123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820 |
- //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass turns explicit null checks of the form
- //
- // test %r10, %r10
- // je throw_npe
- // movl (%r10), %esi
- // ...
- //
- // to
- //
- // faulting_load_op("movl (%r10), %esi", throw_npe)
- // ...
- //
- // With the help of a runtime that understands the .fault_maps section,
- // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
- // a page fault.
- // Store and LoadStore are also supported.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/CodeGen/FaultMaps.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/PseudoSourceValue.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/MC/MCRegisterInfo.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- using namespace llvm;
- static cl::opt<int> PageSize("imp-null-check-page-size",
- cl::desc("The page size of the target in bytes"),
- cl::init(4096), cl::Hidden);
- static cl::opt<unsigned> MaxInstsToConsider(
- "imp-null-max-insts-to-consider",
- cl::desc("The max number of instructions to consider hoisting loads over "
- "(the algorithm is quadratic over this number)"),
- cl::Hidden, cl::init(8));
- #define DEBUG_TYPE "implicit-null-checks"
- STATISTIC(NumImplicitNullChecks,
- "Number of explicit null checks made implicit");
- namespace {
- class ImplicitNullChecks : public MachineFunctionPass {
- /// Return true if \c computeDependence can process \p MI.
- static bool canHandle(const MachineInstr *MI);
- /// Helper function for \c computeDependence. Return true if \p A
- /// and \p B do not have any dependences between them, and can be
- /// re-ordered without changing program semantics.
- bool canReorder(const MachineInstr *A, const MachineInstr *B);
- /// A data type for representing the result computed by \c
- /// computeDependence. States whether it is okay to reorder the
- /// instruction passed to \c computeDependence with at most one
- /// dependency.
- struct DependenceResult {
- /// Can we actually re-order \p MI with \p Insts (see \c
- /// computeDependence).
- bool CanReorder;
- /// If non-None, then an instruction in \p Insts that also must be
- /// hoisted.
- std::optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
- /*implicit*/ DependenceResult(
- bool CanReorder,
- std::optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
- : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
- assert((!PotentialDependence || CanReorder) &&
- "!CanReorder && PotentialDependence.hasValue() not allowed!");
- }
- };
- /// Compute a result for the following question: can \p MI be
- /// re-ordered from after \p Insts to before it.
- ///
- /// \c canHandle should return true for all instructions in \p
- /// Insts.
- DependenceResult computeDependence(const MachineInstr *MI,
- ArrayRef<MachineInstr *> Block);
- /// Represents one null check that can be made implicit.
- class NullCheck {
- // The memory operation the null check can be folded into.
- MachineInstr *MemOperation;
- // The instruction actually doing the null check (Ptr != 0).
- MachineInstr *CheckOperation;
- // The block the check resides in.
- MachineBasicBlock *CheckBlock;
- // The block branched to if the pointer is non-null.
- MachineBasicBlock *NotNullSucc;
- // The block branched to if the pointer is null.
- MachineBasicBlock *NullSucc;
- // If this is non-null, then MemOperation has a dependency on this
- // instruction; and it needs to be hoisted to execute before MemOperation.
- MachineInstr *OnlyDependency;
- public:
- explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
- MachineBasicBlock *checkBlock,
- MachineBasicBlock *notNullSucc,
- MachineBasicBlock *nullSucc,
- MachineInstr *onlyDependency)
- : MemOperation(memOperation), CheckOperation(checkOperation),
- CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
- OnlyDependency(onlyDependency) {}
- MachineInstr *getMemOperation() const { return MemOperation; }
- MachineInstr *getCheckOperation() const { return CheckOperation; }
- MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
- MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
- MachineBasicBlock *getNullSucc() const { return NullSucc; }
- MachineInstr *getOnlyDependency() const { return OnlyDependency; }
- };
- const TargetInstrInfo *TII = nullptr;
- const TargetRegisterInfo *TRI = nullptr;
- AliasAnalysis *AA = nullptr;
- MachineFrameInfo *MFI = nullptr;
- bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
- SmallVectorImpl<NullCheck> &NullCheckList);
- MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
- MachineBasicBlock *HandlerMBB);
- void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
- enum AliasResult {
- AR_NoAlias,
- AR_MayAlias,
- AR_WillAliasEverything
- };
- /// Returns AR_NoAlias if \p MI memory operation does not alias with
- /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
- /// they may alias and any further memory operation may alias with \p PrevMI.
- AliasResult areMemoryOpsAliased(const MachineInstr &MI,
- const MachineInstr *PrevMI) const;
- enum SuitabilityResult {
- SR_Suitable,
- SR_Unsuitable,
- SR_Impossible
- };
- /// Return SR_Suitable if \p MI a memory operation that can be used to
- /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
- /// \p MI cannot be used to null check and SR_Impossible if there is
- /// no sense to continue lookup due to any other instruction will not be able
- /// to be used. \p PrevInsts is the set of instruction seen since
- /// the explicit null check on \p PointerReg.
- SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
- unsigned PointerReg,
- ArrayRef<MachineInstr *> PrevInsts);
- /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block
- /// if it was hoisted to the NullCheck block. This is used by caller
- /// canHoistInst to decide if DependenceMI can be hoisted safely.
- bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI,
- MachineBasicBlock *NullSucc);
- /// Return true if \p FaultingMI can be hoisted from after the
- /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
- /// non-null value if we also need to (and legally can) hoist a dependency.
- bool canHoistInst(MachineInstr *FaultingMI,
- ArrayRef<MachineInstr *> InstsSeenSoFar,
- MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
- public:
- static char ID;
- ImplicitNullChecks() : MachineFunctionPass(ID) {
- initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
- }
- bool runOnMachineFunction(MachineFunction &MF) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AAResultsWrapperPass>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- MachineFunctionProperties getRequiredProperties() const override {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoVRegs);
- }
- };
- } // end anonymous namespace
- bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
- if (MI->isCall() || MI->mayRaiseFPException() ||
- MI->hasUnmodeledSideEffects())
- return false;
- auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
- (void)IsRegMask;
- assert(llvm::none_of(MI->operands(), IsRegMask) &&
- "Calls were filtered out above!");
- auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
- return llvm::all_of(MI->memoperands(), IsUnordered);
- }
- ImplicitNullChecks::DependenceResult
- ImplicitNullChecks::computeDependence(const MachineInstr *MI,
- ArrayRef<MachineInstr *> Block) {
- assert(llvm::all_of(Block, canHandle) && "Check this first!");
- assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
- std::optional<ArrayRef<MachineInstr *>::iterator> Dep;
- for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
- if (canReorder(*I, MI))
- continue;
- if (Dep == std::nullopt) {
- // Found one possible dependency, keep track of it.
- Dep = I;
- } else {
- // We found two dependencies, so bail out.
- return {false, std::nullopt};
- }
- }
- return {true, Dep};
- }
- bool ImplicitNullChecks::canReorder(const MachineInstr *A,
- const MachineInstr *B) {
- assert(canHandle(A) && canHandle(B) && "Precondition!");
- // canHandle makes sure that we _can_ correctly analyze the dependencies
- // between A and B here -- for instance, we should not be dealing with heap
- // load-store dependencies here.
- for (const auto &MOA : A->operands()) {
- if (!(MOA.isReg() && MOA.getReg()))
- continue;
- Register RegA = MOA.getReg();
- for (const auto &MOB : B->operands()) {
- if (!(MOB.isReg() && MOB.getReg()))
- continue;
- Register RegB = MOB.getReg();
- if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
- return false;
- }
- }
- return true;
- }
- bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
- TII = MF.getSubtarget().getInstrInfo();
- TRI = MF.getRegInfo().getTargetRegisterInfo();
- MFI = &MF.getFrameInfo();
- AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
- SmallVector<NullCheck, 16> NullCheckList;
- for (auto &MBB : MF)
- analyzeBlockForNullChecks(MBB, NullCheckList);
- if (!NullCheckList.empty())
- rewriteNullChecks(NullCheckList);
- return !NullCheckList.empty();
- }
- // Return true if any register aliasing \p Reg is live-in into \p MBB.
- static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
- MachineBasicBlock *MBB, unsigned Reg) {
- for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
- ++AR)
- if (MBB->isLiveIn(*AR))
- return true;
- return false;
- }
- ImplicitNullChecks::AliasResult
- ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
- const MachineInstr *PrevMI) const {
- // If it is not memory access, skip the check.
- if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
- return AR_NoAlias;
- // Load-Load may alias
- if (!(MI.mayStore() || PrevMI->mayStore()))
- return AR_NoAlias;
- // We lost info, conservatively alias. If it was store then no sense to
- // continue because we won't be able to check against it further.
- if (MI.memoperands_empty())
- return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
- if (PrevMI->memoperands_empty())
- return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
- for (MachineMemOperand *MMO1 : MI.memoperands()) {
- // MMO1 should have a value due it comes from operation we'd like to use
- // as implicit null check.
- assert(MMO1->getValue() && "MMO1 should have a Value!");
- for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
- if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
- if (PSV->mayAlias(MFI))
- return AR_MayAlias;
- continue;
- }
- if (!AA->isNoAlias(
- MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
- MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())))
- return AR_MayAlias;
- }
- }
- return AR_NoAlias;
- }
- ImplicitNullChecks::SuitabilityResult
- ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
- unsigned PointerReg,
- ArrayRef<MachineInstr *> PrevInsts) {
- // Implementation restriction for faulting_op insertion
- // TODO: This could be relaxed if we find a test case which warrants it.
- if (MI.getDesc().getNumDefs() > 1)
- return SR_Unsuitable;
- if (!MI.mayLoadOrStore() || MI.isPredicable())
- return SR_Unsuitable;
- auto AM = TII->getAddrModeFromMemoryOp(MI, TRI);
- if (!AM)
- return SR_Unsuitable;
- auto AddrMode = *AM;
- const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg;
- int64_t Displacement = AddrMode.Displacement;
- // We need the base of the memory instruction to be same as the register
- // where the null check is performed (i.e. PointerReg).
- if (BaseReg != PointerReg && ScaledReg != PointerReg)
- return SR_Unsuitable;
- const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
- unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI);
- // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the
- // same.
- if ((BaseReg &&
- TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) ||
- (ScaledReg &&
- TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits))
- return SR_Unsuitable;
- // Returns true if RegUsedInAddr is used for calculating the displacement
- // depending on addressing mode. Also calculates the Displacement.
- auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr,
- int64_t Multiplier) {
- // The register can be NoRegister, which is defined as zero for all targets.
- // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the
- // ScaledReg is %rdi, while there is no BaseReg.
- if (!RegUsedInAddr)
- return false;
- assert(Multiplier && "expected to be non-zero!");
- MachineInstr *ModifyingMI = nullptr;
- for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI));
- It != MI.getParent()->rend(); It++) {
- const MachineInstr *CurrMI = &*It;
- if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) {
- ModifyingMI = const_cast<MachineInstr *>(CurrMI);
- break;
- }
- }
- if (!ModifyingMI)
- return false;
- // Check for the const value defined in register by ModifyingMI. This means
- // all other previous values for that register has been invalidated.
- int64_t ImmVal;
- if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal))
- return false;
- // Calculate the reg size in bits, since this is needed for bailing out in
- // case of overflow.
- int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI);
- APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/);
- APInt MultiplierC(RegSizeInBits, Multiplier);
- assert(MultiplierC.isStrictlyPositive() &&
- "expected to be a positive value!");
- bool IsOverflow;
- // Sign of the product depends on the sign of the ImmVal, since Multiplier
- // is always positive.
- APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow);
- if (IsOverflow)
- return false;
- APInt DisplacementC(64, Displacement, true /*isSigned*/);
- DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow);
- if (IsOverflow)
- return false;
- // We only handle diplacements upto 64 bits wide.
- if (DisplacementC.getActiveBits() > 64)
- return false;
- Displacement = DisplacementC.getSExtValue();
- return true;
- };
- // If a register used in the address is constant, fold it's effect into the
- // displacement for ease of analysis.
- bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false;
- if (CalculateDisplacementFromAddrMode(BaseReg, 1))
- BaseRegIsConstVal = true;
- if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale))
- ScaledRegIsConstVal = true;
- // The register which is not null checked should be part of the Displacement
- // calculation, otherwise we do not know whether the Displacement is made up
- // by some symbolic values.
- // This matters because we do not want to incorrectly assume that load from
- // falls in the zeroth faulting page in the "sane offset check" below.
- if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) ||
- (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal))
- return SR_Unsuitable;
- // We want the mem access to be issued at a sane offset from PointerReg,
- // so that if PointerReg is null then the access reliably page faults.
- if (!(-PageSize < Displacement && Displacement < PageSize))
- return SR_Unsuitable;
- // Finally, check whether the current memory access aliases with previous one.
- for (auto *PrevMI : PrevInsts) {
- AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
- if (AR == AR_WillAliasEverything)
- return SR_Impossible;
- if (AR == AR_MayAlias)
- return SR_Unsuitable;
- }
- return SR_Suitable;
- }
- bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns(
- MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) {
- for (const auto &DependenceMO : DependenceMI->operands()) {
- if (!(DependenceMO.isReg() && DependenceMO.getReg()))
- continue;
- // Make sure that we won't clobber any live ins to the sibling block by
- // hoisting Dependency. For instance, we can't hoist INST to before the
- // null check (even if it safe, and does not violate any dependencies in
- // the non_null_block) if %rdx is live in to _null_block.
- //
- // test %rcx, %rcx
- // je _null_block
- // _non_null_block:
- // %rdx = INST
- // ...
- //
- // This restriction does not apply to the faulting load inst because in
- // case the pointer loaded from is in the null page, the load will not
- // semantically execute, and affect machine state. That is, if the load
- // was loading into %rax and it faults, the value of %rax should stay the
- // same as it would have been had the load not have executed and we'd have
- // branched to NullSucc directly.
- if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
- return true;
- }
- // The dependence does not clobber live-ins in NullSucc block.
- return false;
- }
- bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
- ArrayRef<MachineInstr *> InstsSeenSoFar,
- MachineBasicBlock *NullSucc,
- MachineInstr *&Dependence) {
- auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
- if (!DepResult.CanReorder)
- return false;
- if (!DepResult.PotentialDependence) {
- Dependence = nullptr;
- return true;
- }
- auto DependenceItr = *DepResult.PotentialDependence;
- auto *DependenceMI = *DependenceItr;
- // We don't want to reason about speculating loads. Note -- at this point
- // we should have already filtered out all of the other non-speculatable
- // things, like calls and stores.
- // We also do not want to hoist stores because it might change the memory
- // while the FaultingMI may result in faulting.
- assert(canHandle(DependenceMI) && "Should never have reached here!");
- if (DependenceMI->mayLoadOrStore())
- return false;
- if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc))
- return false;
- auto DepDepResult =
- computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
- if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
- return false;
- Dependence = DependenceMI;
- return true;
- }
- /// Analyze MBB to check if its terminating branch can be turned into an
- /// implicit null check. If yes, append a description of the said null check to
- /// NullCheckList and return true, else return false.
- bool ImplicitNullChecks::analyzeBlockForNullChecks(
- MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
- using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
- MDNode *BranchMD = nullptr;
- if (auto *BB = MBB.getBasicBlock())
- BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
- if (!BranchMD)
- return false;
- MachineBranchPredicate MBP;
- if (TII->analyzeBranchPredicate(MBB, MBP, true))
- return false;
- // Is the predicate comparing an integer to zero?
- if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
- (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
- MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
- return false;
- // If there is a separate condition generation instruction, we chose not to
- // transform unless we can remove both condition and consuming branch.
- if (MBP.ConditionDef && !MBP.SingleUseCondition)
- return false;
- MachineBasicBlock *NotNullSucc, *NullSucc;
- if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
- NotNullSucc = MBP.TrueDest;
- NullSucc = MBP.FalseDest;
- } else {
- NotNullSucc = MBP.FalseDest;
- NullSucc = MBP.TrueDest;
- }
- // We handle the simplest case for now. We can potentially do better by using
- // the machine dominator tree.
- if (NotNullSucc->pred_size() != 1)
- return false;
- const Register PointerReg = MBP.LHS.getReg();
- if (MBP.ConditionDef) {
- // To prevent the invalid transformation of the following code:
- //
- // mov %rax, %rcx
- // test %rax, %rax
- // %rax = ...
- // je throw_npe
- // mov(%rcx), %r9
- // mov(%rax), %r10
- //
- // into:
- //
- // mov %rax, %rcx
- // %rax = ....
- // faulting_load_op("movl (%rax), %r10", throw_npe)
- // mov(%rcx), %r9
- //
- // we must ensure that there are no instructions between the 'test' and
- // conditional jump that modify %rax.
- assert(MBP.ConditionDef->getParent() == &MBB &&
- "Should be in basic block");
- for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
- if (I->modifiesRegister(PointerReg, TRI))
- return false;
- }
- // Starting with a code fragment like:
- //
- // test %rax, %rax
- // jne LblNotNull
- //
- // LblNull:
- // callq throw_NullPointerException
- //
- // LblNotNull:
- // Inst0
- // Inst1
- // ...
- // Def = Load (%rax + <offset>)
- // ...
- //
- //
- // we want to end up with
- //
- // Def = FaultingLoad (%rax + <offset>), LblNull
- // jmp LblNotNull ;; explicit or fallthrough
- //
- // LblNotNull:
- // Inst0
- // Inst1
- // ...
- //
- // LblNull:
- // callq throw_NullPointerException
- //
- //
- // To see why this is legal, consider the two possibilities:
- //
- // 1. %rax is null: since we constrain <offset> to be less than PageSize, the
- // load instruction dereferences the null page, causing a segmentation
- // fault.
- //
- // 2. %rax is not null: in this case we know that the load cannot fault, as
- // otherwise the load would've faulted in the original program too and the
- // original program would've been undefined.
- //
- // This reasoning cannot be extended to justify hoisting through arbitrary
- // control flow. For instance, in the example below (in pseudo-C)
- //
- // if (ptr == null) { throw_npe(); unreachable; }
- // if (some_cond) { return 42; }
- // v = ptr->field; // LD
- // ...
- //
- // we cannot (without code duplication) use the load marked "LD" to null check
- // ptr -- clause (2) above does not apply in this case. In the above program
- // the safety of ptr->field can be dependent on some_cond; and, for instance,
- // ptr could be some non-null invalid reference that never gets loaded from
- // because some_cond is always true.
- SmallVector<MachineInstr *, 8> InstsSeenSoFar;
- for (auto &MI : *NotNullSucc) {
- if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
- return false;
- MachineInstr *Dependence;
- SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
- if (SR == SR_Impossible)
- return false;
- if (SR == SR_Suitable &&
- canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) {
- NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
- NullSucc, Dependence);
- return true;
- }
- // If MI re-defines the PointerReg in a way that changes the value of
- // PointerReg if it was null, then we cannot move further.
- if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI))
- return false;
- InstsSeenSoFar.push_back(&MI);
- }
- return false;
- }
- /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
- /// The FAULTING instruction does the same load/store as MI
- /// (defining the same register), and branches to HandlerMBB if the mem access
- /// faults. The FAULTING instruction is inserted at the end of MBB.
- MachineInstr *ImplicitNullChecks::insertFaultingInstr(
- MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
- const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
- // all targets.
- DebugLoc DL;
- unsigned NumDefs = MI->getDesc().getNumDefs();
- assert(NumDefs <= 1 && "other cases unhandled!");
- unsigned DefReg = NoRegister;
- if (NumDefs != 0) {
- DefReg = MI->getOperand(0).getReg();
- assert(NumDefs == 1 && "expected exactly one def!");
- }
- FaultMaps::FaultKind FK;
- if (MI->mayLoad())
- FK =
- MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
- else
- FK = FaultMaps::FaultingStore;
- auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
- .addImm(FK)
- .addMBB(HandlerMBB)
- .addImm(MI->getOpcode());
- for (auto &MO : MI->uses()) {
- if (MO.isReg()) {
- MachineOperand NewMO = MO;
- if (MO.isUse()) {
- NewMO.setIsKill(false);
- } else {
- assert(MO.isDef() && "Expected def or use");
- NewMO.setIsDead(false);
- }
- MIB.add(NewMO);
- } else {
- MIB.add(MO);
- }
- }
- MIB.setMemRefs(MI->memoperands());
- return MIB;
- }
- /// Rewrite the null checks in NullCheckList into implicit null checks.
- void ImplicitNullChecks::rewriteNullChecks(
- ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
- DebugLoc DL;
- for (const auto &NC : NullCheckList) {
- // Remove the conditional branch dependent on the null check.
- unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
- (void)BranchesRemoved;
- assert(BranchesRemoved > 0 && "expected at least one branch!");
- if (auto *DepMI = NC.getOnlyDependency()) {
- DepMI->removeFromParent();
- NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
- }
- // Insert a faulting instruction where the conditional branch was
- // originally. We check earlier ensures that this bit of code motion
- // is legal. We do not touch the successors list for any basic block
- // since we haven't changed control flow, we've just made it implicit.
- MachineInstr *FaultingInstr = insertFaultingInstr(
- NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
- // Now the values defined by MemOperation, if any, are live-in of
- // the block of MemOperation.
- // The original operation may define implicit-defs alongside
- // the value.
- MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
- for (const MachineOperand &MO : FaultingInstr->operands()) {
- if (!MO.isReg() || !MO.isDef())
- continue;
- Register Reg = MO.getReg();
- if (!Reg || MBB->isLiveIn(Reg))
- continue;
- MBB->addLiveIn(Reg);
- }
- if (auto *DepMI = NC.getOnlyDependency()) {
- for (auto &MO : DepMI->operands()) {
- if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
- continue;
- if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
- NC.getNotNullSucc()->addLiveIn(MO.getReg());
- }
- }
- NC.getMemOperation()->eraseFromParent();
- if (auto *CheckOp = NC.getCheckOperation())
- CheckOp->eraseFromParent();
- // Insert an *unconditional* branch to not-null successor - we expect
- // block placement to remove fallthroughs later.
- TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
- /*Cond=*/std::nullopt, DL);
- NumImplicitNullChecks++;
- }
- }
- char ImplicitNullChecks::ID = 0;
- char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
- INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
- "Implicit null checks", false, false)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
- "Implicit null checks", false, false)
|