123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- //===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// This file implements support for optimizing divisions by a constant
- ///
- //===----------------------------------------------------------------------===//
- #include "llvm/Support/DivisionByConstantInfo.h"
- using namespace llvm;
- /// Calculate the magic numbers required to implement a signed integer division
- /// by a constant as a sequence of multiplies, adds and shifts. Requires that
- /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
- /// Warren, Jr., Chapter 10.
- SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
- assert(!D.isZero() && "Precondition violation.");
- // We'd be endlessly stuck in the loop.
- assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths.");
- APInt Delta;
- APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
- struct SignedDivisionByConstantInfo Retval;
- APInt AD = D.abs();
- APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
- APInt ANC = T - 1 - T.urem(AD); // absolute value of NC
- unsigned P = D.getBitWidth() - 1; // initialize P
- APInt Q1, R1, Q2, R2;
- // initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC))
- APInt::udivrem(SignedMin, ANC, Q1, R1);
- // initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D))
- APInt::udivrem(SignedMin, AD, Q2, R2);
- do {
- P = P + 1;
- Q1 <<= 1; // update Q1 = 2P/abs(NC)
- R1 <<= 1; // update R1 = rem(2P/abs(NC))
- if (R1.uge(ANC)) { // must be unsigned comparison
- ++Q1;
- R1 -= ANC;
- }
- Q2 <<= 1; // update Q2 = 2P/abs(D)
- R2 <<= 1; // update R2 = rem(2P/abs(D))
- if (R2.uge(AD)) { // must be unsigned comparison
- ++Q2;
- R2 -= AD;
- }
- // Delta = AD - R2
- Delta = AD;
- Delta -= R2;
- } while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
- Retval.Magic = std::move(Q2);
- ++Retval.Magic;
- if (D.isNegative())
- Retval.Magic.negate(); // resulting magic number
- Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
- return Retval;
- }
- /// Calculate the magic numbers required to implement an unsigned integer
- /// division by a constant as a sequence of multiplies, adds and shifts.
- /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
- /// S. Warren, Jr., chapter 10.
- /// LeadingZeros can be used to simplify the calculation if the upper bits
- /// of the divided value are known zero.
- UnsignedDivisionByConstantInfo
- UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros,
- bool AllowEvenDivisorOptimization) {
- assert(!D.isZero() && !D.isOne() && "Precondition violation.");
- assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths.");
- APInt Delta;
- struct UnsignedDivisionByConstantInfo Retval;
- Retval.IsAdd = false; // initialize "add" indicator
- APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
- APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
- APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
- // Calculate NC, the largest dividend such that NC.urem(D) == D-1.
- APInt NC = AllOnes - (AllOnes + 1 - D).urem(D);
- assert(NC.urem(D) == D - 1 && "Unexpected NC value");
- unsigned P = D.getBitWidth() - 1; // initialize P
- APInt Q1, R1, Q2, R2;
- // initialize Q1 = 2P/NC; R1 = rem(2P,NC)
- APInt::udivrem(SignedMin, NC, Q1, R1);
- // initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D)
- APInt::udivrem(SignedMax, D, Q2, R2);
- do {
- P = P + 1;
- if (R1.uge(NC - R1)) {
- // update Q1
- Q1 <<= 1;
- ++Q1;
- // update R1
- R1 <<= 1;
- R1 -= NC;
- } else {
- Q1 <<= 1; // update Q1
- R1 <<= 1; // update R1
- }
- if ((R2 + 1).uge(D - R2)) {
- if (Q2.uge(SignedMax))
- Retval.IsAdd = true;
- // update Q2
- Q2 <<= 1;
- ++Q2;
- // update R2
- R2 <<= 1;
- ++R2;
- R2 -= D;
- } else {
- if (Q2.uge(SignedMin))
- Retval.IsAdd = true;
- // update Q2
- Q2 <<= 1;
- // update R2
- R2 <<= 1;
- ++R2;
- }
- // Delta = D - 1 - R2
- Delta = D;
- --Delta;
- Delta -= R2;
- } while (P < D.getBitWidth() * 2 &&
- (Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
- if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) {
- unsigned PreShift = D.countTrailingZeros();
- APInt ShiftedD = D.lshr(PreShift);
- Retval =
- UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift);
- assert(Retval.IsAdd == 0 && Retval.PreShift == 0);
- Retval.PreShift = PreShift;
- return Retval;
- }
- Retval.Magic = std::move(Q2); // resulting magic number
- ++Retval.Magic;
- Retval.PostShift = P - D.getBitWidth(); // resulting shift
- // Reduce shift amount for IsAdd.
- if (Retval.IsAdd) {
- assert(Retval.PostShift > 0 && "Unexpected shift");
- Retval.PostShift -= 1;
- }
- Retval.PreShift = 0;
- return Retval;
- }
|