123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688 |
- /*
- * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #ifndef OSSL_CRYPTO_BN_LOCAL_H
- # define OSSL_CRYPTO_BN_LOCAL_H
- /*
- * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
- * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
- * Configure script and needs to support both 32-bit and 64-bit.
- */
- # include <openssl/opensslconf.h>
- # if !defined(OPENSSL_SYS_UEFI)
- # include "crypto/bn_conf.h"
- # endif
- # include "crypto/bn.h"
- /*
- * These preprocessor symbols control various aspects of the bignum headers
- * and library code. They're not defined by any "normal" configuration, as
- * they are intended for development and testing purposes. NB: defining all
- * three can be useful for debugging application code as well as openssl
- * itself. BN_DEBUG - turn on various debugging alterations to the bignum
- * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up
- * mismanagement of bignum internals. You must also define BN_DEBUG.
- */
- /* #define BN_DEBUG */
- /* #define BN_DEBUG_RAND */
- /*
- * This should limit the stack usage due to alloca to about 4K.
- * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
- * Beyond that size bn_mul_mont is no longer used, and the constant time
- * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
- * Note that bn_mul_mont does an alloca that is hidden away in assembly.
- * It is not recommended to do computations with numbers exceeding this limit,
- * since the result will be highly version dependent:
- * While the current OpenSSL version will use non-optimized, but safe code,
- * previous versions will use optimized code, that may crash due to unexpected
- * stack overflow, and future versions may very well turn this into a hard
- * limit.
- * Note however, that it is possible to override the size limit using
- * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
- * stack limit is known and taken into consideration.
- */
- # ifndef BN_SOFT_LIMIT
- # define BN_SOFT_LIMIT (4096 / BN_BYTES)
- # endif
- # ifndef OPENSSL_SMALL_FOOTPRINT
- # define BN_MUL_COMBA
- # define BN_SQR_COMBA
- # define BN_RECURSION
- # endif
- /*
- * This next option uses the C libraries (2 word)/(1 word) function. If it is
- * not defined, I use my C version (which is slower). The reason for this
- * flag is that when the particular C compiler library routine is used, and
- * the library is linked with a different compiler, the library is missing.
- * This mostly happens when the library is built with gcc and then linked
- * using normal cc. This would be a common occurrence because gcc normally
- * produces code that is 2 times faster than system compilers for the big
- * number stuff. For machines with only one compiler (or shared libraries),
- * this should be on. Again this in only really a problem on machines using
- * "long long's", are 32bit, and are not using my assembler code.
- */
- # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
- defined(OPENSSL_SYS_WIN32) || defined(linux)
- # define BN_DIV2W
- # endif
- /*
- * 64-bit processor with LP64 ABI
- */
- # ifdef SIXTY_FOUR_BIT_LONG
- # define BN_ULLONG unsigned long long
- # define BN_BITS4 32
- # define BN_MASK2 (0xffffffffffffffffL)
- # define BN_MASK2l (0xffffffffL)
- # define BN_MASK2h (0xffffffff00000000L)
- # define BN_MASK2h1 (0xffffffff80000000L)
- # define BN_DEC_CONV (10000000000000000000UL)
- # define BN_DEC_NUM 19
- # define BN_DEC_FMT1 "%lu"
- # define BN_DEC_FMT2 "%019lu"
- # endif
- /*
- * 64-bit processor other than LP64 ABI
- */
- # ifdef SIXTY_FOUR_BIT
- # undef BN_LLONG
- # undef BN_ULLONG
- # define BN_BITS4 32
- # define BN_MASK2 (0xffffffffffffffffLL)
- # define BN_MASK2l (0xffffffffL)
- # define BN_MASK2h (0xffffffff00000000LL)
- # define BN_MASK2h1 (0xffffffff80000000LL)
- # define BN_DEC_CONV (10000000000000000000ULL)
- # define BN_DEC_NUM 19
- # define BN_DEC_FMT1 "%llu"
- # define BN_DEC_FMT2 "%019llu"
- # endif
- # ifdef THIRTY_TWO_BIT
- # ifdef BN_LLONG
- # if defined(_WIN32) && !defined(__GNUC__)
- # define BN_ULLONG unsigned __int64
- # else
- # define BN_ULLONG unsigned long long
- # endif
- # endif
- # define BN_BITS4 16
- # define BN_MASK2 (0xffffffffL)
- # define BN_MASK2l (0xffff)
- # define BN_MASK2h1 (0xffff8000L)
- # define BN_MASK2h (0xffff0000L)
- # define BN_DEC_CONV (1000000000L)
- # define BN_DEC_NUM 9
- # define BN_DEC_FMT1 "%u"
- # define BN_DEC_FMT2 "%09u"
- # endif
- /*-
- * Bignum consistency macros
- * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
- * bignum data after direct manipulations on the data. There is also an
- * "internal" macro, bn_check_top(), for verifying that there are no leading
- * zeroes. Unfortunately, some auditing is required due to the fact that
- * bn_fix_top() has become an overabused duct-tape because bignum data is
- * occasionally passed around in an inconsistent state. So the following
- * changes have been made to sort this out;
- * - bn_fix_top()s implementation has been moved to bn_correct_top()
- * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
- * bn_check_top() is as before.
- * - if BN_DEBUG *is* defined;
- * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
- * consistent. (ed: only if BN_DEBUG_RAND is defined)
- * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
- * The idea is to have debug builds flag up inconsistent bignums when they
- * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
- * the use of bn_fix_top() was appropriate (ie. it follows directly after code
- * that manipulates the bignum) it is converted to bn_correct_top(), and if it
- * was not appropriate, we convert it permanently to bn_check_top() and track
- * down the cause of the bug. Eventually, no internal code should be using the
- * bn_fix_top() macro. External applications and libraries should try this with
- * their own code too, both in terms of building against the openssl headers
- * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
- * defined. This not only improves external code, it provides more test
- * coverage for openssl's own code.
- */
- # ifdef BN_DEBUG
- /*
- * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
- * bn_correct_top, in other words such vectors are permitted to have zeros
- * in most significant limbs. Such vectors are used internally to achieve
- * execution time invariance for critical operations with private keys.
- * It's BN_DEBUG-only flag, because user application is not supposed to
- * observe it anyway. Moreover, optimizing compiler would actually remove
- * all operations manipulating the bit in question in non-BN_DEBUG build.
- */
- # define BN_FLG_FIXED_TOP 0x10000
- # ifdef BN_DEBUG_RAND
- # define bn_pollute(a) \
- do { \
- const BIGNUM *_bnum1 = (a); \
- if (_bnum1->top < _bnum1->dmax) { \
- unsigned char _tmp_char; \
- /* We cast away const without the compiler knowing, any \
- * *genuinely* constant variables that aren't mutable \
- * wouldn't be constructed with top!=dmax. */ \
- BN_ULONG *_not_const; \
- memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
- RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
- memset(_not_const + _bnum1->top, _tmp_char, \
- sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
- } \
- } while(0)
- # else
- # define bn_pollute(a)
- # endif
- # define bn_check_top(a) \
- do { \
- const BIGNUM *_bnum2 = (a); \
- if (_bnum2 != NULL) { \
- int _top = _bnum2->top; \
- (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
- (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
- || _bnum2->d[_top - 1] != 0))); \
- bn_pollute(_bnum2); \
- } \
- } while(0)
- # define bn_fix_top(a) bn_check_top(a)
- # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
- # define bn_wcheck_size(bn, words) \
- do { \
- const BIGNUM *_bnum2 = (bn); \
- assert((words) <= (_bnum2)->dmax && \
- (words) >= (_bnum2)->top); \
- /* avoid unused variable warning with NDEBUG */ \
- (void)(_bnum2); \
- } while(0)
- # else /* !BN_DEBUG */
- # define BN_FLG_FIXED_TOP 0
- # define bn_pollute(a)
- # define bn_check_top(a)
- # define bn_fix_top(a) bn_correct_top(a)
- # define bn_check_size(bn, bits)
- # define bn_wcheck_size(bn, words)
- # endif
- BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
- BN_ULONG w);
- BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
- void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
- BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
- BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- int num);
- BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- int num);
- struct bignum_st {
- BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit
- * chunks. */
- int top; /* Index of last used d +1. */
- /* The next are internal book keeping for bn_expand. */
- int dmax; /* Size of the d array. */
- int neg; /* one if the number is negative */
- int flags;
- };
- /* Used for montgomery multiplication */
- struct bn_mont_ctx_st {
- int ri; /* number of bits in R */
- BIGNUM RR; /* used to convert to montgomery form,
- possibly zero-padded */
- BIGNUM N; /* The modulus */
- BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
- * stored for bignum algorithm) */
- BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
- * changed with 0.9.9, was "BN_ULONG n0;"
- * before) */
- int flags;
- };
- /*
- * Used for reciprocal division/mod functions It cannot be shared between
- * threads
- */
- struct bn_recp_ctx_st {
- BIGNUM N; /* the divisor */
- BIGNUM Nr; /* the reciprocal */
- int num_bits;
- int shift;
- int flags;
- };
- /* Used for slow "generation" functions. */
- struct bn_gencb_st {
- unsigned int ver; /* To handle binary (in)compatibility */
- void *arg; /* callback-specific data */
- union {
- /* if (ver==1) - handles old style callbacks */
- void (*cb_1) (int, int, void *);
- /* if (ver==2) - new callback style */
- int (*cb_2) (int, int, BN_GENCB *);
- } cb;
- };
- /*-
- * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
- *
- *
- * For window size 'w' (w >= 2) and a random 'b' bits exponent,
- * the number of multiplications is a constant plus on average
- *
- * 2^(w-1) + (b-w)/(w+1);
- *
- * here 2^(w-1) is for precomputing the table (we actually need
- * entries only for windows that have the lowest bit set), and
- * (b-w)/(w+1) is an approximation for the expected number of
- * w-bit windows, not counting the first one.
- *
- * Thus we should use
- *
- * w >= 6 if b > 671
- * w = 5 if 671 > b > 239
- * w = 4 if 239 > b > 79
- * w = 3 if 79 > b > 23
- * w <= 2 if 23 > b
- *
- * (with draws in between). Very small exponents are often selected
- * with low Hamming weight, so we use w = 1 for b <= 23.
- */
- # define BN_window_bits_for_exponent_size(b) \
- ((b) > 671 ? 6 : \
- (b) > 239 ? 5 : \
- (b) > 79 ? 4 : \
- (b) > 23 ? 3 : 1)
- /*
- * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
- * line width of the target processor is at least the following value.
- */
- # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
- # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
- /*
- * Window sizes optimized for fixed window size modular exponentiation
- * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
- * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
- * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
- * defined for cache line sizes of 32 and 64, cache line sizes where
- * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
- * used on processors that have a 128 byte or greater cache line size.
- */
- # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
- # define BN_window_bits_for_ctime_exponent_size(b) \
- ((b) > 937 ? 6 : \
- (b) > 306 ? 5 : \
- (b) > 89 ? 4 : \
- (b) > 22 ? 3 : 1)
- # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
- # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
- # define BN_window_bits_for_ctime_exponent_size(b) \
- ((b) > 306 ? 5 : \
- (b) > 89 ? 4 : \
- (b) > 22 ? 3 : 1)
- # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
- # endif
- /* Pentium pro 16,16,16,32,64 */
- /* Alpha 16,16,16,16.64 */
- # define BN_MULL_SIZE_NORMAL (16)/* 32 */
- # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
- # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
- # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
- # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
- /*
- * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
- * size_t was used to perform integer-only operations on pointers. This
- * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
- * is still only 32 bits. What's needed in these cases is an integer type
- * with the same size as a pointer, which size_t is not certain to be. The
- * only fix here is VMS-specific.
- */
- # if defined(OPENSSL_SYS_VMS)
- # if __INITIAL_POINTER_SIZE == 64
- # define PTR_SIZE_INT long long
- # else /* __INITIAL_POINTER_SIZE == 64 */
- # define PTR_SIZE_INT int
- # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
- # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
- # define PTR_SIZE_INT size_t
- # endif /* defined(OPENSSL_SYS_VMS) [else] */
- # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
- /*
- * BN_UMULT_HIGH section.
- * If the compiler doesn't support 2*N integer type, then you have to
- * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
- * shifts and additions which unavoidably results in severe performance
- * penalties. Of course provided that the hardware is capable of producing
- * 2*N result... That's when you normally start considering assembler
- * implementation. However! It should be pointed out that some CPUs (e.g.,
- * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
- * the upper half of the product placing the result into a general
- * purpose register. Now *if* the compiler supports inline assembler,
- * then it's not impossible to implement the "bignum" routines (and have
- * the compiler optimize 'em) exhibiting "native" performance in C. That's
- * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
- * support 2*64 integer type, which is also used here.
- */
- # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
- (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
- # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
- # define BN_UMULT_LOHI(low,high,a,b) ({ \
- __uint128_t ret=(__uint128_t)(a)*(b); \
- (high)=ret>>64; (low)=ret; })
- # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
- # if defined(__DECC)
- # include <c_asm.h>
- # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
- # elif defined(__GNUC__) && __GNUC__>=2
- # define BN_UMULT_HIGH(a,b) ({ \
- register BN_ULONG ret; \
- asm ("umulh %1,%2,%0" \
- : "=r"(ret) \
- : "r"(a), "r"(b)); \
- ret; })
- # endif /* compiler */
- # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
- # if defined(__GNUC__) && __GNUC__>=2
- # define BN_UMULT_HIGH(a,b) ({ \
- register BN_ULONG ret; \
- asm ("mulhdu %0,%1,%2" \
- : "=r"(ret) \
- : "r"(a), "r"(b)); \
- ret; })
- # endif /* compiler */
- # elif (defined(__x86_64) || defined(__x86_64__)) && \
- (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
- # if defined(__GNUC__) && __GNUC__>=2
- # define BN_UMULT_HIGH(a,b) ({ \
- register BN_ULONG ret,discard; \
- asm ("mulq %3" \
- : "=a"(discard),"=d"(ret) \
- : "a"(a), "g"(b) \
- : "cc"); \
- ret; })
- # define BN_UMULT_LOHI(low,high,a,b) \
- asm ("mulq %3" \
- : "=a"(low),"=d"(high) \
- : "a"(a),"g"(b) \
- : "cc");
- # endif
- # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
- # if defined(_MSC_VER) && _MSC_VER>=1400
- unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
- unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
- unsigned __int64 *h);
- # pragma intrinsic(__umulh,_umul128)
- # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
- # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
- # endif
- # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
- # if defined(__GNUC__) && __GNUC__>=2
- # define BN_UMULT_HIGH(a,b) ({ \
- register BN_ULONG ret; \
- asm ("dmultu %1,%2" \
- : "=h"(ret) \
- : "r"(a), "r"(b) : "l"); \
- ret; })
- # define BN_UMULT_LOHI(low,high,a,b) \
- asm ("dmultu %2,%3" \
- : "=l"(low),"=h"(high) \
- : "r"(a), "r"(b));
- # endif
- # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
- # if defined(__GNUC__) && __GNUC__>=2
- # define BN_UMULT_HIGH(a,b) ({ \
- register BN_ULONG ret; \
- asm ("umulh %0,%1,%2" \
- : "=r"(ret) \
- : "r"(a), "r"(b)); \
- ret; })
- # endif
- # endif /* cpu */
- # endif /* OPENSSL_NO_ASM */
- # ifdef BN_DEBUG_RAND
- # define bn_clear_top2max(a) \
- { \
- int ind = (a)->dmax - (a)->top; \
- BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
- for (; ind != 0; ind--) \
- *(++ftl) = 0x0; \
- }
- # else
- # define bn_clear_top2max(a)
- # endif
- # ifdef BN_LLONG
- /*******************************************************************
- * Using the long long type, has to be twice as wide as BN_ULONG...
- */
- # define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
- # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
- # define mul_add(r,a,w,c) { \
- BN_ULLONG t; \
- t=(BN_ULLONG)w * (a) + (r) + (c); \
- (r)= Lw(t); \
- (c)= Hw(t); \
- }
- # define mul(r,a,w,c) { \
- BN_ULLONG t; \
- t=(BN_ULLONG)w * (a) + (c); \
- (r)= Lw(t); \
- (c)= Hw(t); \
- }
- # define sqr(r0,r1,a) { \
- BN_ULLONG t; \
- t=(BN_ULLONG)(a)*(a); \
- (r0)=Lw(t); \
- (r1)=Hw(t); \
- }
- # elif defined(BN_UMULT_LOHI)
- # define mul_add(r,a,w,c) { \
- BN_ULONG high,low,ret,tmp=(a); \
- ret = (r); \
- BN_UMULT_LOHI(low,high,w,tmp); \
- ret += (c); \
- (c) = (ret<(c)); \
- (c) += high; \
- ret += low; \
- (c) += (ret<low); \
- (r) = ret; \
- }
- # define mul(r,a,w,c) { \
- BN_ULONG high,low,ret,ta=(a); \
- BN_UMULT_LOHI(low,high,w,ta); \
- ret = low + (c); \
- (c) = high; \
- (c) += (ret<low); \
- (r) = ret; \
- }
- # define sqr(r0,r1,a) { \
- BN_ULONG tmp=(a); \
- BN_UMULT_LOHI(r0,r1,tmp,tmp); \
- }
- # elif defined(BN_UMULT_HIGH)
- # define mul_add(r,a,w,c) { \
- BN_ULONG high,low,ret,tmp=(a); \
- ret = (r); \
- high= BN_UMULT_HIGH(w,tmp); \
- ret += (c); \
- low = (w) * tmp; \
- (c) = (ret<(c)); \
- (c) += high; \
- ret += low; \
- (c) += (ret<low); \
- (r) = ret; \
- }
- # define mul(r,a,w,c) { \
- BN_ULONG high,low,ret,ta=(a); \
- low = (w) * ta; \
- high= BN_UMULT_HIGH(w,ta); \
- ret = low + (c); \
- (c) = high; \
- (c) += (ret<low); \
- (r) = ret; \
- }
- # define sqr(r0,r1,a) { \
- BN_ULONG tmp=(a); \
- (r0) = tmp * tmp; \
- (r1) = BN_UMULT_HIGH(tmp,tmp); \
- }
- # else
- /*************************************************************
- * No long long type
- */
- # define LBITS(a) ((a)&BN_MASK2l)
- # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
- # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
- # define LLBITS(a) ((a)&BN_MASKl)
- # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
- # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
- # define mul64(l,h,bl,bh) \
- { \
- BN_ULONG m,m1,lt,ht; \
- \
- lt=l; \
- ht=h; \
- m =(bh)*(lt); \
- lt=(bl)*(lt); \
- m1=(bl)*(ht); \
- ht =(bh)*(ht); \
- m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \
- ht+=HBITS(m); \
- m1=L2HBITS(m); \
- lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \
- (l)=lt; \
- (h)=ht; \
- }
- # define sqr64(lo,ho,in) \
- { \
- BN_ULONG l,h,m; \
- \
- h=(in); \
- l=LBITS(h); \
- h=HBITS(h); \
- m =(l)*(h); \
- l*=l; \
- h*=h; \
- h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
- m =(m&BN_MASK2l)<<(BN_BITS4+1); \
- l=(l+m)&BN_MASK2; h += (l < m); \
- (lo)=l; \
- (ho)=h; \
- }
- # define mul_add(r,a,bl,bh,c) { \
- BN_ULONG l,h; \
- \
- h= (a); \
- l=LBITS(h); \
- h=HBITS(h); \
- mul64(l,h,(bl),(bh)); \
- \
- /* non-multiply part */ \
- l=(l+(c))&BN_MASK2; h += (l < (c)); \
- (c)=(r); \
- l=(l+(c))&BN_MASK2; h += (l < (c)); \
- (c)=h&BN_MASK2; \
- (r)=l; \
- }
- # define mul(r,a,bl,bh,c) { \
- BN_ULONG l,h; \
- \
- h= (a); \
- l=LBITS(h); \
- h=HBITS(h); \
- mul64(l,h,(bl),(bh)); \
- \
- /* non-multiply part */ \
- l+=(c); h += ((l&BN_MASK2) < (c)); \
- (c)=h&BN_MASK2; \
- (r)=l&BN_MASK2; \
- }
- # endif /* !BN_LLONG */
- void BN_RECP_CTX_init(BN_RECP_CTX *recp);
- void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
- void bn_init(BIGNUM *a);
- void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
- void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
- void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
- void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
- void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
- void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
- int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
- int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
- void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- int dna, int dnb, BN_ULONG *t);
- void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
- int n, int tna, int tnb, BN_ULONG *t);
- void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
- void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
- void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
- BN_ULONG *t);
- BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
- int cl, int dl);
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- const BN_ULONG *np, const BN_ULONG *n0, int num);
- void bn_correct_top_consttime(BIGNUM *a);
- BIGNUM *int_bn_mod_inverse(BIGNUM *in,
- const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
- int *noinv);
- static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
- {
- if (bits > (INT_MAX - BN_BITS2 + 1))
- return NULL;
- if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
- return a;
- return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
- }
- #endif
|