123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490 |
- //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the interface between the inliner and a learned model.
- // It delegates model evaluation to either the AOT compiled model (the
- // 'release' mode) or a runtime-loaded model (the 'development' case).
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/MLInlineAdvisor.h"
- #include "llvm/ADT/SCCIterator.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/FunctionPropertiesAnalysis.h"
- #include "llvm/Analysis/InlineCost.h"
- #include "llvm/Analysis/InlineModelFeatureMaps.h"
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MLModelRunner.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/CommandLine.h"
- using namespace llvm;
- #if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
- #include "llvm/Analysis/ReleaseModeModelRunner.h"
- // codegen-ed file
- #error #include "InlinerSizeModel.h" // NOLINT
- std::unique_ptr<InlineAdvisor>
- llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
- auto AOTRunner =
- std::make_unique<ReleaseModeModelRunner<llvm::InlinerSizeModel>>(
- M.getContext(), FeatureMap, DecisionName);
- return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
- }
- #endif
- #define DEBUG_TYPE "inline-ml"
- static cl::opt<float> SizeIncreaseThreshold(
- "ml-advisor-size-increase-threshold", cl::Hidden,
- cl::desc("Maximum factor by which expected native size may increase before "
- "blocking any further inlining."),
- cl::init(2.0));
- static cl::opt<bool> KeepFPICache(
- "ml-advisor-keep-fpi-cache", cl::Hidden,
- cl::desc(
- "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
- cl::init(false));
- // clang-format off
- const std::array<TensorSpec, NumberOfFeatures> llvm::FeatureMap{
- #define POPULATE_NAMES(_, NAME) TensorSpec::createSpec<int64_t>(NAME, {1} ),
- // InlineCost features - these must come first
- INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
- #undef POPULATE_NAMES
- // Non-cost features
- #define POPULATE_NAMES(_, NAME, __) TensorSpec::createSpec<int64_t>(NAME, {1} ),
- INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
- #undef POPULATE_NAMES
- };
- // clang-format on
- const char *const llvm::DecisionName = "inlining_decision";
- const char *const llvm::DefaultDecisionName = "inlining_default";
- const char *const llvm::RewardName = "delta_size";
- CallBase *getInlinableCS(Instruction &I) {
- if (auto *CS = dyn_cast<CallBase>(&I))
- if (Function *Callee = CS->getCalledFunction()) {
- if (!Callee->isDeclaration()) {
- return CS;
- }
- }
- return nullptr;
- }
- MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
- std::unique_ptr<MLModelRunner> Runner)
- : InlineAdvisor(
- M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
- ModelRunner(std::move(Runner)),
- CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
- InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
- assert(ModelRunner);
- // Extract the 'call site height' feature - the position of a call site
- // relative to the farthest statically reachable SCC node. We don't mutate
- // this value while inlining happens. Empirically, this feature proved
- // critical in behavioral cloning - i.e. training a model to mimic the manual
- // heuristic's decisions - and, thus, equally important for training for
- // improvement.
- CallGraph CGraph(M);
- for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
- const std::vector<CallGraphNode *> &CGNodes = *I;
- unsigned Level = 0;
- for (auto *CGNode : CGNodes) {
- Function *F = CGNode->getFunction();
- if (!F || F->isDeclaration())
- continue;
- for (auto &I : instructions(F)) {
- if (auto *CS = getInlinableCS(I)) {
- auto *Called = CS->getCalledFunction();
- auto Pos = FunctionLevels.find(&CG.get(*Called));
- // In bottom up traversal, an inlinable callee is either in the
- // same SCC, or to a function in a visited SCC. So not finding its
- // level means we haven't visited it yet, meaning it's in this SCC.
- if (Pos == FunctionLevels.end())
- continue;
- Level = std::max(Level, Pos->second + 1);
- }
- }
- }
- for (auto *CGNode : CGNodes) {
- Function *F = CGNode->getFunction();
- if (F && !F->isDeclaration())
- FunctionLevels[&CG.get(*F)] = Level;
- }
- }
- for (auto KVP : FunctionLevels) {
- AllNodes.insert(KVP.first);
- EdgeCount += getLocalCalls(KVP.first->getFunction());
- }
- NodeCount = AllNodes.size();
- }
- unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
- return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
- }
- void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *LastSCC) {
- if (!LastSCC || ForceStop)
- return;
- FPICache.clear();
- // Function passes executed between InlinerPass runs may have changed the
- // module-wide features.
- // The cgscc pass manager rules are such that:
- // - if a pass leads to merging SCCs, then the pipeline is restarted on the
- // merged SCC
- // - if a pass leads to splitting the SCC, then we continue with one of the
- // splits
- // This means that the NodesInLastSCC is a superset (not strict) of the nodes
- // that subsequent passes would have processed
- // - in addition, if new Nodes were created by a pass (e.g. CoroSplit),
- // they'd be adjacent to Nodes in the last SCC. So we just need to check the
- // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't
- // care about the nature of the Edge (call or ref).
- NodeCount -= static_cast<int64_t>(NodesInLastSCC.size());
- while (!NodesInLastSCC.empty()) {
- const auto *N = *NodesInLastSCC.begin();
- NodesInLastSCC.erase(N);
- // The Function wrapped by N could have been deleted since we last saw it.
- if (N->isDead()) {
- assert(!N->getFunction().isDeclaration());
- continue;
- }
- ++NodeCount;
- EdgeCount += getLocalCalls(N->getFunction());
- for (const auto &E : *(*N)) {
- const auto *AdjNode = &E.getNode();
- assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
- auto I = AllNodes.insert(AdjNode);
- if (I.second)
- NodesInLastSCC.insert(AdjNode);
- }
- }
- EdgeCount -= EdgesOfLastSeenNodes;
- EdgesOfLastSeenNodes = 0;
- // (Re)use NodesInLastSCC to remember the nodes in the SCC right now,
- // in case the SCC is split before onPassExit and some nodes are split out
- assert(NodesInLastSCC.empty());
- for (const auto &N : *LastSCC)
- NodesInLastSCC.insert(&N);
- }
- void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) {
- // No need to keep this around - function passes will invalidate it.
- if (!KeepFPICache)
- FPICache.clear();
- if (!LastSCC || ForceStop)
- return;
- // Keep track of the nodes and edges we last saw. Then, in onPassEntry,
- // we update the node count and edge count from the subset of these nodes that
- // survived.
- EdgesOfLastSeenNodes = 0;
- // Check on nodes that were in SCC onPassEntry
- for (auto I = NodesInLastSCC.begin(); I != NodesInLastSCC.end();) {
- if ((*I)->isDead())
- NodesInLastSCC.erase(*I++);
- else
- EdgesOfLastSeenNodes += getLocalCalls((*I++)->getFunction());
- }
- // Check on nodes that may have got added to SCC
- for (const auto &N : *LastSCC) {
- assert(!N.isDead());
- auto I = NodesInLastSCC.insert(&N);
- if (I.second)
- EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
- }
- assert(NodeCount >= NodesInLastSCC.size());
- assert(EdgeCount >= EdgesOfLastSeenNodes);
- }
- int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
- return getCachedFPI(F).DirectCallsToDefinedFunctions;
- }
- // Update the internal state of the advisor, and force invalidate feature
- // analysis. Currently, we maintain minimal (and very simple) global state - the
- // number of functions and the number of static calls. We also keep track of the
- // total IR size in this module, to stop misbehaving policies at a certain bloat
- // factor (SizeIncreaseThreshold)
- void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
- bool CalleeWasDeleted) {
- assert(!ForceStop);
- Function *Caller = Advice.getCaller();
- Function *Callee = Advice.getCallee();
- // The caller features aren't valid anymore.
- {
- PreservedAnalyses PA = PreservedAnalyses::all();
- PA.abandon<FunctionPropertiesAnalysis>();
- PA.abandon<DominatorTreeAnalysis>();
- PA.abandon<LoopAnalysis>();
- FAM.invalidate(*Caller, PA);
- }
- Advice.updateCachedCallerFPI(FAM);
- int64_t IRSizeAfter =
- getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
- CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
- if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
- ForceStop = true;
- // We can delta-update module-wide features. We know the inlining only changed
- // the caller, and maybe the callee (by deleting the latter).
- // Nodes are simple to update.
- // For edges, we 'forget' the edges that the caller and callee used to have
- // before inlining, and add back what they currently have together.
- int64_t NewCallerAndCalleeEdges =
- getCachedFPI(*Caller).DirectCallsToDefinedFunctions;
- if (CalleeWasDeleted)
- --NodeCount;
- else
- NewCallerAndCalleeEdges +=
- getCachedFPI(*Callee).DirectCallsToDefinedFunctions;
- EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
- assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
- }
- int64_t MLInlineAdvisor::getModuleIRSize() const {
- int64_t Ret = 0;
- for (auto &F : M)
- if (!F.isDeclaration())
- Ret += getIRSize(F);
- return Ret;
- }
- FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const {
- auto InsertPair =
- FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo()));
- if (!InsertPair.second)
- return InsertPair.first->second;
- InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F);
- return InsertPair.first->second;
- }
- std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
- if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
- return Skip;
- auto &Caller = *CB.getCaller();
- auto &Callee = *CB.getCalledFunction();
- auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
- return FAM.getResult<AssumptionAnalysis>(F);
- };
- auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
- auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
- auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
- // If this is a "never inline" case, there won't be any changes to internal
- // state we need to track, so we can just return the base InlineAdvice, which
- // will do nothing interesting.
- // Same thing if this is a recursive case.
- if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
- &Caller == &Callee)
- return getMandatoryAdvice(CB, false);
- bool Mandatory =
- MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
- // If we need to stop, we won't want to track anymore any state changes, so
- // we just return the base InlineAdvice, which acts as a noop.
- if (ForceStop) {
- ORE.emit([&] {
- return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
- << "Won't attempt inlining because module size grew too much.";
- });
- return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
- }
- int CostEstimate = 0;
- if (!Mandatory) {
- auto IsCallSiteInlinable =
- llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
- if (!IsCallSiteInlinable) {
- // We can't inline this for correctness reasons, so return the base
- // InlineAdvice, as we don't care about tracking any state changes (which
- // won't happen).
- return std::make_unique<InlineAdvice>(this, CB, ORE, false);
- }
- CostEstimate = *IsCallSiteInlinable;
- }
- const auto CostFeatures =
- llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
- if (!CostFeatures) {
- return std::make_unique<InlineAdvice>(this, CB, ORE, false);
- }
- if (Mandatory)
- return getMandatoryAdvice(CB, true);
- auto NrCtantParams = 0;
- for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
- NrCtantParams += (isa<Constant>(*I));
- }
- auto &CallerBefore = getCachedFPI(Caller);
- auto &CalleeBefore = getCachedFPI(Callee);
- *ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeBasicBlockCount) =
- CalleeBefore.BasicBlockCount;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::CallSiteHeight) =
- getInitialFunctionLevel(Caller);
- *ModelRunner->getTensor<int64_t>(FeatureIndex::NodeCount) = NodeCount;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::NrCtantParams) = NrCtantParams;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::EdgeCount) = EdgeCount;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::CallerUsers) =
- CallerBefore.Uses;
- *ModelRunner->getTensor<int64_t>(
- FeatureIndex::CallerConditionallyExecutedBlocks) =
- CallerBefore.BlocksReachedFromConditionalInstruction;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::CallerBasicBlockCount) =
- CallerBefore.BasicBlockCount;
- *ModelRunner->getTensor<int64_t>(
- FeatureIndex::CalleeConditionallyExecutedBlocks) =
- CalleeBefore.BlocksReachedFromConditionalInstruction;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeUsers) =
- CalleeBefore.Uses;
- *ModelRunner->getTensor<int64_t>(FeatureIndex::CostEstimate) = CostEstimate;
- // Add the cost features
- for (size_t I = 0;
- I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
- *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
- static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
- }
- return getAdviceFromModel(CB, ORE);
- }
- std::unique_ptr<MLInlineAdvice>
- MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
- OptimizationRemarkEmitter &ORE) {
- return std::make_unique<MLInlineAdvice>(
- this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
- }
- std::unique_ptr<InlineAdvice>
- MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) {
- if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller())
- .isReachableFromEntry(CB.getParent()))
- return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
- return nullptr;
- }
- std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
- bool Advice) {
- // Make sure we track inlinings in all cases - mandatory or not.
- if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
- return Skip;
- if (Advice && !ForceStop)
- return getMandatoryAdviceImpl(CB);
- // If this is a "never inline" case, there won't be any changes to internal
- // state we need to track, so we can just return the base InlineAdvice, which
- // will do nothing interesting.
- // Same if we are forced to stop - we don't track anymore.
- return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
- }
- std::unique_ptr<MLInlineAdvice>
- MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
- return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
- }
- void MLInlineAdvisor::print(raw_ostream &OS) const {
- OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount
- << " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n";
- OS << "[MLInlineAdvisor] FPI:\n";
- for (auto I : FPICache) {
- OS << I.first->getName() << ":\n";
- I.second.print(OS);
- OS << "\n";
- }
- OS << "\n";
- }
- MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
- OptimizationRemarkEmitter &ORE,
- bool Recommendation)
- : InlineAdvice(Advisor, CB, ORE, Recommendation),
- CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)),
- CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)),
- CallerAndCalleeEdges(Advisor->isForcedToStop()
- ? 0
- : (Advisor->getLocalCalls(*Caller) +
- Advisor->getLocalCalls(*Callee))),
- PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) {
- if (Recommendation)
- FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB);
- }
- void MLInlineAdvice::reportContextForRemark(
- DiagnosticInfoOptimizationBase &OR) {
- using namespace ore;
- OR << NV("Callee", Callee->getName());
- for (size_t I = 0; I < NumberOfFeatures; ++I)
- OR << NV(FeatureMap[I].name(),
- *getAdvisor()->getModelRunner().getTensor<int64_t>(I));
- OR << NV("ShouldInline", isInliningRecommended());
- }
- void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const {
- FPU->finish(FAM);
- }
- void MLInlineAdvice::recordInliningImpl() {
- ORE.emit([&]() {
- OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
- reportContextForRemark(R);
- return R;
- });
- getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
- }
- void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
- ORE.emit([&]() {
- OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
- Block);
- reportContextForRemark(R);
- return R;
- });
- getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
- }
- void MLInlineAdvice::recordUnsuccessfulInliningImpl(
- const InlineResult &Result) {
- getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI;
- ORE.emit([&]() {
- OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
- DLoc, Block);
- reportContextForRemark(R);
- return R;
- });
- }
- void MLInlineAdvice::recordUnattemptedInliningImpl() {
- assert(!FPU);
- ORE.emit([&]() {
- OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
- reportContextForRemark(R);
- return R;
- });
- }
|