b); \
  366. (high)=ret>>64; (low)=ret; })
  367. # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
  368. # if defined(__DECC)
  369. # include <c_asm.h>
  370. # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
  371. # elif defined(__GNUC__) && __GNUC__>=2
  372. # define BN_UMULT_HIGH(a,b) ({ \
  373. register BN_ULONG ret; \
  374. asm ("umulh %1,%2,%0" \
  375. : "=r"(ret) \
  376. : "r"(a), "r"(b)); \
  377. ret; })
  378. # endif /* compiler */
  379. # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
  380. # if defined(__GNUC__) && __GNUC__>=2
  381. # define BN_UMULT_HIGH(a,b) ({ \
  382. register BN_ULONG ret; \
  383. asm ("mulhdu %0,%1,%2" \
  384. : "=r"(ret) \
  385. : "r"(a), "r"(b)); \
  386. ret; })
  387. # endif /* compiler */
  388. # elif (defined(__x86_64) || defined(__x86_64__)) && \
  389. (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
  390. # if defined(__GNUC__) && __GNUC__>=2
  391. # define BN_UMULT_HIGH(a,b) ({ \
  392. register BN_ULONG ret,discard; \
  393. asm ("mulq %3" \
  394. : "=a"(discard),"=d"(ret) \
  395. : "a"(a), "g"(b) \
  396. : "cc"); \
  397. ret; })
  398. # define BN_UMULT_LOHI(low,high,a,b) \
  399. asm ("mulq %3" \
  400. : "=a"(low),"=d"(high) \
  401. : "a"(a),"g"(b) \
  402. : "cc");
  403. # endif
  404. # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
  405. # if defined(_MSC_VER) && _MSC_VER>=1400
  406. unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
  407. unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
  408. unsigned __int64 *h);
  409. # pragma intrinsic(__umulh,_umul128)
  410. # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
  411. # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
  412. # endif
  413. # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
  414. # if defined(__GNUC__) && __GNUC__>=2
  415. # define BN_UMULT_HIGH(a,b) ({ \
  416. register BN_ULONG ret; \
  417. asm ("dmultu %1,%2" \
  418. : "=h"(ret) \
  419. : "r"(a), "r"(b) : "l"); \
  420. ret; })
  421. # define BN_UMULT_LOHI(low,high,a,b) \
  422. asm ("dmultu %2,%3" \
  423. : "=l"(low),"=h"(high) \
  424. : "r"(a), "r"(b));
  425. # endif
  426. # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
  427. # if defined(__GNUC__) && __GNUC__>=2
  428. # define BN_UMULT_HIGH(a,b) ({ \
  429. register BN_ULONG ret; \
  430. asm ("umulh %0,%1,%2" \
  431. : "=r"(ret) \
  432. : "r"(a), "r"(b)); \
  433. ret; })
  434. # endif
  435. # endif /* cpu */
  436. # endif /* OPENSSL_NO_ASM */
  437. # ifdef BN_DEBUG_RAND
  438. # define bn_clear_top2max(a) \
  439. { \
  440. int ind = (a)->dmax - (a)->top; \
  441. BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
  442. for (; ind != 0; ind--) \
  443. *(++ftl) = 0x0; \
  444. }
  445. # else
  446. # define bn_clear_top2max(a)
  447. # endif
  448. # ifdef BN_LLONG
  449. /*******************************************************************
  450. * Using the long long type, has to be twice as wide as BN_ULONG...
  451. */
  452. # define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
  453. # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
  454. # define mul_add(r,a,w,c) { \
  455. BN_ULLONG t; \
  456. t=(BN_ULLONG)w * (a) + (r) + (c); \
  457. (r)= Lw(t); \
  458. (c)= Hw(t); \
  459. }
  460. # define mul(r,a,w,c) { \
  461. BN_ULLONG t; \
  462. t=(BN_ULLONG)w * (a) + (c); \
  463. (r)= Lw(t); \
  464. (c)= Hw(t); \
  465. }
  466. # define sqr(r0,r1,a) { \
  467. BN_ULLONG t; \
  468. t=(BN_ULLONG)(a)*(a); \
  469. (r0)=Lw(t); \
  470. (r1)=Hw(t); \
  471. }
  472. # elif defined(BN_UMULT_LOHI)
  473. # define mul_add(r,a,w,c) { \
  474. BN_ULONG high,low,ret,tmp=(a); \
  475. ret = (r); \
  476. BN_UMULT_LOHI(low,high,w,tmp); \
  477. ret += (c); \
  478. (c) = (ret<(c)); \
  479. (c) += high; \
  480. ret += low; \
  481. (c) += (ret<low); \
  482. (r) = ret; \
  483. }
  484. # define mul(r,a,w,c) { \
  485. BN_ULONG high,low,ret,ta=(a); \
  486. BN_UMULT_LOHI(low,high,w,ta); \
  487. ret = low + (c); \
  488. (c) = high; \
  489. (c) += (ret<low); \
  490. (r) = ret; \
  491. }
  492. # define sqr(r0,r1,a) { \
  493. BN_ULONG tmp=(a); \
  494. BN_UMULT_LOHI(r0,r1,tmp,tmp); \
  495. }
  496. # elif defined(BN_UMULT_HIGH)
  497. # define mul_add(r,a,w,c) { \
  498. BN_ULONG high,low,ret,tmp=(a); \
  499. ret = (r); \
  500. high= BN_UMULT_HIGH(w,tmp); \
  501. ret += (c); \
  502. low = (w) * tmp; \
  503. (c) = (ret<(c)); \
  504. (c) += high; \
  505. ret += low; \
  506. (c) += (ret<low); \
  507. (r) = ret; \
  508. }
  509. # define mul(r,a,w,c) { \
  510. BN_ULONG high,low,ret,ta=(a); \
  511. low = (w) * ta; \
  512. high= BN_UMULT_HIGH(w,ta); \
  513. ret = low + (c); \
  514. (c) = high; \
  515. (c) += (ret<low); \
  516. (r) = ret; \
  517. }
  518. # define sqr(r0,r1,a) { \
  519. BN_ULONG tmp=(a); \
  520. (r0) = tmp * tmp; \
  521. (r1) = BN_UMULT_HIGH(tmp,tmp); \
  522. }
  523. # else
  524. /*************************************************************
  525. * No long long type
  526. */
  527. # define LBITS(a) ((a)&BN_MASK2l)
  528. # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
  529. # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
  530. # define LLBITS(a) ((a)&BN_MASKl)
  531. # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
  532. # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
  533. # define mul64(l,h,bl,bh) \
  534. { \
  535. BN_ULONG m,m1,lt,ht; \
  536. \
  537. lt=l; \
  538. ht=h; \
  539. m =(bh)*(lt); \
  540. lt=(bl)*(lt); \
  541. m1=(bl)*(ht); \
  542. ht =(bh)*(ht); \
  543. m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \
  544. ht+=HBITS(m); \
  545. m1=L2HBITS(m); \
  546. lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \
  547. (l)=lt; \
  548. (h)=ht; \
  549. }
  550. # define sqr64(lo,ho,in) \
  551. { \
  552. BN_ULONG l,h,m; \
  553. \
  554. h=(in); \
  555. l=LBITS(h); \
  556. h=HBITS(h); \
  557. m =(l)*(h); \
  558. l*=l; \
  559. h*=h; \
  560. h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
  561. m =(m&BN_MASK2l)<<(BN_BITS4+1); \
  562. l=(l+m)&BN_MASK2; h += (l < m); \
  563. (lo)=l; \
  564. (ho)=h; \
  565. }
  566. # define mul_add(r,a,bl,bh,c) { \
  567. BN_ULONG l,h; \
  568. \
  569. h= (a); \
  570. l=LBITS(h); \
  571. h=HBITS(h); \
  572. mul64(l,h,(bl),(bh)); \
  573. \
  574. /* non-multiply part */ \
  575. l=(l+(c))&BN_MASK2; h += (l < (c)); \
  576. (c)=(r); \
  577. l=(l+(c))&BN_MASK2; h += (l < (c)); \
  578. (c)=h&BN_MASK2; \
  579. (r)=l; \
  580. }
  581. # define mul(r,a,bl,bh,c) { \
  582. BN_ULONG l,h; \
  583. \
  584. h= (a); \
  585. l=LBITS(h); \
  586. h=HBITS(h); \
  587. mul64(l,h,(bl),(bh)); \
  588. \
  589. /* non-multiply part */ \
  590. l+=(c); h += ((l&BN_MASK2) < (c)); \
  591. (c)=h&BN_MASK2; \
  592. (r)=l&BN_MASK2; \
  593. }
  594. # endif /* !BN_LLONG */
  595. void BN_RECP_CTX_init(BN_RECP_CTX *recp);
  596. void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
  597. void bn_init(BIGNUM *a);
  598. void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
  599. void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  600. void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  601. void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
  602. void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
  603. void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
  604. int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
  605. int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
  606. void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  607. int dna, int dnb, BN_ULONG *t);
  608. void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  609. int n, int tna, int tnb, BN_ULONG *t);
  610. void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
  611. void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
  612. void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  613. BN_ULONG *t);
  614. BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
  615. int cl, int dl);
  616. int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  617. const BN_ULONG *np, const BN_ULONG *n0, int num);
  618. void bn_correct_top_consttime(BIGNUM *a);
  619. BIGNUM *int_bn_mod_inverse(BIGNUM *in,
  620. const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
  621. int *noinv);
  622. static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
  623. {
  624. if (bits > (INT_MAX - BN_BITS2 + 1))
  625. return NULL;
  626. if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
  627. return a;
  628. return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
  629. }
  630. #endif