123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605 |
- //===- APFixedPoint.cpp - Fixed point constant handling ---------*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// Defines the implementation for the fixed point number interface.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APFixedPoint.h"
- #include "llvm/ADT/APFloat.h"
- #include <cmath>
- namespace llvm {
- void FixedPointSemantics::print(llvm::raw_ostream &OS) const {
- OS << "width=" << getWidth() << ", ";
- if (isValidLegacySema())
- OS << "scale=" << getScale() << ", ";
- OS << "msb=" << getMsbWeight() << ", ";
- OS << "lsb=" << getLsbWeight() << ", ";
- OS << "IsSigned=" << IsSigned << ", ";
- OS << "HasUnsignedPadding=" << HasUnsignedPadding << ", ";
- OS << "IsSaturated=" << IsSaturated;
- }
- APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema,
- bool *Overflow) const {
- APSInt NewVal = Val;
- int RelativeUpscale = getLsbWeight() - DstSema.getLsbWeight();
- if (Overflow)
- *Overflow = false;
- if (RelativeUpscale > 0)
- NewVal = NewVal.extend(NewVal.getBitWidth() + RelativeUpscale);
- NewVal = NewVal.relativeShl(RelativeUpscale);
- auto Mask = APInt::getBitsSetFrom(
- NewVal.getBitWidth(),
- std::min(DstSema.getIntegralBits() - DstSema.getLsbWeight(),
- NewVal.getBitWidth()));
- APInt Masked(NewVal & Mask);
- // Change in the bits above the sign
- if (!(Masked == Mask || Masked == 0)) {
- // Found overflow in the bits above the sign
- if (DstSema.isSaturated())
- NewVal = NewVal.isNegative() ? Mask : ~Mask;
- else if (Overflow)
- *Overflow = true;
- }
- // If the dst semantics are unsigned, but our value is signed and negative, we
- // clamp to zero.
- if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) {
- // Found negative overflow for unsigned result
- if (DstSema.isSaturated())
- NewVal = 0;
- else if (Overflow)
- *Overflow = true;
- }
- NewVal = NewVal.extOrTrunc(DstSema.getWidth());
- NewVal.setIsSigned(DstSema.isSigned());
- return APFixedPoint(NewVal, DstSema);
- }
- int APFixedPoint::compare(const APFixedPoint &Other) const {
- APSInt ThisVal = getValue();
- APSInt OtherVal = Other.getValue();
- bool ThisSigned = Val.isSigned();
- bool OtherSigned = OtherVal.isSigned();
- int CommonLsb = std::min(getLsbWeight(), Other.getLsbWeight());
- int CommonMsb = std::max(getMsbWeight(), Other.getMsbWeight());
- unsigned CommonWidth = CommonMsb - CommonLsb + 1;
- ThisVal = ThisVal.extOrTrunc(CommonWidth);
- OtherVal = OtherVal.extOrTrunc(CommonWidth);
- ThisVal = ThisVal.shl(getLsbWeight() - CommonLsb);
- OtherVal = OtherVal.shl(Other.getLsbWeight() - CommonLsb);
- if (ThisSigned && OtherSigned) {
- if (ThisVal.sgt(OtherVal))
- return 1;
- else if (ThisVal.slt(OtherVal))
- return -1;
- } else if (!ThisSigned && !OtherSigned) {
- if (ThisVal.ugt(OtherVal))
- return 1;
- else if (ThisVal.ult(OtherVal))
- return -1;
- } else if (ThisSigned && !OtherSigned) {
- if (ThisVal.isSignBitSet())
- return -1;
- else if (ThisVal.ugt(OtherVal))
- return 1;
- else if (ThisVal.ult(OtherVal))
- return -1;
- } else {
- // !ThisSigned && OtherSigned
- if (OtherVal.isSignBitSet())
- return 1;
- else if (ThisVal.ugt(OtherVal))
- return 1;
- else if (ThisVal.ult(OtherVal))
- return -1;
- }
- return 0;
- }
- APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) {
- bool IsUnsigned = !Sema.isSigned();
- auto Val = APSInt::getMaxValue(Sema.getWidth(), IsUnsigned);
- if (IsUnsigned && Sema.hasUnsignedPadding())
- Val = Val.lshr(1);
- return APFixedPoint(Val, Sema);
- }
- APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) {
- auto Val = APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned());
- return APFixedPoint(Val, Sema);
- }
- bool FixedPointSemantics::fitsInFloatSemantics(
- const fltSemantics &FloatSema) const {
- // A fixed point semantic fits in a floating point semantic if the maximum
- // and minimum values as integers of the fixed point semantic can fit in the
- // floating point semantic.
- // If these values do not fit, then a floating point rescaling of the true
- // maximum/minimum value will not fit either, so the floating point semantic
- // cannot be used to perform such a rescaling.
- APSInt MaxInt = APFixedPoint::getMax(*this).getValue();
- APFloat F(FloatSema);
- APFloat::opStatus Status = F.convertFromAPInt(MaxInt, MaxInt.isSigned(),
- APFloat::rmNearestTiesToAway);
- if ((Status & APFloat::opOverflow) || !isSigned())
- return !(Status & APFloat::opOverflow);
- APSInt MinInt = APFixedPoint::getMin(*this).getValue();
- Status = F.convertFromAPInt(MinInt, MinInt.isSigned(),
- APFloat::rmNearestTiesToAway);
- return !(Status & APFloat::opOverflow);
- }
- FixedPointSemantics FixedPointSemantics::getCommonSemantics(
- const FixedPointSemantics &Other) const {
- int CommonLsb = std::min(getLsbWeight(), Other.getLsbWeight());
- int CommonMSb = std::max(getMsbWeight() - hasSignOrPaddingBit(),
- Other.getMsbWeight() - Other.hasSignOrPaddingBit());
- unsigned CommonWidth = CommonMSb - CommonLsb + 1;
- bool ResultIsSigned = isSigned() || Other.isSigned();
- bool ResultIsSaturated = isSaturated() || Other.isSaturated();
- bool ResultHasUnsignedPadding = false;
- if (!ResultIsSigned) {
- // Both are unsigned.
- ResultHasUnsignedPadding = hasUnsignedPadding() &&
- Other.hasUnsignedPadding() && !ResultIsSaturated;
- }
- // If the result is signed, add an extra bit for the sign. Otherwise, if it is
- // unsigned and has unsigned padding, we only need to add the extra padding
- // bit back if we are not saturating.
- if (ResultIsSigned || ResultHasUnsignedPadding)
- CommonWidth++;
- return FixedPointSemantics(CommonWidth, Lsb{CommonLsb}, ResultIsSigned,
- ResultIsSaturated, ResultHasUnsignedPadding);
- }
- APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
- bool *Overflow) const {
- auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
- APFixedPoint ConvertedThis = convert(CommonFXSema);
- APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
- APSInt ThisVal = ConvertedThis.getValue();
- APSInt OtherVal = ConvertedOther.getValue();
- bool Overflowed = false;
- APSInt Result;
- if (CommonFXSema.isSaturated()) {
- Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal)
- : ThisVal.uadd_sat(OtherVal);
- } else {
- Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed)
- : ThisVal.uadd_ov(OtherVal, Overflowed);
- }
- if (Overflow)
- *Overflow = Overflowed;
- return APFixedPoint(Result, CommonFXSema);
- }
- APFixedPoint APFixedPoint::sub(const APFixedPoint &Other,
- bool *Overflow) const {
- auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
- APFixedPoint ConvertedThis = convert(CommonFXSema);
- APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
- APSInt ThisVal = ConvertedThis.getValue();
- APSInt OtherVal = ConvertedOther.getValue();
- bool Overflowed = false;
- APSInt Result;
- if (CommonFXSema.isSaturated()) {
- Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal)
- : ThisVal.usub_sat(OtherVal);
- } else {
- Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed)
- : ThisVal.usub_ov(OtherVal, Overflowed);
- }
- if (Overflow)
- *Overflow = Overflowed;
- return APFixedPoint(Result, CommonFXSema);
- }
- APFixedPoint APFixedPoint::mul(const APFixedPoint &Other,
- bool *Overflow) const {
- auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
- APFixedPoint ConvertedThis = convert(CommonFXSema);
- APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
- APSInt ThisVal = ConvertedThis.getValue();
- APSInt OtherVal = ConvertedOther.getValue();
- bool Overflowed = false;
- // Widen the LHS and RHS so we can perform a full multiplication.
- unsigned Wide = CommonFXSema.getWidth() * 2;
- if (CommonFXSema.isSigned()) {
- ThisVal = ThisVal.sext(Wide);
- OtherVal = OtherVal.sext(Wide);
- } else {
- ThisVal = ThisVal.zext(Wide);
- OtherVal = OtherVal.zext(Wide);
- }
- // Perform the full multiplication and downscale to get the same scale.
- //
- // Note that the right shifts here perform an implicit downwards rounding.
- // This rounding could discard bits that would technically place the result
- // outside the representable range. We interpret the spec as allowing us to
- // perform the rounding step first, avoiding the overflow case that would
- // arise.
- APSInt Result;
- if (CommonFXSema.isSigned())
- Result = ThisVal.smul_ov(OtherVal, Overflowed)
- .relativeAShl(CommonFXSema.getLsbWeight());
- else
- Result = ThisVal.umul_ov(OtherVal, Overflowed)
- .relativeLShl(CommonFXSema.getLsbWeight());
- assert(!Overflowed && "Full multiplication cannot overflow!");
- Result.setIsSigned(CommonFXSema.isSigned());
- // If our result lies outside of the representative range of the common
- // semantic, we either have overflow or saturation.
- APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
- .extOrTrunc(Wide);
- APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
- .extOrTrunc(Wide);
- if (CommonFXSema.isSaturated()) {
- if (Result < Min)
- Result = Min;
- else if (Result > Max)
- Result = Max;
- } else
- Overflowed = Result < Min || Result > Max;
- if (Overflow)
- *Overflow = Overflowed;
- return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
- CommonFXSema);
- }
- APFixedPoint APFixedPoint::div(const APFixedPoint &Other,
- bool *Overflow) const {
- auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
- APFixedPoint ConvertedThis = convert(CommonFXSema);
- APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
- APSInt ThisVal = ConvertedThis.getValue();
- APSInt OtherVal = ConvertedOther.getValue();
- bool Overflowed = false;
- // Widen the LHS and RHS so we can perform a full division.
- // Also make sure that there will be enough space for the shift below to not
- // overflow
- unsigned Wide =
- CommonFXSema.getWidth() * 2 + std::max(-CommonFXSema.getMsbWeight(), 0);
- if (CommonFXSema.isSigned()) {
- ThisVal = ThisVal.sext(Wide);
- OtherVal = OtherVal.sext(Wide);
- } else {
- ThisVal = ThisVal.zext(Wide);
- OtherVal = OtherVal.zext(Wide);
- }
- // Upscale to compensate for the loss of precision from division, and
- // perform the full division.
- if (CommonFXSema.getLsbWeight() < 0)
- ThisVal = ThisVal.shl(-CommonFXSema.getLsbWeight());
- else if (CommonFXSema.getLsbWeight() > 0)
- OtherVal = OtherVal.shl(CommonFXSema.getLsbWeight());
- APSInt Result;
- if (CommonFXSema.isSigned()) {
- APInt Rem;
- APInt::sdivrem(ThisVal, OtherVal, Result, Rem);
- // If the quotient is negative and the remainder is nonzero, round
- // towards negative infinity by subtracting epsilon from the result.
- if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isZero())
- Result = Result - 1;
- } else
- Result = ThisVal.udiv(OtherVal);
- Result.setIsSigned(CommonFXSema.isSigned());
- // If our result lies outside of the representative range of the common
- // semantic, we either have overflow or saturation.
- APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
- .extOrTrunc(Wide);
- APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
- .extOrTrunc(Wide);
- if (CommonFXSema.isSaturated()) {
- if (Result < Min)
- Result = Min;
- else if (Result > Max)
- Result = Max;
- } else
- Overflowed = Result < Min || Result > Max;
- if (Overflow)
- *Overflow = Overflowed;
- return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
- CommonFXSema);
- }
- APFixedPoint APFixedPoint::shl(unsigned Amt, bool *Overflow) const {
- APSInt ThisVal = Val;
- bool Overflowed = false;
- // Widen the LHS.
- unsigned Wide = Sema.getWidth() * 2;
- if (Sema.isSigned())
- ThisVal = ThisVal.sext(Wide);
- else
- ThisVal = ThisVal.zext(Wide);
- // Clamp the shift amount at the original width, and perform the shift.
- Amt = std::min(Amt, ThisVal.getBitWidth());
- APSInt Result = ThisVal << Amt;
- Result.setIsSigned(Sema.isSigned());
- // If our result lies outside of the representative range of the
- // semantic, we either have overflow or saturation.
- APSInt Max = APFixedPoint::getMax(Sema).getValue().extOrTrunc(Wide);
- APSInt Min = APFixedPoint::getMin(Sema).getValue().extOrTrunc(Wide);
- if (Sema.isSaturated()) {
- if (Result < Min)
- Result = Min;
- else if (Result > Max)
- Result = Max;
- } else
- Overflowed = Result < Min || Result > Max;
- if (Overflow)
- *Overflow = Overflowed;
- return APFixedPoint(Result.sextOrTrunc(Sema.getWidth()), Sema);
- }
- void APFixedPoint::toString(SmallVectorImpl<char> &Str) const {
- APSInt Val = getValue();
- int Lsb = getLsbWeight();
- int OrigWidth = getWidth();
- if (Lsb >= 0) {
- APSInt IntPart = Val;
- IntPart = IntPart.extend(IntPart.getBitWidth() + Lsb);
- IntPart <<= Lsb;
- IntPart.toString(Str, /*Radix=*/10);
- Str.push_back('.');
- Str.push_back('0');
- return;
- }
- if (Val.isSigned() && Val.isNegative()) {
- Val = -Val;
- Val.setIsUnsigned(true);
- Str.push_back('-');
- }
- int Scale = -getLsbWeight();
- APSInt IntPart = (OrigWidth > Scale) ? (Val >> Scale) : APSInt::get(0);
- // Add 4 digits to hold the value after multiplying 10 (the radix)
- unsigned Width = std::max(OrigWidth, Scale) + 4;
- APInt FractPart = Val.zextOrTrunc(Scale).zext(Width);
- APInt FractPartMask = APInt::getAllOnes(Scale).zext(Width);
- APInt RadixInt = APInt(Width, 10);
- IntPart.toString(Str, /*Radix=*/10);
- Str.push_back('.');
- do {
- (FractPart * RadixInt)
- .lshr(Scale)
- .toString(Str, /*Radix=*/10, Val.isSigned());
- FractPart = (FractPart * RadixInt) & FractPartMask;
- } while (FractPart != 0);
- }
- void APFixedPoint::print(raw_ostream &OS) const {
- OS << "APFixedPoint(" << toString() << ", {";
- Sema.print(OS);
- OS << "})";
- }
- LLVM_DUMP_METHOD void APFixedPoint::dump() const { print(llvm::errs()); }
- APFixedPoint APFixedPoint::negate(bool *Overflow) const {
- if (!isSaturated()) {
- if (Overflow)
- *Overflow =
- (!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue());
- return APFixedPoint(-Val, Sema);
- }
- // We never overflow for saturation
- if (Overflow)
- *Overflow = false;
- if (isSigned())
- return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema);
- else
- return APFixedPoint(Sema);
- }
- APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign,
- bool *Overflow) const {
- APSInt Result = getIntPart();
- unsigned SrcWidth = getWidth();
- APSInt DstMin = APSInt::getMinValue(DstWidth, !DstSign);
- APSInt DstMax = APSInt::getMaxValue(DstWidth, !DstSign);
- if (SrcWidth < DstWidth) {
- Result = Result.extend(DstWidth);
- } else if (SrcWidth > DstWidth) {
- DstMin = DstMin.extend(SrcWidth);
- DstMax = DstMax.extend(SrcWidth);
- }
- if (Overflow) {
- if (Result.isSigned() && !DstSign) {
- *Overflow = Result.isNegative() || Result.ugt(DstMax);
- } else if (Result.isUnsigned() && DstSign) {
- *Overflow = Result.ugt(DstMax);
- } else {
- *Overflow = Result < DstMin || Result > DstMax;
- }
- }
- Result.setIsSigned(DstSign);
- return Result.extOrTrunc(DstWidth);
- }
- const fltSemantics *APFixedPoint::promoteFloatSemantics(const fltSemantics *S) {
- if (S == &APFloat::BFloat())
- return &APFloat::IEEEdouble();
- else if (S == &APFloat::IEEEhalf())
- return &APFloat::IEEEsingle();
- else if (S == &APFloat::IEEEsingle())
- return &APFloat::IEEEdouble();
- else if (S == &APFloat::IEEEdouble())
- return &APFloat::IEEEquad();
- llvm_unreachable("Could not promote float type!");
- }
- APFloat APFixedPoint::convertToFloat(const fltSemantics &FloatSema) const {
- // For some operations, rounding mode has an effect on the result, while
- // other operations are lossless and should never result in rounding.
- // To signify which these operations are, we define two rounding modes here.
- APFloat::roundingMode RM = APFloat::rmNearestTiesToEven;
- APFloat::roundingMode LosslessRM = APFloat::rmTowardZero;
- // Make sure that we are operating in a type that works with this fixed-point
- // semantic.
- const fltSemantics *OpSema = &FloatSema;
- while (!Sema.fitsInFloatSemantics(*OpSema))
- OpSema = promoteFloatSemantics(OpSema);
- // Convert the fixed point value bits as an integer. If the floating point
- // value does not have the required precision, we will round according to the
- // given mode.
- APFloat Flt(*OpSema);
- APFloat::opStatus S = Flt.convertFromAPInt(Val, Sema.isSigned(), RM);
- // If we cared about checking for precision loss, we could look at this
- // status.
- (void)S;
- // Scale down the integer value in the float to match the correct scaling
- // factor.
- APFloat ScaleFactor(std::pow(2, Sema.getLsbWeight()));
- bool Ignored;
- ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
- Flt.multiply(ScaleFactor, LosslessRM);
- if (OpSema != &FloatSema)
- Flt.convert(FloatSema, RM, &Ignored);
- return Flt;
- }
- APFixedPoint APFixedPoint::getFromIntValue(const APSInt &Value,
- const FixedPointSemantics &DstFXSema,
- bool *Overflow) {
- FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics(
- Value.getBitWidth(), Value.isSigned());
- return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow);
- }
- APFixedPoint
- APFixedPoint::getFromFloatValue(const APFloat &Value,
- const FixedPointSemantics &DstFXSema,
- bool *Overflow) {
- // For some operations, rounding mode has an effect on the result, while
- // other operations are lossless and should never result in rounding.
- // To signify which these operations are, we define two rounding modes here,
- // even though they are the same mode.
- APFloat::roundingMode RM = APFloat::rmTowardZero;
- APFloat::roundingMode LosslessRM = APFloat::rmTowardZero;
- const fltSemantics &FloatSema = Value.getSemantics();
- if (Value.isNaN()) {
- // Handle NaN immediately.
- if (Overflow)
- *Overflow = true;
- return APFixedPoint(DstFXSema);
- }
- // Make sure that we are operating in a type that works with this fixed-point
- // semantic.
- const fltSemantics *OpSema = &FloatSema;
- while (!DstFXSema.fitsInFloatSemantics(*OpSema))
- OpSema = promoteFloatSemantics(OpSema);
- APFloat Val = Value;
- bool Ignored;
- if (&FloatSema != OpSema)
- Val.convert(*OpSema, LosslessRM, &Ignored);
- // Scale up the float so that the 'fractional' part of the mantissa ends up in
- // the integer range instead. Rounding mode is irrelevant here.
- // It is fine if this overflows to infinity even for saturating types,
- // since we will use floating point comparisons to check for saturation.
- APFloat ScaleFactor(std::pow(2, -DstFXSema.getLsbWeight()));
- ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
- Val.multiply(ScaleFactor, LosslessRM);
- // Convert to the integral representation of the value. This rounding mode
- // is significant.
- APSInt Res(DstFXSema.getWidth(), !DstFXSema.isSigned());
- Val.convertToInteger(Res, RM, &Ignored);
- // Round the integral value and scale back. This makes the
- // overflow calculations below work properly. If we do not round here,
- // we risk checking for overflow with a value that is outside the
- // representable range of the fixed-point semantic even though no overflow
- // would occur had we rounded first.
- ScaleFactor = APFloat(std::pow(2, DstFXSema.getLsbWeight()));
- ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
- Val.roundToIntegral(RM);
- Val.multiply(ScaleFactor, LosslessRM);
- // Check for overflow/saturation by checking if the floating point value
- // is outside the range representable by the fixed-point value.
- APFloat FloatMax = getMax(DstFXSema).convertToFloat(*OpSema);
- APFloat FloatMin = getMin(DstFXSema).convertToFloat(*OpSema);
- bool Overflowed = false;
- if (DstFXSema.isSaturated()) {
- if (Val > FloatMax)
- Res = getMax(DstFXSema).getValue();
- else if (Val < FloatMin)
- Res = getMin(DstFXSema).getValue();
- } else
- Overflowed = Val > FloatMax || Val < FloatMin;
- if (Overflow)
- *Overflow = Overflowed;
- return APFixedPoint(Res, DstFXSema);
- }
- } // namespace llvm
|