123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821 |
- //===- RDFGraph.cpp -------------------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Target-independent, SSA-based data flow graph for register data flow (RDF).
- //
- #include "llvm/CodeGen/RDFGraph.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineDominanceFrontier.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RDFRegisters.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/MC/LaneBitmask.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <cstring>
- #include <iterator>
- #include <set>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace rdf;
- // Printing functions. Have them here first, so that the rest of the code
- // can use them.
- namespace llvm {
- namespace rdf {
- raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
- if (!P.Mask.all())
- OS << ':' << PrintLaneMask(P.Mask);
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
- auto &TRI = P.G.getTRI();
- if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
- OS << TRI.getName(P.Obj.Reg);
- else
- OS << '#' << P.Obj.Reg;
- OS << PrintLaneMaskOpt(P.Obj.Mask);
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
- auto NA = P.G.addr<NodeBase*>(P.Obj);
- uint16_t Attrs = NA.Addr->getAttrs();
- uint16_t Kind = NodeAttrs::kind(Attrs);
- uint16_t Flags = NodeAttrs::flags(Attrs);
- switch (NodeAttrs::type(Attrs)) {
- case NodeAttrs::Code:
- switch (Kind) {
- case NodeAttrs::Func: OS << 'f'; break;
- case NodeAttrs::Block: OS << 'b'; break;
- case NodeAttrs::Stmt: OS << 's'; break;
- case NodeAttrs::Phi: OS << 'p'; break;
- default: OS << "c?"; break;
- }
- break;
- case NodeAttrs::Ref:
- if (Flags & NodeAttrs::Undef)
- OS << '/';
- if (Flags & NodeAttrs::Dead)
- OS << '\\';
- if (Flags & NodeAttrs::Preserving)
- OS << '+';
- if (Flags & NodeAttrs::Clobbering)
- OS << '~';
- switch (Kind) {
- case NodeAttrs::Use: OS << 'u'; break;
- case NodeAttrs::Def: OS << 'd'; break;
- case NodeAttrs::Block: OS << 'b'; break;
- default: OS << "r?"; break;
- }
- break;
- default:
- OS << '?';
- break;
- }
- OS << P.Obj;
- if (Flags & NodeAttrs::Shadow)
- OS << '"';
- return OS;
- }
- static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
- const DataFlowGraph &G) {
- OS << Print(RA.Id, G) << '<'
- << Print(RA.Addr->getRegRef(G), G) << '>';
- if (RA.Addr->getFlags() & NodeAttrs::Fixed)
- OS << '!';
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
- printRefHeader(OS, P.Obj, P.G);
- OS << '(';
- if (NodeId N = P.Obj.Addr->getReachingDef())
- OS << Print(N, P.G);
- OS << ',';
- if (NodeId N = P.Obj.Addr->getReachedDef())
- OS << Print(N, P.G);
- OS << ',';
- if (NodeId N = P.Obj.Addr->getReachedUse())
- OS << Print(N, P.G);
- OS << "):";
- if (NodeId N = P.Obj.Addr->getSibling())
- OS << Print(N, P.G);
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
- printRefHeader(OS, P.Obj, P.G);
- OS << '(';
- if (NodeId N = P.Obj.Addr->getReachingDef())
- OS << Print(N, P.G);
- OS << "):";
- if (NodeId N = P.Obj.Addr->getSibling())
- OS << Print(N, P.G);
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS,
- const Print<NodeAddr<PhiUseNode*>> &P) {
- printRefHeader(OS, P.Obj, P.G);
- OS << '(';
- if (NodeId N = P.Obj.Addr->getReachingDef())
- OS << Print(N, P.G);
- OS << ',';
- if (NodeId N = P.Obj.Addr->getPredecessor())
- OS << Print(N, P.G);
- OS << "):";
- if (NodeId N = P.Obj.Addr->getSibling())
- OS << Print(N, P.G);
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
- switch (P.Obj.Addr->getKind()) {
- case NodeAttrs::Def:
- OS << PrintNode<DefNode*>(P.Obj, P.G);
- break;
- case NodeAttrs::Use:
- if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
- OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
- else
- OS << PrintNode<UseNode*>(P.Obj, P.G);
- break;
- }
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
- unsigned N = P.Obj.size();
- for (auto I : P.Obj) {
- OS << Print(I.Id, P.G);
- if (--N)
- OS << ' ';
- }
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
- unsigned N = P.Obj.size();
- for (auto I : P.Obj) {
- OS << Print(I, P.G);
- if (--N)
- OS << ' ';
- }
- return OS;
- }
- namespace {
- template <typename T>
- struct PrintListV {
- PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
- using Type = T;
- const NodeList &List;
- const DataFlowGraph &G;
- };
- template <typename T>
- raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
- unsigned N = P.List.size();
- for (NodeAddr<T> A : P.List) {
- OS << PrintNode<T>(A, P.G);
- if (--N)
- OS << ", ";
- }
- return OS;
- }
- } // end anonymous namespace
- raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
- OS << Print(P.Obj.Id, P.G) << ": phi ["
- << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
- return OS;
- }
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
- const MachineInstr &MI = *P.Obj.Addr->getCode();
- unsigned Opc = MI.getOpcode();
- OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
- // Print the target for calls and branches (for readability).
- if (MI.isCall() || MI.isBranch()) {
- MachineInstr::const_mop_iterator T =
- llvm::find_if(MI.operands(),
- [] (const MachineOperand &Op) -> bool {
- return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
- });
- if (T != MI.operands_end()) {
- OS << ' ';
- if (T->isMBB())
- OS << printMBBReference(*T->getMBB());
- else if (T->isGlobal())
- OS << T->getGlobal()->getName();
- else if (T->isSymbol())
- OS << T->getSymbolName();
- }
- }
- OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS,
- const Print<NodeAddr<InstrNode*>> &P) {
- switch (P.Obj.Addr->getKind()) {
- case NodeAttrs::Phi:
- OS << PrintNode<PhiNode*>(P.Obj, P.G);
- break;
- case NodeAttrs::Stmt:
- OS << PrintNode<StmtNode*>(P.Obj, P.G);
- break;
- default:
- OS << "instr? " << Print(P.Obj.Id, P.G);
- break;
- }
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS,
- const Print<NodeAddr<BlockNode*>> &P) {
- MachineBasicBlock *BB = P.Obj.Addr->getCode();
- unsigned NP = BB->pred_size();
- std::vector<int> Ns;
- auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
- unsigned N = Ns.size();
- for (int I : Ns) {
- OS << "%bb." << I;
- if (--N)
- OS << ", ";
- }
- };
- OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
- << " --- preds(" << NP << "): ";
- for (MachineBasicBlock *B : BB->predecessors())
- Ns.push_back(B->getNumber());
- PrintBBs(Ns);
- unsigned NS = BB->succ_size();
- OS << " succs(" << NS << "): ";
- Ns.clear();
- for (MachineBasicBlock *B : BB->successors())
- Ns.push_back(B->getNumber());
- PrintBBs(Ns);
- OS << '\n';
- for (auto I : P.Obj.Addr->members(P.G))
- OS << PrintNode<InstrNode*>(I, P.G) << '\n';
- return OS;
- }
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
- OS << "DFG dump:[\n" << Print(P.Obj.Id, P.G) << ": Function: "
- << P.Obj.Addr->getCode()->getName() << '\n';
- for (auto I : P.Obj.Addr->members(P.G))
- OS << PrintNode<BlockNode*>(I, P.G) << '\n';
- OS << "]\n";
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
- OS << '{';
- for (auto I : P.Obj)
- OS << ' ' << Print(I, P.G);
- OS << " }";
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
- P.Obj.print(OS);
- return OS;
- }
- raw_ostream &operator<< (raw_ostream &OS,
- const Print<DataFlowGraph::DefStack> &P) {
- for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
- OS << Print(I->Id, P.G)
- << '<' << Print(I->Addr->getRegRef(P.G), P.G) << '>';
- I.down();
- if (I != E)
- OS << ' ';
- }
- return OS;
- }
- } // end namespace rdf
- } // end namespace llvm
- // Node allocation functions.
- //
- // Node allocator is like a slab memory allocator: it allocates blocks of
- // memory in sizes that are multiples of the size of a node. Each block has
- // the same size. Nodes are allocated from the currently active block, and
- // when it becomes full, a new one is created.
- // There is a mapping scheme between node id and its location in a block,
- // and within that block is described in the header file.
- //
- void NodeAllocator::startNewBlock() {
- void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
- char *P = static_cast<char*>(T);
- Blocks.push_back(P);
- // Check if the block index is still within the allowed range, i.e. less
- // than 2^N, where N is the number of bits in NodeId for the block index.
- // BitsPerIndex is the number of bits per node index.
- assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
- "Out of bits for block index");
- ActiveEnd = P;
- }
- bool NodeAllocator::needNewBlock() {
- if (Blocks.empty())
- return true;
- char *ActiveBegin = Blocks.back();
- uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
- return Index >= NodesPerBlock;
- }
- NodeAddr<NodeBase*> NodeAllocator::New() {
- if (needNewBlock())
- startNewBlock();
- uint32_t ActiveB = Blocks.size()-1;
- uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
- NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
- makeId(ActiveB, Index) };
- ActiveEnd += NodeMemSize;
- return NA;
- }
- NodeId NodeAllocator::id(const NodeBase *P) const {
- uintptr_t A = reinterpret_cast<uintptr_t>(P);
- for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
- uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
- if (A < B || A >= B + NodesPerBlock*NodeMemSize)
- continue;
- uint32_t Idx = (A-B)/NodeMemSize;
- return makeId(i, Idx);
- }
- llvm_unreachable("Invalid node address");
- }
- void NodeAllocator::clear() {
- MemPool.Reset();
- Blocks.clear();
- ActiveEnd = nullptr;
- }
- // Insert node NA after "this" in the circular chain.
- void NodeBase::append(NodeAddr<NodeBase*> NA) {
- NodeId Nx = Next;
- // If NA is already "next", do nothing.
- if (Next != NA.Id) {
- Next = NA.Id;
- NA.Addr->Next = Nx;
- }
- }
- // Fundamental node manipulator functions.
- // Obtain the register reference from a reference node.
- RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
- assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
- if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
- return G.unpack(Ref.PR);
- assert(Ref.Op != nullptr);
- return G.makeRegRef(*Ref.Op);
- }
- // Set the register reference in the reference node directly (for references
- // in phi nodes).
- void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
- assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
- assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
- Ref.PR = G.pack(RR);
- }
- // Set the register reference in the reference node based on a machine
- // operand (for references in statement nodes).
- void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
- assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
- assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
- (void)G;
- Ref.Op = Op;
- }
- // Get the owner of a given reference node.
- NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
- NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
- while (NA.Addr != this) {
- if (NA.Addr->getType() == NodeAttrs::Code)
- return NA;
- NA = G.addr<NodeBase*>(NA.Addr->getNext());
- }
- llvm_unreachable("No owner in circular list");
- }
- // Connect the def node to the reaching def node.
- void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
- Ref.RD = DA.Id;
- Ref.Sib = DA.Addr->getReachedDef();
- DA.Addr->setReachedDef(Self);
- }
- // Connect the use node to the reaching def node.
- void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
- Ref.RD = DA.Id;
- Ref.Sib = DA.Addr->getReachedUse();
- DA.Addr->setReachedUse(Self);
- }
- // Get the first member of the code node.
- NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
- if (Code.FirstM == 0)
- return NodeAddr<NodeBase*>();
- return G.addr<NodeBase*>(Code.FirstM);
- }
- // Get the last member of the code node.
- NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
- if (Code.LastM == 0)
- return NodeAddr<NodeBase*>();
- return G.addr<NodeBase*>(Code.LastM);
- }
- // Add node NA at the end of the member list of the given code node.
- void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
- NodeAddr<NodeBase*> ML = getLastMember(G);
- if (ML.Id != 0) {
- ML.Addr->append(NA);
- } else {
- Code.FirstM = NA.Id;
- NodeId Self = G.id(this);
- NA.Addr->setNext(Self);
- }
- Code.LastM = NA.Id;
- }
- // Add node NA after member node MA in the given code node.
- void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
- const DataFlowGraph &G) {
- MA.Addr->append(NA);
- if (Code.LastM == MA.Id)
- Code.LastM = NA.Id;
- }
- // Remove member node NA from the given code node.
- void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
- NodeAddr<NodeBase*> MA = getFirstMember(G);
- assert(MA.Id != 0);
- // Special handling if the member to remove is the first member.
- if (MA.Id == NA.Id) {
- if (Code.LastM == MA.Id) {
- // If it is the only member, set both first and last to 0.
- Code.FirstM = Code.LastM = 0;
- } else {
- // Otherwise, advance the first member.
- Code.FirstM = MA.Addr->getNext();
- }
- return;
- }
- while (MA.Addr != this) {
- NodeId MX = MA.Addr->getNext();
- if (MX == NA.Id) {
- MA.Addr->setNext(NA.Addr->getNext());
- // If the member to remove happens to be the last one, update the
- // LastM indicator.
- if (Code.LastM == NA.Id)
- Code.LastM = MA.Id;
- return;
- }
- MA = G.addr<NodeBase*>(MX);
- }
- llvm_unreachable("No such member");
- }
- // Return the list of all members of the code node.
- NodeList CodeNode::members(const DataFlowGraph &G) const {
- static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
- return members_if(True, G);
- }
- // Return the owner of the given instr node.
- NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
- NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
- while (NA.Addr != this) {
- assert(NA.Addr->getType() == NodeAttrs::Code);
- if (NA.Addr->getKind() == NodeAttrs::Block)
- return NA;
- NA = G.addr<NodeBase*>(NA.Addr->getNext());
- }
- llvm_unreachable("No owner in circular list");
- }
- // Add the phi node PA to the given block node.
- void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
- NodeAddr<NodeBase*> M = getFirstMember(G);
- if (M.Id == 0) {
- addMember(PA, G);
- return;
- }
- assert(M.Addr->getType() == NodeAttrs::Code);
- if (M.Addr->getKind() == NodeAttrs::Stmt) {
- // If the first member of the block is a statement, insert the phi as
- // the first member.
- Code.FirstM = PA.Id;
- PA.Addr->setNext(M.Id);
- } else {
- // If the first member is a phi, find the last phi, and append PA to it.
- assert(M.Addr->getKind() == NodeAttrs::Phi);
- NodeAddr<NodeBase*> MN = M;
- do {
- M = MN;
- MN = G.addr<NodeBase*>(M.Addr->getNext());
- assert(MN.Addr->getType() == NodeAttrs::Code);
- } while (MN.Addr->getKind() == NodeAttrs::Phi);
- // M is the last phi.
- addMemberAfter(M, PA, G);
- }
- }
- // Find the block node corresponding to the machine basic block BB in the
- // given func node.
- NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
- const DataFlowGraph &G) const {
- auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
- return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
- };
- NodeList Ms = members_if(EqBB, G);
- if (!Ms.empty())
- return Ms[0];
- return NodeAddr<BlockNode*>();
- }
- // Get the block node for the entry block in the given function.
- NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
- MachineBasicBlock *EntryB = &getCode()->front();
- return findBlock(EntryB, G);
- }
- // Target operand information.
- //
- // For a given instruction, check if there are any bits of RR that can remain
- // unchanged across this def.
- bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
- const {
- return TII.isPredicated(In);
- }
- // Check if the definition of RR produces an unspecified value.
- bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
- const {
- const MachineOperand &Op = In.getOperand(OpNum);
- if (Op.isRegMask())
- return true;
- assert(Op.isReg());
- if (In.isCall())
- if (Op.isDef() && Op.isDead())
- return true;
- return false;
- }
- // Check if the given instruction specifically requires
- bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
- const {
- if (In.isCall() || In.isReturn() || In.isInlineAsm())
- return true;
- // Check for a tail call.
- if (In.isBranch())
- for (const MachineOperand &O : In.operands())
- if (O.isGlobal() || O.isSymbol())
- return true;
- const MCInstrDesc &D = In.getDesc();
- if (D.implicit_defs().empty() && D.implicit_uses().empty())
- return false;
- const MachineOperand &Op = In.getOperand(OpNum);
- // If there is a sub-register, treat the operand as non-fixed. Currently,
- // fixed registers are those that are listed in the descriptor as implicit
- // uses or defs, and those lists do not allow sub-registers.
- if (Op.getSubReg() != 0)
- return false;
- Register Reg = Op.getReg();
- ArrayRef<MCPhysReg> ImpOps =
- Op.isDef() ? D.implicit_defs() : D.implicit_uses();
- return is_contained(ImpOps, Reg);
- }
- //
- // The data flow graph construction.
- //
- DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
- const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
- const MachineDominanceFrontier &mdf)
- : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii),
- TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI),
- LiveIns(PRI) {
- }
- DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
- const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
- const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
- : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
- LiveIns(PRI) {
- }
- // The implementation of the definition stack.
- // Each register reference has its own definition stack. In particular,
- // for a register references "Reg" and "Reg:subreg" will each have their
- // own definition stacks.
- // Construct a stack iterator.
- DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
- bool Top) : DS(S) {
- if (!Top) {
- // Initialize to bottom.
- Pos = 0;
- return;
- }
- // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
- Pos = DS.Stack.size();
- while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
- Pos--;
- }
- // Return the size of the stack, including block delimiters.
- unsigned DataFlowGraph::DefStack::size() const {
- unsigned S = 0;
- for (auto I = top(), E = bottom(); I != E; I.down())
- S++;
- return S;
- }
- // Remove the top entry from the stack. Remove all intervening delimiters
- // so that after this, the stack is either empty, or the top of the stack
- // is a non-delimiter.
- void DataFlowGraph::DefStack::pop() {
- assert(!empty());
- unsigned P = nextDown(Stack.size());
- Stack.resize(P);
- }
- // Push a delimiter for block node N on the stack.
- void DataFlowGraph::DefStack::start_block(NodeId N) {
- assert(N != 0);
- Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
- }
- // Remove all nodes from the top of the stack, until the delimited for
- // block node N is encountered. Remove the delimiter as well. In effect,
- // this will remove from the stack all definitions from block N.
- void DataFlowGraph::DefStack::clear_block(NodeId N) {
- assert(N != 0);
- unsigned P = Stack.size();
- while (P > 0) {
- bool Found = isDelimiter(Stack[P-1], N);
- P--;
- if (Found)
- break;
- }
- // This will also remove the delimiter, if found.
- Stack.resize(P);
- }
- // Move the stack iterator up by one.
- unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
- // Get the next valid position after P (skipping all delimiters).
- // The input position P does not have to point to a non-delimiter.
- unsigned SS = Stack.size();
- bool IsDelim;
- assert(P < SS);
- do {
- P++;
- IsDelim = isDelimiter(Stack[P-1]);
- } while (P < SS && IsDelim);
- assert(!IsDelim);
- return P;
- }
- // Move the stack iterator down by one.
- unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
- // Get the preceding valid position before P (skipping all delimiters).
- // The input position P does not have to point to a non-delimiter.
- assert(P > 0 && P <= Stack.size());
- bool IsDelim = isDelimiter(Stack[P-1]);
- do {
- if (--P == 0)
- break;
- IsDelim = isDelimiter(Stack[P-1]);
- } while (P > 0 && IsDelim);
- assert(!IsDelim);
- return P;
- }
- // Register information.
- RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
- RegisterSet LR;
- const Function &F = MF.getFunction();
- const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
- : nullptr;
- const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
- if (RegisterId R = TLI.getExceptionPointerRegister(PF))
- LR.insert(RegisterRef(R));
- if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
- if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
- LR.insert(RegisterRef(R));
- }
- return LR;
- }
- // Node management functions.
- // Get the pointer to the node with the id N.
- NodeBase *DataFlowGraph::ptr(NodeId N) const {
- if (N == 0)
- return nullptr;
- return Memory.ptr(N);
- }
- // Get the id of the node at the address P.
- NodeId DataFlowGraph::id(const NodeBase *P) const {
- if (P == nullptr)
- return 0;
- return Memory.id(P);
- }
- // Allocate a new node and set the attributes to Attrs.
- NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
- NodeAddr<NodeBase*> P = Memory.New();
- P.Addr->init();
- P.Addr->setAttrs(Attrs);
- return P;
- }
- // Make a copy of the given node B, except for the data-flow links, which
- // are set to 0.
- NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
- NodeAddr<NodeBase*> NA = newNode(0);
- memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
- // Ref nodes need to have the data-flow links reset.
- if (NA.Addr->getType() == NodeAttrs::Ref) {
- NodeAddr<RefNode*> RA = NA;
- RA.Addr->setReachingDef(0);
- RA.Addr->setSibling(0);
- if (NA.Addr->getKind() == NodeAttrs::Def) {
- NodeAddr<DefNode*> DA = NA;
- DA.Addr->setReachedDef(0);
- DA.Addr->setReachedUse(0);
- }
- }
- return NA;
- }
- // Allocation routines for specific node types/kinds.
- NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
- MachineOperand &Op, uint16_t Flags) {
- NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
- UA.Addr->setRegRef(&Op, *this);
- return UA;
- }
- NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
- RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
- NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
- assert(Flags & NodeAttrs::PhiRef);
- PUA.Addr->setRegRef(RR, *this);
- PUA.Addr->setPredecessor(PredB.Id);
- return PUA;
- }
- NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
- MachineOperand &Op, uint16_t Flags) {
- NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
- DA.Addr->setRegRef(&Op, *this);
- return DA;
- }
- NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
- RegisterRef RR, uint16_t Flags) {
- NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
- assert(Flags & NodeAttrs::PhiRef);
- DA.Addr->setRegRef(RR, *this);
- return DA;
- }
- NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
- NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
- Owner.Addr->addPhi(PA, *this);
- return PA;
- }
- NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
- MachineInstr *MI) {
- NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
- SA.Addr->setCode(MI);
- Owner.Addr->addMember(SA, *this);
- return SA;
- }
- NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
- MachineBasicBlock *BB) {
- NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
- BA.Addr->setCode(BB);
- Owner.Addr->addMember(BA, *this);
- return BA;
- }
- NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
- NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
- FA.Addr->setCode(MF);
- return FA;
- }
- // Build the data flow graph.
- void DataFlowGraph::build(unsigned Options) {
- reset();
- Func = newFunc(&MF);
- if (MF.empty())
- return;
- for (MachineBasicBlock &B : MF) {
- NodeAddr<BlockNode*> BA = newBlock(Func, &B);
- BlockNodes.insert(std::make_pair(&B, BA));
- for (MachineInstr &I : B) {
- if (I.isDebugInstr())
- continue;
- buildStmt(BA, I);
- }
- }
- NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
- NodeList Blocks = Func.Addr->members(*this);
- // Collect information about block references.
- RegisterSet AllRefs;
- for (NodeAddr<BlockNode*> BA : Blocks)
- for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
- for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
- AllRefs.insert(RA.Addr->getRegRef(*this));
- // Collect function live-ins and entry block live-ins.
- MachineRegisterInfo &MRI = MF.getRegInfo();
- MachineBasicBlock &EntryB = *EA.Addr->getCode();
- assert(EntryB.pred_empty() && "Function entry block has predecessors");
- for (std::pair<unsigned,unsigned> P : MRI.liveins())
- LiveIns.insert(RegisterRef(P.first));
- if (MRI.tracksLiveness()) {
- for (auto I : EntryB.liveins())
- LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
- }
- // Add function-entry phi nodes for the live-in registers.
- //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
- for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
- RegisterRef RR = *I;
- NodeAddr<PhiNode*> PA = newPhi(EA);
- uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
- NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
- PA.Addr->addMember(DA, *this);
- }
- // Add phis for landing pads.
- // Landing pads, unlike usual backs blocks, are not entered through
- // branches in the program, or fall-throughs from other blocks. They
- // are entered from the exception handling runtime and target's ABI
- // may define certain registers as defined on entry to such a block.
- RegisterSet EHRegs = getLandingPadLiveIns();
- if (!EHRegs.empty()) {
- for (NodeAddr<BlockNode*> BA : Blocks) {
- const MachineBasicBlock &B = *BA.Addr->getCode();
- if (!B.isEHPad())
- continue;
- // Prepare a list of NodeIds of the block's predecessors.
- NodeList Preds;
- for (MachineBasicBlock *PB : B.predecessors())
- Preds.push_back(findBlock(PB));
- // Build phi nodes for each live-in.
- for (RegisterRef RR : EHRegs) {
- NodeAddr<PhiNode*> PA = newPhi(BA);
- uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
- // Add def:
- NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
- PA.Addr->addMember(DA, *this);
- // Add uses (no reaching defs for phi uses):
- for (NodeAddr<BlockNode*> PBA : Preds) {
- NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
- PA.Addr->addMember(PUA, *this);
- }
- }
- }
- }
- // Build a map "PhiM" which will contain, for each block, the set
- // of references that will require phi definitions in that block.
- BlockRefsMap PhiM;
- for (NodeAddr<BlockNode*> BA : Blocks)
- recordDefsForDF(PhiM, BA);
- for (NodeAddr<BlockNode*> BA : Blocks)
- buildPhis(PhiM, AllRefs, BA);
- // Link all the refs. This will recursively traverse the dominator tree.
- DefStackMap DM;
- linkBlockRefs(DM, EA);
- // Finally, remove all unused phi nodes.
- if (!(Options & BuildOptions::KeepDeadPhis))
- removeUnusedPhis();
- }
- RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
- assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
- Register::isPhysicalRegister(Reg));
- assert(Reg != 0);
- if (Sub != 0)
- Reg = TRI.getSubReg(Reg, Sub);
- return RegisterRef(Reg);
- }
- RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
- assert(Op.isReg() || Op.isRegMask());
- if (Op.isReg())
- return makeRegRef(Op.getReg(), Op.getSubReg());
- return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
- }
- // For each stack in the map DefM, push the delimiter for block B on it.
- void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
- // Push block delimiters.
- for (auto &P : DefM)
- P.second.start_block(B);
- }
- // Remove all definitions coming from block B from each stack in DefM.
- void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
- // Pop all defs from this block from the definition stack. Defs that were
- // added to the map during the traversal of instructions will not have a
- // delimiter, but for those, the whole stack will be emptied.
- for (auto &P : DefM)
- P.second.clear_block(B);
- // Finally, remove empty stacks from the map.
- for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
- NextI = std::next(I);
- // This preserves the validity of iterators other than I.
- if (I->second.empty())
- DefM.erase(I);
- }
- }
- // Push all definitions from the instruction node IA to an appropriate
- // stack in DefM.
- void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
- pushClobbers(IA, DefM);
- pushDefs(IA, DefM);
- }
- // Push all definitions from the instruction node IA to an appropriate
- // stack in DefM.
- void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
- NodeSet Visited;
- std::set<RegisterId> Defined;
- // The important objectives of this function are:
- // - to be able to handle instructions both while the graph is being
- // constructed, and after the graph has been constructed, and
- // - maintain proper ordering of definitions on the stack for each
- // register reference:
- // - if there are two or more related defs in IA (i.e. coming from
- // the same machine operand), then only push one def on the stack,
- // - if there are multiple unrelated defs of non-overlapping
- // subregisters of S, then the stack for S will have both (in an
- // unspecified order), but the order does not matter from the data-
- // -flow perspective.
- for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
- if (Visited.count(DA.Id))
- continue;
- if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
- continue;
- NodeList Rel = getRelatedRefs(IA, DA);
- NodeAddr<DefNode*> PDA = Rel.front();
- RegisterRef RR = PDA.Addr->getRegRef(*this);
- // Push the definition on the stack for the register and all aliases.
- // The def stack traversal in linkNodeUp will check the exact aliasing.
- DefM[RR.Reg].push(DA);
- Defined.insert(RR.Reg);
- for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
- // Check that we don't push the same def twice.
- assert(A != RR.Reg);
- if (!Defined.count(A))
- DefM[A].push(DA);
- }
- // Mark all the related defs as visited.
- for (NodeAddr<NodeBase*> T : Rel)
- Visited.insert(T.Id);
- }
- }
- // Push all definitions from the instruction node IA to an appropriate
- // stack in DefM.
- void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
- NodeSet Visited;
- #ifndef NDEBUG
- std::set<RegisterId> Defined;
- #endif
- // The important objectives of this function are:
- // - to be able to handle instructions both while the graph is being
- // constructed, and after the graph has been constructed, and
- // - maintain proper ordering of definitions on the stack for each
- // register reference:
- // - if there are two or more related defs in IA (i.e. coming from
- // the same machine operand), then only push one def on the stack,
- // - if there are multiple unrelated defs of non-overlapping
- // subregisters of S, then the stack for S will have both (in an
- // unspecified order), but the order does not matter from the data-
- // -flow perspective.
- for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
- if (Visited.count(DA.Id))
- continue;
- if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
- continue;
- NodeList Rel = getRelatedRefs(IA, DA);
- NodeAddr<DefNode*> PDA = Rel.front();
- RegisterRef RR = PDA.Addr->getRegRef(*this);
- #ifndef NDEBUG
- // Assert if the register is defined in two or more unrelated defs.
- // This could happen if there are two or more def operands defining it.
- if (!Defined.insert(RR.Reg).second) {
- MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
- dbgs() << "Multiple definitions of register: "
- << Print(RR, *this) << " in\n " << *MI << "in "
- << printMBBReference(*MI->getParent()) << '\n';
- llvm_unreachable(nullptr);
- }
- #endif
- // Push the definition on the stack for the register and all aliases.
- // The def stack traversal in linkNodeUp will check the exact aliasing.
- DefM[RR.Reg].push(DA);
- for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
- // Check that we don't push the same def twice.
- assert(A != RR.Reg);
- DefM[A].push(DA);
- }
- // Mark all the related defs as visited.
- for (NodeAddr<NodeBase*> T : Rel)
- Visited.insert(T.Id);
- }
- }
- // Return the list of all reference nodes related to RA, including RA itself.
- // See "getNextRelated" for the meaning of a "related reference".
- NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const {
- assert(IA.Id != 0 && RA.Id != 0);
- NodeList Refs;
- NodeId Start = RA.Id;
- do {
- Refs.push_back(RA);
- RA = getNextRelated(IA, RA);
- } while (RA.Id != 0 && RA.Id != Start);
- return Refs;
- }
- // Clear all information in the graph.
- void DataFlowGraph::reset() {
- Memory.clear();
- BlockNodes.clear();
- Func = NodeAddr<FuncNode*>();
- }
- // Return the next reference node in the instruction node IA that is related
- // to RA. Conceptually, two reference nodes are related if they refer to the
- // same instance of a register access, but differ in flags or other minor
- // characteristics. Specific examples of related nodes are shadow reference
- // nodes.
- // Return the equivalent of nullptr if there are no more related references.
- NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const {
- assert(IA.Id != 0 && RA.Id != 0);
- auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
- if (TA.Addr->getKind() != RA.Addr->getKind())
- return false;
- if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
- return false;
- return true;
- };
- auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
- return Related(TA) &&
- &RA.Addr->getOp() == &TA.Addr->getOp();
- };
- auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
- if (!Related(TA))
- return false;
- if (TA.Addr->getKind() != NodeAttrs::Use)
- return true;
- // For phi uses, compare predecessor blocks.
- const NodeAddr<const PhiUseNode*> TUA = TA;
- const NodeAddr<const PhiUseNode*> RUA = RA;
- return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
- };
- RegisterRef RR = RA.Addr->getRegRef(*this);
- if (IA.Addr->getKind() == NodeAttrs::Stmt)
- return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
- return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
- }
- // Find the next node related to RA in IA that satisfies condition P.
- // If such a node was found, return a pair where the second element is the
- // located node. If such a node does not exist, return a pair where the
- // first element is the element after which such a node should be inserted,
- // and the second element is a null-address.
- template <typename Predicate>
- std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
- DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
- Predicate P) const {
- assert(IA.Id != 0 && RA.Id != 0);
- NodeAddr<RefNode*> NA;
- NodeId Start = RA.Id;
- while (true) {
- NA = getNextRelated(IA, RA);
- if (NA.Id == 0 || NA.Id == Start)
- break;
- if (P(NA))
- break;
- RA = NA;
- }
- if (NA.Id != 0 && NA.Id != Start)
- return std::make_pair(RA, NA);
- return std::make_pair(RA, NodeAddr<RefNode*>());
- }
- // Get the next shadow node in IA corresponding to RA, and optionally create
- // such a node if it does not exist.
- NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA, bool Create) {
- assert(IA.Id != 0 && RA.Id != 0);
- uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
- auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
- return TA.Addr->getFlags() == Flags;
- };
- auto Loc = locateNextRef(IA, RA, IsShadow);
- if (Loc.second.Id != 0 || !Create)
- return Loc.second;
- // Create a copy of RA and mark is as shadow.
- NodeAddr<RefNode*> NA = cloneNode(RA);
- NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
- IA.Addr->addMemberAfter(Loc.first, NA, *this);
- return NA;
- }
- // Get the next shadow node in IA corresponding to RA. Return null-address
- // if such a node does not exist.
- NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const {
- assert(IA.Id != 0 && RA.Id != 0);
- uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
- auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
- return TA.Addr->getFlags() == Flags;
- };
- return locateNextRef(IA, RA, IsShadow).second;
- }
- // Create a new statement node in the block node BA that corresponds to
- // the machine instruction MI.
- void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
- NodeAddr<StmtNode*> SA = newStmt(BA, &In);
- auto isCall = [] (const MachineInstr &In) -> bool {
- if (In.isCall())
- return true;
- // Is tail call?
- if (In.isBranch()) {
- for (const MachineOperand &Op : In.operands())
- if (Op.isGlobal() || Op.isSymbol())
- return true;
- // Assume indirect branches are calls. This is for the purpose of
- // keeping implicit operands, and so it won't hurt on intra-function
- // indirect branches.
- if (In.isIndirectBranch())
- return true;
- }
- return false;
- };
- auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
- // This instruction defines DR. Check if there is a use operand that
- // would make DR live on entry to the instruction.
- for (const MachineOperand &Op : In.operands()) {
- if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
- continue;
- RegisterRef UR = makeRegRef(Op);
- if (PRI.alias(DR, UR))
- return false;
- }
- return true;
- };
- bool IsCall = isCall(In);
- unsigned NumOps = In.getNumOperands();
- // Avoid duplicate implicit defs. This will not detect cases of implicit
- // defs that define registers that overlap, but it is not clear how to
- // interpret that in the absence of explicit defs. Overlapping explicit
- // defs are likely illegal already.
- BitVector DoneDefs(TRI.getNumRegs());
- // Process explicit defs first.
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
- continue;
- Register R = Op.getReg();
- if (!R || !R.isPhysical())
- continue;
- uint16_t Flags = NodeAttrs::None;
- if (TOI.isPreserving(In, OpN)) {
- Flags |= NodeAttrs::Preserving;
- // If the def is preserving, check if it is also undefined.
- if (isDefUndef(In, makeRegRef(Op)))
- Flags |= NodeAttrs::Undef;
- }
- if (TOI.isClobbering(In, OpN))
- Flags |= NodeAttrs::Clobbering;
- if (TOI.isFixedReg(In, OpN))
- Flags |= NodeAttrs::Fixed;
- if (IsCall && Op.isDead())
- Flags |= NodeAttrs::Dead;
- NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
- SA.Addr->addMember(DA, *this);
- assert(!DoneDefs.test(R));
- DoneDefs.set(R);
- }
- // Process reg-masks (as clobbers).
- BitVector DoneClobbers(TRI.getNumRegs());
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isRegMask())
- continue;
- uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
- NodeAttrs::Dead;
- NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
- SA.Addr->addMember(DA, *this);
- // Record all clobbered registers in DoneDefs.
- const uint32_t *RM = Op.getRegMask();
- for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
- if (!(RM[i/32] & (1u << (i%32))))
- DoneClobbers.set(i);
- }
- // Process implicit defs, skipping those that have already been added
- // as explicit.
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
- continue;
- Register R = Op.getReg();
- if (!R || !R.isPhysical() || DoneDefs.test(R))
- continue;
- RegisterRef RR = makeRegRef(Op);
- uint16_t Flags = NodeAttrs::None;
- if (TOI.isPreserving(In, OpN)) {
- Flags |= NodeAttrs::Preserving;
- // If the def is preserving, check if it is also undefined.
- if (isDefUndef(In, RR))
- Flags |= NodeAttrs::Undef;
- }
- if (TOI.isClobbering(In, OpN))
- Flags |= NodeAttrs::Clobbering;
- if (TOI.isFixedReg(In, OpN))
- Flags |= NodeAttrs::Fixed;
- if (IsCall && Op.isDead()) {
- if (DoneClobbers.test(R))
- continue;
- Flags |= NodeAttrs::Dead;
- }
- NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
- SA.Addr->addMember(DA, *this);
- DoneDefs.set(R);
- }
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isReg() || !Op.isUse())
- continue;
- Register R = Op.getReg();
- if (!R || !R.isPhysical())
- continue;
- uint16_t Flags = NodeAttrs::None;
- if (Op.isUndef())
- Flags |= NodeAttrs::Undef;
- if (TOI.isFixedReg(In, OpN))
- Flags |= NodeAttrs::Fixed;
- NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
- SA.Addr->addMember(UA, *this);
- }
- }
- // Scan all defs in the block node BA and record in PhiM the locations of
- // phi nodes corresponding to these defs.
- void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
- NodeAddr<BlockNode*> BA) {
- // Check all defs from block BA and record them in each block in BA's
- // iterated dominance frontier. This information will later be used to
- // create phi nodes.
- MachineBasicBlock *BB = BA.Addr->getCode();
- assert(BB);
- auto DFLoc = MDF.find(BB);
- if (DFLoc == MDF.end() || DFLoc->second.empty())
- return;
- // Traverse all instructions in the block and collect the set of all
- // defined references. For each reference there will be a phi created
- // in the block's iterated dominance frontier.
- // This is done to make sure that each defined reference gets only one
- // phi node, even if it is defined multiple times.
- RegisterSet Defs;
- for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
- for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
- Defs.insert(RA.Addr->getRegRef(*this));
- // Calculate the iterated dominance frontier of BB.
- const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
- SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
- for (unsigned i = 0; i < IDF.size(); ++i) {
- auto F = MDF.find(IDF[i]);
- if (F != MDF.end())
- IDF.insert(F->second.begin(), F->second.end());
- }
- // Finally, add the set of defs to each block in the iterated dominance
- // frontier.
- for (auto *DB : IDF) {
- NodeAddr<BlockNode*> DBA = findBlock(DB);
- PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
- }
- }
- // Given the locations of phi nodes in the map PhiM, create the phi nodes
- // that are located in the block node BA.
- void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
- NodeAddr<BlockNode*> BA) {
- // Check if this blocks has any DF defs, i.e. if there are any defs
- // that this block is in the iterated dominance frontier of.
- auto HasDF = PhiM.find(BA.Id);
- if (HasDF == PhiM.end() || HasDF->second.empty())
- return;
- // First, remove all R in Refs in such that there exists T in Refs
- // such that T covers R. In other words, only leave those refs that
- // are not covered by another ref (i.e. maximal with respect to covering).
- auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
- for (RegisterRef I : RRs)
- if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
- RR = I;
- return RR;
- };
- RegisterSet MaxDF;
- for (RegisterRef I : HasDF->second)
- MaxDF.insert(MaxCoverIn(I, HasDF->second));
- std::vector<RegisterRef> MaxRefs;
- for (RegisterRef I : MaxDF)
- MaxRefs.push_back(MaxCoverIn(I, AllRefs));
- // Now, for each R in MaxRefs, get the alias closure of R. If the closure
- // only has R in it, create a phi a def for R. Otherwise, create a phi,
- // and add a def for each S in the closure.
- // Sort the refs so that the phis will be created in a deterministic order.
- llvm::sort(MaxRefs);
- // Remove duplicates.
- auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
- MaxRefs.erase(NewEnd, MaxRefs.end());
- auto Aliased = [this,&MaxRefs](RegisterRef RR,
- std::vector<unsigned> &Closure) -> bool {
- for (unsigned I : Closure)
- if (PRI.alias(RR, MaxRefs[I]))
- return true;
- return false;
- };
- // Prepare a list of NodeIds of the block's predecessors.
- NodeList Preds;
- const MachineBasicBlock *MBB = BA.Addr->getCode();
- for (MachineBasicBlock *PB : MBB->predecessors())
- Preds.push_back(findBlock(PB));
- while (!MaxRefs.empty()) {
- // Put the first element in the closure, and then add all subsequent
- // elements from MaxRefs to it, if they alias at least one element
- // already in the closure.
- // ClosureIdx: vector of indices in MaxRefs of members of the closure.
- std::vector<unsigned> ClosureIdx = { 0 };
- for (unsigned i = 1; i != MaxRefs.size(); ++i)
- if (Aliased(MaxRefs[i], ClosureIdx))
- ClosureIdx.push_back(i);
- // Build a phi for the closure.
- unsigned CS = ClosureIdx.size();
- NodeAddr<PhiNode*> PA = newPhi(BA);
- // Add defs.
- for (unsigned X = 0; X != CS; ++X) {
- RegisterRef RR = MaxRefs[ClosureIdx[X]];
- uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
- NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
- PA.Addr->addMember(DA, *this);
- }
- // Add phi uses.
- for (NodeAddr<BlockNode*> PBA : Preds) {
- for (unsigned X = 0; X != CS; ++X) {
- RegisterRef RR = MaxRefs[ClosureIdx[X]];
- NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
- PA.Addr->addMember(PUA, *this);
- }
- }
- // Erase from MaxRefs all elements in the closure.
- auto Begin = MaxRefs.begin();
- for (unsigned Idx : llvm::reverse(ClosureIdx))
- MaxRefs.erase(Begin + Idx);
- }
- }
- // Remove any unneeded phi nodes that were created during the build process.
- void DataFlowGraph::removeUnusedPhis() {
- // This will remove unused phis, i.e. phis where each def does not reach
- // any uses or other defs. This will not detect or remove circular phi
- // chains that are otherwise dead. Unused/dead phis are created during
- // the build process and this function is intended to remove these cases
- // that are easily determinable to be unnecessary.
- SetVector<NodeId> PhiQ;
- for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
- for (auto P : BA.Addr->members_if(IsPhi, *this))
- PhiQ.insert(P.Id);
- }
- static auto HasUsedDef = [](NodeList &Ms) -> bool {
- for (NodeAddr<NodeBase*> M : Ms) {
- if (M.Addr->getKind() != NodeAttrs::Def)
- continue;
- NodeAddr<DefNode*> DA = M;
- if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
- return true;
- }
- return false;
- };
- // Any phi, if it is removed, may affect other phis (make them dead).
- // For each removed phi, collect the potentially affected phis and add
- // them back to the queue.
- while (!PhiQ.empty()) {
- auto PA = addr<PhiNode*>(PhiQ[0]);
- PhiQ.remove(PA.Id);
- NodeList Refs = PA.Addr->members(*this);
- if (HasUsedDef(Refs))
- continue;
- for (NodeAddr<RefNode*> RA : Refs) {
- if (NodeId RD = RA.Addr->getReachingDef()) {
- auto RDA = addr<DefNode*>(RD);
- NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
- if (IsPhi(OA))
- PhiQ.insert(OA.Id);
- }
- if (RA.Addr->isDef())
- unlinkDef(RA, true);
- else
- unlinkUse(RA, true);
- }
- NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
- BA.Addr->removeMember(PA, *this);
- }
- }
- // For a given reference node TA in an instruction node IA, connect the
- // reaching def of TA to the appropriate def node. Create any shadow nodes
- // as appropriate.
- template <typename T>
- void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
- DefStack &DS) {
- if (DS.empty())
- return;
- RegisterRef RR = TA.Addr->getRegRef(*this);
- NodeAddr<T> TAP;
- // References from the def stack that have been examined so far.
- RegisterAggr Defs(PRI);
- for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
- RegisterRef QR = I->Addr->getRegRef(*this);
- // Skip all defs that are aliased to any of the defs that we have already
- // seen. If this completes a cover of RR, stop the stack traversal.
- bool Alias = Defs.hasAliasOf(QR);
- bool Cover = Defs.insert(QR).hasCoverOf(RR);
- if (Alias) {
- if (Cover)
- break;
- continue;
- }
- // The reaching def.
- NodeAddr<DefNode*> RDA = *I;
- // Pick the reached node.
- if (TAP.Id == 0) {
- TAP = TA;
- } else {
- // Mark the existing ref as "shadow" and create a new shadow.
- TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
- TAP = getNextShadow(IA, TAP, true);
- }
- // Create the link.
- TAP.Addr->linkToDef(TAP.Id, RDA);
- if (Cover)
- break;
- }
- }
- // Create data-flow links for all reference nodes in the statement node SA.
- template <typename Predicate>
- void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
- Predicate P) {
- #ifndef NDEBUG
- RegisterSet Defs;
- #endif
- // Link all nodes (upwards in the data-flow) with their reaching defs.
- for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
- uint16_t Kind = RA.Addr->getKind();
- assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
- RegisterRef RR = RA.Addr->getRegRef(*this);
- #ifndef NDEBUG
- // Do not expect multiple defs of the same reference.
- assert(Kind != NodeAttrs::Def || !Defs.count(RR));
- Defs.insert(RR);
- #endif
- auto F = DefM.find(RR.Reg);
- if (F == DefM.end())
- continue;
- DefStack &DS = F->second;
- if (Kind == NodeAttrs::Use)
- linkRefUp<UseNode*>(SA, RA, DS);
- else if (Kind == NodeAttrs::Def)
- linkRefUp<DefNode*>(SA, RA, DS);
- else
- llvm_unreachable("Unexpected node in instruction");
- }
- }
- // Create data-flow links for all instructions in the block node BA. This
- // will include updating any phi nodes in BA.
- void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
- // Push block delimiters.
- markBlock(BA.Id, DefM);
- auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
- return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
- };
- auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
- return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
- };
- assert(BA.Addr && "block node address is needed to create a data-flow link");
- // For each non-phi instruction in the block, link all the defs and uses
- // to their reaching defs. For any member of the block (including phis),
- // push the defs on the corresponding stacks.
- for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
- // Ignore phi nodes here. They will be linked part by part from the
- // predecessors.
- if (IA.Addr->getKind() == NodeAttrs::Stmt) {
- linkStmtRefs(DefM, IA, IsUse);
- linkStmtRefs(DefM, IA, IsClobber);
- }
- // Push the definitions on the stack.
- pushClobbers(IA, DefM);
- if (IA.Addr->getKind() == NodeAttrs::Stmt)
- linkStmtRefs(DefM, IA, IsNoClobber);
- pushDefs(IA, DefM);
- }
- // Recursively process all children in the dominator tree.
- MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
- for (auto *I : *N) {
- MachineBasicBlock *SB = I->getBlock();
- NodeAddr<BlockNode*> SBA = findBlock(SB);
- linkBlockRefs(DefM, SBA);
- }
- // Link the phi uses from the successor blocks.
- auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
- if (NA.Addr->getKind() != NodeAttrs::Use)
- return false;
- assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
- NodeAddr<PhiUseNode*> PUA = NA;
- return PUA.Addr->getPredecessor() == BA.Id;
- };
- RegisterSet EHLiveIns = getLandingPadLiveIns();
- MachineBasicBlock *MBB = BA.Addr->getCode();
- for (MachineBasicBlock *SB : MBB->successors()) {
- bool IsEHPad = SB->isEHPad();
- NodeAddr<BlockNode*> SBA = findBlock(SB);
- for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
- // Do not link phi uses for landing pad live-ins.
- if (IsEHPad) {
- // Find what register this phi is for.
- NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
- assert(RA.Id != 0);
- if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
- continue;
- }
- // Go over each phi use associated with MBB, and link it.
- for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
- NodeAddr<PhiUseNode*> PUA = U;
- RegisterRef RR = PUA.Addr->getRegRef(*this);
- linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
- }
- }
- }
- // Pop all defs from this block from the definition stacks.
- releaseBlock(BA.Id, DefM);
- }
- // Remove the use node UA from any data-flow and structural links.
- void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
- NodeId RD = UA.Addr->getReachingDef();
- NodeId Sib = UA.Addr->getSibling();
- if (RD == 0) {
- assert(Sib == 0);
- return;
- }
- auto RDA = addr<DefNode*>(RD);
- auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
- if (TA.Id == UA.Id) {
- RDA.Addr->setReachedUse(Sib);
- return;
- }
- while (TA.Id != 0) {
- NodeId S = TA.Addr->getSibling();
- if (S == UA.Id) {
- TA.Addr->setSibling(UA.Addr->getSibling());
- return;
- }
- TA = addr<UseNode*>(S);
- }
- }
- // Remove the def node DA from any data-flow and structural links.
- void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
- //
- // RD
- // | reached
- // | def
- // :
- // .
- // +----+
- // ... -- | DA | -- ... -- 0 : sibling chain of DA
- // +----+
- // | | reached
- // | : def
- // | .
- // | ... : Siblings (defs)
- // |
- // : reached
- // . use
- // ... : sibling chain of reached uses
- NodeId RD = DA.Addr->getReachingDef();
- // Visit all siblings of the reached def and reset their reaching defs.
- // Also, defs reached by DA are now "promoted" to being reached by RD,
- // so all of them will need to be spliced into the sibling chain where
- // DA belongs.
- auto getAllNodes = [this] (NodeId N) -> NodeList {
- NodeList Res;
- while (N) {
- auto RA = addr<RefNode*>(N);
- // Keep the nodes in the exact sibling order.
- Res.push_back(RA);
- N = RA.Addr->getSibling();
- }
- return Res;
- };
- NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
- NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
- if (RD == 0) {
- for (NodeAddr<RefNode*> I : ReachedDefs)
- I.Addr->setSibling(0);
- for (NodeAddr<RefNode*> I : ReachedUses)
- I.Addr->setSibling(0);
- }
- for (NodeAddr<DefNode*> I : ReachedDefs)
- I.Addr->setReachingDef(RD);
- for (NodeAddr<UseNode*> I : ReachedUses)
- I.Addr->setReachingDef(RD);
- NodeId Sib = DA.Addr->getSibling();
- if (RD == 0) {
- assert(Sib == 0);
- return;
- }
- // Update the reaching def node and remove DA from the sibling list.
- auto RDA = addr<DefNode*>(RD);
- auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
- if (TA.Id == DA.Id) {
- // If DA is the first reached def, just update the RD's reached def
- // to the DA's sibling.
- RDA.Addr->setReachedDef(Sib);
- } else {
- // Otherwise, traverse the sibling list of the reached defs and remove
- // DA from it.
- while (TA.Id != 0) {
- NodeId S = TA.Addr->getSibling();
- if (S == DA.Id) {
- TA.Addr->setSibling(Sib);
- break;
- }
- TA = addr<DefNode*>(S);
- }
- }
- // Splice the DA's reached defs into the RDA's reached def chain.
- if (!ReachedDefs.empty()) {
- auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
- Last.Addr->setSibling(RDA.Addr->getReachedDef());
- RDA.Addr->setReachedDef(ReachedDefs.front().Id);
- }
- // Splice the DA's reached uses into the RDA's reached use chain.
- if (!ReachedUses.empty()) {
- auto Last = NodeAddr<UseNode*>(ReachedUses.back());
- Last.Addr->setSibling(RDA.Addr->getReachedUse());
- RDA.Addr->setReachedUse(ReachedUses.front().Id);
- }
- }
|